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Abstract
This study aims to resolve weighted fractional operators of variable order in specific
spaces. We establish an investigation on a boundary value problem of weighted
fractional derivative of one function with respect to another variable order function. It
is essential to keep in mind that the symmetry of a transformation for differential
equations is connected to local solvability, which is synonymous with the existence of
solutions. As a consequence, existence requirements for weighted fractional
derivative of a function with respect to another function of constant order are
necessary. Moreover, the stability with in Ulam–Hyers–Rassias sense is reviewed. The
outcomes are derived using the Kuratowski measure of non-compactness. A model
illustrates the trustworthiness of the observed results.
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1 Introduction
The fractional calculus has gained prominence in recent decades due to the variety of
applications in diverse areas of science and engineering [1, 10, 12, 19]. The Riemann–
Liouville and Caputo fractional derivatives exist in the majority of commonly used frac-
tional operators (with singular kernels). Nevertheless, there are additionally different
kinds of fractional operators that help researchers in their endeavors to grasp many phe-
nomena in the world around us, we refer to the ones in citations [6, 14–16, 18, 25]. Lately,
fractional integration and derivation of variable orders has also been explored. See, for
instance, [20, 29].

The solvability of differential equations represents one of the most important issues in
differential equations. There are multiple techniques for analyzing the existence, such as
Lie group symmetry [9, 24, 26]. Throughout this document, we use integral equivalence
to confirm the existence result for the bvp ψ-wfd with variable order. Many authors have
set up and studied bvps for numerous forms of fractional differential equations [2, 21].
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While many other research works on the existence of solutions to fractional constant
order problems have been carried, the existence of solutions to variable-order problems is
infrequently mentioned in the literature, and there have been only a few research papers
on the stability of solutions; we refer to [13, 22, 23, 27, 29]. As a result of investigating this
intriguing special research topic, our findings are novel and notable.

The weighted fractional differential of a function with constant order operators have
recently gained popularity. Refs [3, 4, 17]. In this paper, we will study the boundary value
problem for ψ-wfd of variable order (Bvpwfdvo)

⎧
⎨

⎩

D
σ (ζ )
w h(ζ ) = f (t, h(ζ ),Iσ (ζ )

w h(ζ )), ζ ∈ L,

h(0) = h(ε) = 0,
(Bvpwfdvo)

where L = [0, ε], 0 < ε < ∞, σ (ζ ) : L → (1, 2] is the variable order of the fractional derivative
equation, f : L ×R×R →R is a given function, and I

,σ (ζ )
w and D

σ (ζ )
w are the left ψ-wfi and

ψ-wfd, respectively, of variable order σ (ζ ) for function h(ζ ).
The ψ-wfi of variable order σ (ζ ) : L → (n – 1, n] for a function f has the form

I
σ (ζ )
w f (ζ ) =

w–1(ζ )
�(σ (ζ ))

∫ ζ

0

(
ψ(ζ ) – ψ(s)

)σ (ζ )–1w(s)f (s)ψ ′(s) ds, ζ > 1. (1.1)

The corresponding derivative in Riemann–Liouville settings is

D
σ (ζ )
w f (ζ ) =

w–1(ζ )
�(n – σ (ζ ))

(
Dζ

ψ ′(ζ )

)n(

w(ζ )
∫ ζ

0

(
ψ(ζ ) – ψ(s)

)n–σ (ζ )–1w(s)f (s)ψ ′(s) ds
)

,

(1.2)

where the weight w(ζ ) > 0 is a continuous function, w–1(ζ ) = 1
w(ζ ) and ψ ∈ C1(L,R+) satis-

fied ψ ′(ζ ) > 0, for all ζ ∈ L.

2 Preliminaries
Before we begin, let us notate and make some abbreviation to avoid repetition.

K-mnc–Kuratowski measure of non-compactness; ψ-wfd–weighted fractional differ-
ential equation of function with respect to function ψ , ψ-wf–weighted fractional integral
equation of function with respect to function ψ ; bvp–boundary value problem; and UHRs
stads for Ulam–Hyers–Rassias stable.

In this section, we begin by introducing several terms and conceptual results, which will
be employed across the document.

Let L = [1, ε] be a compact interval and denote by C(L,R) the Banach space of continuous
functions y : L → R with the usual norm

‖y‖ = sup
{∣
∣y(ζ )

∣
∣, ζ ∈ L

}
.

We define the weighted Banach space

Cw(L,R) =
{

y ∈ C(L,R)/w(ζ )y(ζ ) ∈ C(L,R)
}

,
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equipped with norm

‖y‖w = sup
{∣
∣w(ζ )y(ζ )

∣
∣, ζ ∈ L

}
.

Remark 2.1 It is worth noting that the semigroup property is satisfied for a standard ψ-
wfd for constant orders, but not for the general case with variable orders σ (ζ ), �(ζ ), i.e.,

I
σ (ζ )
w

(
I

�(ζ )
w

)
f (ζ ) �= I

σ (ζ )+�(ζ )
w f (ζ ).

In what follow, for all δ ∈ [0, 1] and ζ , s ∈ (0, ε] with ζ ≥ s, we pose

ψδ(ζ , s) :=
(
ψ(ζ ) – ψ(s)

)δ .

Lemma 2.2 If σ ∈ C(L, (1, 2]) and there exists a number δ ∈ [0, 1] such that h ∈ Cw(L, R),
then the fractional integral variable order Iσ (ζ )

w h exists for ζ ∈ L.

Proof The function �(σ (ζ )) is continuous non-zero function on L, denoted �	 =
supζ∈L

1
�(σ (ζ )) and w	 = supζ∈L

1
w(ζ ) .

If ψ(ζ , s) < 1, then ψσ (t)–1(ζ , s) ≤ 1,

If ψ(ζ , s) ≥ 1, then ψσ (t)–1(ζ , s) ≤ ψδ(ε, 0)

and

ψσ (ζ )–1(ζ , s) ≤ ψ	 = sup
{

1,ψδ(ε, 0)
}

.

Let ζ ∈ L. From the definition (1.1), applying that the function ψδ(·, 0) is an increasing
function on L for δ ∈ (0, 1], we obtain

∣
∣Iσ (ζ )

w h(ζ )
∣
∣ =

w–1(ζ )
�(σ (ζ ))

∫ ζ

1
ψσ (ζ )–1(ζ , s)w(s)

∣
∣h(s)

∣
∣ψ ′(s) ds

≤ �	w	ψ	ψδ(ε, 0)‖h‖w

∫ ζ

1
ψ–δ(s, 0)ψ ′(s) ds

≤ �	w	ψ	 ψ1(ε, 0)
1 – δ

‖h‖w < ∞,

which confirms that the ψ-wfi of variable order for the function h (Iσ (ζ )
w h) exists for any

ζ ∈ L. �

Proposition 2.3 ([17]) (1) For σ > 0 and � > 0, we have

(
I

σ
w
(
w–1(ζ )ψ�–1(ζ , 0)

))
(ζ ) =

�(�)
�(� + σ )

w–1(ζ )ψ�+σ–1(ζ , 0). (2.1)

(2) For σ > n and � > 0, we have

(
D

σ
w
(
w–1(ζ )ψ�–1(ζ , 0)

))
(ζ ) =

�(�)
�(� – σ )

w–1(ζ )ψ�–σ–1(ζ , 0). (2.2)
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Theorem 2.4 ([17]) Let σ > 0. Then, we have

(
D

σ
wI

σ
w
)
f = f .

Theorem 2.5 ([17]) Let σ > 0, n = –[–σ ]. Then

(
I

σ
wD

σ
wf

)
(ζ ) = f (ζ ) – w–1(ζ )

n∑

k=1

akψσ–k(ζ , 0).

Definition 2.6 ([5, 28, 29]) Let the set I ⊂ R.
• The set I is called a generalized interval if it is either an interval or a point or the empty

set.
• The finite set P of generalized intervals is called a partition of I if each x in I lies in

exactly one of the generalized intervals E in P .
• The function g : I → R is called a piecewise constant with respect to partition P of I

if for any E ∈P , g is constant on E.

In the following, we recall some important and necessary information about the K-mnc.

Definition 2.7 ([7])
Let MX be the bounded subsets of a Banach space X. The K-mnc ϑ is a mapping ϑ :

MX → [0,∞] initially derived from a construction as laid out in the following format

ϑ(D) = inf

{

ε > 0 : D (∈MX) ⊆
n⋃

ι=1

Dι, diam(Dι) ≤ ε

}

,

where

diam(Dι) = sup
{‖x – y‖ : x, y ∈ Dι

}
.

The K-mnc satisfied the following properties:

Proposition 2.8 ([7, 8]). Let D, D1, D2 be a bounded subsets of a Banach space X, then:
1. ϑ(D) = 0 ⇐⇒ D is relatively compact.
2. ϑ(φ) = 0.
3. ϑ(D) = ϑ(D) = ϑ(conv D).
4. D1 ⊂ D2 �⇒ ϑ(D1) ≤ ϑ(D2).
5. ϑ(D1 + D2) ≤ ϑ(D1) + ϑ(D2).
6. ϑ(D) = ||ϑ(D),  ∈R.
7. ϑ(D1 ∪ D2) = Max{ϑ(D1),ϑ(D2)}.
8. ϑ(D1 ∩ D2) = Min{ϑ(D1),ϑ(D2)}.
9. ϑ(D + a0) = ϑ(D) for any a0 ∈ X .

Lemma 2.9 ([11]) Let X be a Banach space. If U is a bounded and equicontinuous subset
of the the space C(L, X) of continuous functions, then:
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(I1) ϑ(U(.)) ∈ C(L,R+), means that the function ϑ(U(ζ )) is a continuous function for
ζ ∈ L, and

ϑ̂(U) = sup
ζ∈L

ϑ
(
U(ζ )

)
,

where ϑ̂(U) is the K-mnc on the space C(L, X).
(I2) ϑ(

∫ ε

0 x(θ ) dθ : x ∈ U) ≤ ∫ ε

0 ϑ(U(θ )) dθ , where

U(ζ ) =
{

x(ζ ) : x ∈ U
}

, ζ ∈ L.

Theorem 2.10 ([7] (DFPT)) If � is nonempty, bounded, convex and closed subset of a
Banach space X, and � : � −→ � is a continuous operator satisfying

ϑ
(
�(�)

) ≤ kϑ(�), ∀� �= ∅ ⊂ �, k ∈ [0, 1),

i.e., � is k-set contractions, then � has at least one fixed point in �.

Definition 2.11 Let the function ρ ∈ C(L,R+). The (Bvpwfdvo) is UHRs with respect to
ρ if there exists a constant cf > 0 such that for any ε > 0 and for every z ∈ C(L,R) such that

∣
∣Dσ (ζ )

w z(ζ ) – f
(
ζ , z(ζ ), Iσ (ζ )

w z(ζ )
)∣
∣ ≤ ερ(ζ ), ζ ∈ L, (2.3)

there exists a solution h ∈ C(L,R) for (Bvpwfdvo) satisfying

∣
∣z(ζ ) – h(ζ )

∣
∣ ≤ cf ερ(ζ ), ζ ∈ L.

3 Existence solutions of (Bvpwfdvo)
Let us proceed with the following assumption:

Hypothesis 1 (H1) Let n ∈ N be such an integer and a finite point sequence {ζj}n
j=0 be

given in such a way 0 = ζ0 < ζj < ζn = ε, j = 1, . . . , n – 1.

Denote Lj := (ζj–1, ζj], j = 1, 2, . . . , n. Then P =
⋃n

j=1 Lj is a partition of the interval L.
For each l = 1, 2, . . . , n, the symbol El = Cw(Ll,R) indicates the weighted Banach space of

continuous functions x : Ll →R equipped with the norm

‖x‖El = sup
ζ∈Ll

∣
∣w(ζ )x(ζ )

∣
∣.

Let σ (ζ ) : L → (1, 2] be a piecewise constant function with respect to P , i.e., σ (ζ ) =
∑n

l=1 1l(ζ ), where 1 < σl ≤ 2 are constants and 1l is the indicator of the interval Ll, l =
1, 2, . . . , n:

1l(ζ ) =

⎧
⎨

⎩

1, for ζ ∈ Ll,

0, elsewhere.



Benia et al. Journal of Inequalities and Applications        (2023) 2023:127 Page 6 of 16

Then, for any ζ ∈ Ll , l = 1, 2, . . . , n, the ψ-wfd of variable order σ (ζ ) for function h ∈
Cw(L,R), defined by (1.2), could be presented as a sum of ψ-wfd constant orders σj, j =
1, 2, . . . , l.

D
σ (ζ )
w h(ζ ) =

w–1(ζ )
�(2 – σ (ζ ))

(
Dζ

ψ ′(ζ )

)2(

w(ζ )
∫ ζ

1
ψ1–σ (ζ )(ζ , s)w(s)h(s)ψ ′(s) ds

)

=
w–1(ζ )

�(2 – σ (ζ ))

[ l–1∑

j=1

(
Dζ

ψ ′(ζ )

)2(

w(ζ )
∫ ζj

ζj–1

ψ1–σj (ζ , s)w(s)h(s)ψ ′(s) ds
)

+
(

Dζ

ψ ′(ζ )

)2(

w(ζ )
∫ ζ

ζl–1

ψ1–σl (ζ , s)w(s)h(s)ψ ′(s) ds
)]

.

Thus, the equation of the bvp of ψ-wfd of variable order can be written for any ζ ∈ Ll ,
l = 1, 2, . . . , n in the form

w–1(ζ )
�(2 – σ (ζ ))

[ l–1∑

j=1

(
Dζ

ψ ′(ζ )

)2(

w(ζ )
∫ ζj

ζj–1

ψ1–σj (ζ , s)w(s)h(s)ψ ′(s) ds
)

+
(

Dζ

ψ ′(ζ )

)2(

w(ζ )
∫ ζ

ζl–1

ψ1–σl (ζ , s)w(s)h(s)ψ ′(s) ds
)]

= f
(
t, h(ζ ),Iσ (ζ )

w h(ζ )
)
.

(3.1)

Let the function h̃ ∈ E� be such that h̃(ζ ) ≡ 0 on ζ ∈ [1, ζ�–1] and it solves integral Equation
(3.1). Then (3.1) is reduced to

ζ�–1D
σ�
w h̃(ζ ) = f

(
ζ , h̃(ζ ), ζ�–1I

σ�
w h̃(ζ )

)
, ζ ∈ L�.

Taking into account the above for any � = 1, 2, . . . , n, we consider the following auxiliary
bvp for ψ-wfd of constant order

⎧
⎨

⎩

ζ�–1D
σ�
w h(ζ ) = f (ζ , h(ζ ), ζ�–1I

σ�
w h(ζ )), ζ ∈ L�,

h(ζ�–1) = 0, h(ζ�) = 0.
(Bvpwfdco)

Lemma 3.1 Let � ∈ {1, 2 . . . , n} be a natural number, f ∈ Cw(L� ×R×R,R), and there exists
a number δ ∈ (0, 1) such that (ψ(ζ ) – ψ(1))δf (ζ ) ∈ Cw(L� ×R×R,R).

Then the function h� ∈ E� is a solution of (Bvpwfdco) if and only if h� solves the integral
equation

h(ζ ) = –
w(ζ�)ψ1–σ�

(ζ�, ζ�–1)
w(ζ )ψ1–σ�

(ζ , ζ�–1) ζ�–1I
σ�
w

(
f
(
ζ , h(ζ ), ζ�–1I

σ�
w h(ζ )

))

ζ=ζ�

+ ζ�–1I
σ�
w

(
f
(
ζ , h(ζ ), ζ�–1I

σ�
w h(ζ )

))
.

(3.2)

Proof Let h� ∈ E� be a solution of the problem (Bvpwfdco). Using the operator ζ�–1I
σ�
w to

both sides of the equation in the problem (Bvpwfdco), we find (see Theorem 2.5)

h�(ζ ) = –a1w–1(ζ )ψσ�–1(ζ , ζ�–1) – a2w–1(ζ )ψσ�–2(ζ , ζ�–1)

+ ζ�–1I
σ�
w

(
f
(
ζ , h(ζ ), ζ�–1I

σ�
w h(ζ )

))
,

where a1, a2 are two constants.
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Based on the operating environment h as well as the boundary condition h(ζ�–1) = 0, we
conclude that a2 = 0.

Based on the boundary condition h(ζ�) = 0, we obtain

a1 = w(ζ�)ψ1–σ�
(ζ�, ζ�–1) ζ�–1I

σ�
w

(
f
(
ζ , h(ζ ), ζ�–1I

σ�
w h(ζ )

))

ζ=ζ�
.

Then, we find h� solves integral Equation (3.2).
In contrast, suppose h� ∈ E� be a solution of integral Equation (3.2). In respect of the

continuity w(ζ )ψδ(ζ , 0)f (ζ ), we deduce that h� is the solution of problem (Bvpwfdco). �

Theorem 3.2 Let the conditions of Lemma 3.1 be satisfied and there are constants V , W >
0 such that

ψδ(ζ , 0)
∣
∣f (t, x1, y1) – f (t, x2, y2)

∣
∣ ≤ V |x1 – x2| + W |y1 – y2|,

where xi, yi ∈ R, i = 1, 2, t ∈ L�, and the inequality

d < 1 (3.3)

holds, where

d =
2ψσ�–1(ζ�, ζ�–1)(ψ1–δ(ζ�, 0) – ψ1–δ(ζ�–1, 0))

(1 – δ)�(σ�)

(

V + W
ψσ�

(ζ�, ζ�–1)
�(σ� + 1)

)

.

Then, the (Bvpwfdco) does have at least one solution in E�.

Proof Let rl = 2f 	
wψσ�

(ζ� ,ζ�–1)
(1–d)�(σ�+1) with f 	

w = supζ∈L�
|w(ζ )f (ζ , 0, 0)|. Consider the set

B� =
{

h ∈ E�,‖h‖E�
≤ r�

}
.

It is clear that the set B� is a nonempty, bounded, closed convex subset of E�, ∀� ∈
{1, 2, . . . , n}.

We introduce the operator F defined on E� by

Fh(ζ ) = –
w–1(ζ )ψ1–σ�

(ζ�, ζ�–1)
�(σ�)ψ1–σ�

(ζ , ζ�–1)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)f
(
s, h(s), ζ�–1I

σ�
w h(s)

)
ds

+
w–1(ζ )
�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)w(s)ψ ′(s)f
(
s, h(s), ζ�–1I

σ�
w h(s)

)
ds.

(3.4)

Out from qualities of fractional integrals and from the continuity of function
ψδ(·, 0)w(·)f (·), the above operator F : E� −→ E� is clearly defined.

From the definition of the operator F and Lemma 3.1, we perceive that the fixed points
of F are solutions of problem (Bvpwfdco). For this reason, it suffices to verify the axioms
of Theorem 2.10, it is done in four steps.

Step 1. F (B�) ⊆ B�. Let ∈ B� using (H1), we have

∣
∣w(ζ )F (h)

∣
∣

≤ –
ψ1–σ�

(ζ�, ζ�–1)
�(σ�)ψ1–σ�

(ζ , ζ�–1)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)
∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds
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+
1

�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)w(s)ψ ′(s)
∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

≤ 2
�(σ�)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)
∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

≤ 2
�(σ�)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)
∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)
– f (s, 0, 0)

∣
∣ds

+
2

�(σ�)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)
∣
∣f (s, 0, 0)

∣
∣ds

≤ 2
�(σ�)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ ′(s)ψ–δ(s, 0)
(
V

∣
∣w(s)h(s)

∣
∣ + W

∣
∣w(s) ζ�–1I

σ�
w h(s)

∣
∣
)

ds

+
2f 	

w
�(σ�)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ ′(s) ds

≤ 2ψσ�–1(ζ�, ζ�–1)
�(σ�)

(
V‖h‖E�

+ W‖ζ�–1I
σ�
w h‖E�

)
∫ ζ�

ζ�–1

ψ ′(s)ψ–δ(s, 0) ds

+
2f 	

w
�(σ� + 1)

ψσ�
(ζ�, ζ�–1)

≤ dr� +
2f 	

w
�(σ� + 1)

ψσ�
(ζ�, ζ�–1)

= r�,

which means that F (B�) ⊆ B�.
Step 2. F is continuous.
Let hk ∈ E�, k = 1, 2, . . . Presume the sequence {hk}∞k=1 is convergent to h ∈ E�. Then for

any k = 1, 2, . . . we have

w(ζ )
∣
∣Fhk(ζ ) – Fh(ζ )

∣
∣

≤ –
ψ1–σ�

(ζ�, ζ�–1)
�(σ�)ψ1–σ�

(ζ , ζ�–1)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)

× ∣
∣f

(
s, hk(s), ζ�–1I

σ�
w hk(s)

)
– f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

+
1

�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)w(s)ψ ′(s)

× ∣
∣f

(
s, hk(s), ζ�–1I

σ�
w hk(s)

)
– f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

≤ 2ψσ�–1(ζ , ζ�–1)
�(σ�)

∫ ζ�

ζ�–1

w(s)ψ ′(s)
∣
∣f

(
s, hk(s), ζ�–1I

σ�
w hk(s)

)
– f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

≤ 2ψσ�–1(ζ , ζ�–1)
�(σ�)

×
∫ ζ�

ζ�–1

ψ–δ(s, 0)w(s)ψ ′(s)
(
V

∣
∣hk(s) – h(s)

∣
∣ + W ζ�–1I

σ�
w

∣
∣hk(s) – h(s)

∣
∣
)

ds

≤ 2ψσ�–1(ζ , ζ�–1)
�(σ�)

(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)∫ ζ�

ζ�–1

ψ–δ(s, 0)ψ ′(s) ds‖hk – h‖E�

≤ 2ψσ�–1(ζ�, ζ�–1)(ψ1–δ(ζ�, 0) – ψ1–δ(ζ�–1, 0))
(1 – δ)�(σ�)

(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

‖hk – h‖E�
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i.e., we acquire

‖Fhk – Fh‖E�
−→ 0 as k −→ ∞

As a result, the operator F is continuous on E�.
Step 3. F is bounded and equicontinuous.
By the first step for h ∈ B�, we obtain ‖Fh‖E�

≤ r�, which confirm that F (B�) is bounded.
Rest to prove that F (B�) is equicontinuous. Let ζ1 < ζ2 ∈ L� and h ∈ B�. Then

w(ζ )
∣
∣Fh(ζ1) – Fh(ζ2)

∣
∣

≤ ψ1–σ�
(ζ�, ζ�–1)

�(σ�)
(
ψσ�–1(ζ2, ζ�–1) – ψσ�–1(ζ1, ζ�–1)

)

×
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)
∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

+
1

�(σ�)

∫ ζ1

ζ�–1

(
ψσ�–1(ζ2, s) – ψσ�–1(ζ1, s)

)
w(s)ψ ′(s)

∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

+
1

�(σ�)

∫ ζ2

ζ1

ψσ�–1(ζ2, s)w(s)ψ ′(s)
∣
∣f

(
s, h(s), ζ�–1I

σ�
w h(s)

)∣
∣ds

≤ –
ψ1–σ�

(ζ�, ζ�–1)
�(σ�)

(
ψσ�–1(ζ2, ζ�–1) – ψσ�–1(ζ1, ζ�–1)

)

×
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ ′(s)ψ–δ(s, 0)
(
Vw(s)

∣
∣h(s)

∣
∣ + Ww(s)

∣
∣
ζ�–1I

σ�
w h(s)

∣
∣
)

ds

+ –
f 	
wψ1–σ�

(ζ�, ζ�–1)
�(σ�)

(
ψσ�–1(ζ2, ζ�–1) – ψσ�–1(ζ1, ζ�–1)

)
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ ′(s) ds

+
1

�(σ�)

∫ ζ1

ζ�–1

ψσ�–1(ζ2, ζ1)ψ ′(s)ψ–δ(s, 0)
(
Vw(s)

∣
∣h(s)

∣
∣ + Ww(s)

∣
∣
ζ�–1I

σ�
w h(s)

∣
∣
)

ds

+
f 	
w

�(σ�)

∫ ζ1

ζ�–1

ψσ�–1(ζ2, ζ1)ψ ′(s) ds +
f 	
w

�(σ�)

∫ ζ2

ζ1

ψσ�–1(ζ2, s)ψ ′(s) ds

+
1

�(σ�)

∫ ζ2

ζ1

ψσ�–1(ζ2, s)ψ ′(s)ψ–δ(s, 0)
(
Vw(s)

∣
∣h(s)

∣
∣ + Ww(s)

∣
∣
ζ�–1I

σ�
w h(s)

∣
∣
)

ds

≤ ψ1–σ�
(ζ�, ζ�–1)

�(σ�)
(
ψσ�–1(ζ2, ζ�–1) – ψσ�–1(ζ1, ζ�–1)

)
ψσ�–1(ζ�, ζ�–1)

×
(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

‖h‖E�

∫ ζ�

ζ�–1

ψ ′(s)ψ–δ(s, 0) ds

+
f 	
wψ1(ζ�, ζ�–1)
�(σ� + 1)

(
ψσ�–1(ζ2, ζ�–1) – ψσ�–1(ζ1, ζ�–1)

)

+
ψσ�–1(ζ2, ζ1)
(1 – δ)�(σ�)

(
ψ1–δ(ζ1, 0) – ψ1–δ(ζ�–1, 0)

)
(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

‖h‖E�

+
ψ1(ζ1, ζ�–1)f 	

w
�(σ� + 1)

ψσ�–1(ζ2, ζ1) +
f 	
w

�(σ� + 1)
ψσ�

(ζ2, ζ1)

+
ψσ�–1(ζ2, ζ1)
(1 – δ)�(σ�)

(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

‖h‖E�

(
ψ1–δ(ζ2, 0) – ψ1–δ(ζ1, 0)

)
.
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As an outcome, we acquire

∣
∣w(ζ )Fh(ζ1) – Fh(ζ2)

∣
∣

≤
[

(ψ1–δ(ζ�, 0) – ψ1–δ(ζ�–1, 0))
(1 – δ)�(σ�)

(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

‖h‖E�
+

f 	
wψ1(ζ�, ζ�–1)
�(σ� + 1)

]

× (
ψσ�–1(ζ2, ζ�–1) – ψσ�–1(ζ1, ζ�–1)

)

+
[

2(ψ1–δ(ζ1, 0) – ψ1–δ(ζ�–1, 0))
(1 – δ)�(σ�)

(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

‖h‖E�
+

ψ1(ζ1, ζ�–1)f 	
w

�(σ� + 1)

]

× ψσ�–1(ζ2, ζ1) +
f 	
w

�(σ� + 1)
ψσ�

(ζ2, ζ1).

Hence |Fh(ζ2) –Fh(ζ2)| −→ 0 as |ζ2 – ζ1| −→ 0. It signifies that F (B�) is equicontinuous.
Step 4. F is k-set contraction.
For H ∈ B�. We denote by ϑw the K-mnc on E�, by utilizing Lemma 2.9 and the third

step, we get

ϑw(FH) = sup
ζ∈L�

ϑ
(
w(ζ )FH(ζ )

)
,

where H(ζ ) = {h(ζ ), h ∈ H}.

ϑ
(
w(ζ )FH(ζ )

)

= ϑ
(
w(ζ )Fh(ζ ), h ∈ H

)

≤ ϑ

{

–
ψ1–σ�

(ζ�, ζ�–1)
�(σ�)ψ1–σ�

(ζ , ζ�–1)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ ′(s)ϑw(s)

× f
(
s, h(s), ζ�–1I

σ�
w h(s)

)
ds +

1
�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)ψ ′(s)ϑw(s)

× f
(
s, h(s), ζ�–1I

σ�
w h(s)

)
ds, h ∈ H

}

≤ –
ψ1–σ�

(ζ�, ζ�–1)
�(σ�)ψ1–σ�

(ζ , ζ�–1)

×
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ ′(s)ψ–δ(s, 0)
[

Vϑw(H) + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

ϑw(H)
]

ds

+
1

�(σ�)
ψσ�–1(ζ , ζ�–1)

×
∫ ζ

ζ�–1

ψ ′(s)ψ–δ(s, 0)
[

Vϑw(H) + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

ϑw(H)
]

ds

≤ 2[ψ1–δ(ζ�, 0) – ψ1–δ(ζ�–1, 0)]
(1 – δ)�(σ�)ψ1–σ�

(ζ , ζ�–1)

[

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

]

ϑw(H),

thus

ϑw(FH) ≤ 2[ψ1–δ(ζ�, 0) – ψ1–δ(ζ�–1, 0)]
(1 – δ)�(σ�)ψ1–σ�

(ζ , ζ�–1)

(

V + W
ψσ�

(ζ , ζ�–1)
�(σ� + 1)

)

ϑw(H).

According to Inequality (3.3), F is a k-set contraction.
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As a matter of fact, all Theorem 2.10 requirements have been met, so as side effect F
admits a fixed point F (h̃�) = h�, where h̃ ∈ B�, which is a solution of the bvp for ψ-wfd of
constant order. Since B� ⊂ E�, the claim of Theorem 3.2 is established. �

We are now going to demonstrate the existence of (Bvpwfdvo).
Consider the following hypothesis:

Hypothesis 2 (H2) Let f ∈ C(L ×R×R,R) and there exists a number δ ∈ (0, 1) such that
w(ζ )(ψ(ζ ) – ψ(1))δf (ζ ) ∈ C(L ×R×R,R) and there are constants V , W > 0 such that

ψδ(ζ , 0)
∣
∣f (ζ , x1, y1) – f (ζ , x2, y2)

∣
∣ ≤ V |x1 – x2| + W |y1 – y2|,

where xi, yi ∈ R, i = 1, 2, ζ ∈ L.

Theorem 3.3 Let the conditions (H1), (H2), and Inequality (3.3) be satisfied for all � ∈
{1, 2, . . . , n}. Then the (Bvpwfdvo) incorporates at least one solution in C(L,R).

Proof For any � ∈ {1, 2, . . . , n}, according to Theorem 2.10 the (Bvpwfdco) possesses at
least one solution h̃� ∈ E�. For any � ∈ {1, 2, . . . , n}, we define the function

h� =

⎧
⎨

⎩

0, ζ ∈ [0, ζ�–1],

h̃�, ζ ∈ L�.

Thus, the function h� ∈ C([0, ζ�],R) solves the integral Equation (3.2) for ζ ∈ L�, which
means that h�(1) = 0, h�(ζ�) = h̃�(ζ�) = 0 and solves (3.2) for ζ ∈ L�, � ∈ {1, 2, . . . , n}.

Then the function

h(ζ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h1(ζ ), ζ ∈ L1,

h2(t), ζ ∈ L2,

. . . ,

hn(ζ ), t ∈ Ln = [0, ε],

is a solution of the (Bvpwfdvo) in C(L,R). �

4 Ulam–Hyers–Rassias stability of (Bvpwfdvo)
We present the underlying assertion:

Hypothesis 3 (H3) The function ρ ∈ C(L,R+) is increasing and there exists λρ > 0 such
that

ζ�–1 Iσ�
w ρ(ζ ) ≤ λρρ(ζ ), for ζ ∈ L�,� = 1, 2, . . . , n.

Theorem 4.1 Let the conditions (H1), (H2), (H3), and Inequality (3.3) be satisfied. Then,
the (Bvpwfdvo) is UHRs with respect to ρ .

Proof Let ε > 0 be an arbitrary number and the function z(ζ ) from C(L,R) satisfy Inequal-
ity (2.3).
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For any � ∈ {1, 2, . . . , n}, we define the functions z1(ζ ) ≡ z(ζ ), ζ ∈ [0, ζ1] and for � =
2, 3, . . . , n

z�(ζ ) =

⎧
⎨

⎩

0, ζ ∈ [0, ζ�–1],

z(ζ ), ζ ∈ L�.

For any � ∈ {1, 2, . . . , n}, according to Equality (1.2), for ζ ∈ L�, we obtain

D
σ (ζ )
w z�(ζ ) =

w–1(ζ )
�(n – σ (ζ ))

(
Dζ

ψ ′(ζ )

)n

(w(ζ )
∫ ζ

0

(
ψn–σ (ζ )–1(ζ , s)w(s)z(s)ψ ′(s) ds

)
.

Taking the ζ�–1 Iσ�
w of both sides of the Inequality (2.3) and applying (H3), we obtain

∣
∣
∣
∣w(ζ )z�(ζ ) –

ψ1–σ�
(ζ�, ζ�–1)

�(σ�)ψ1–σ�
(ζ , ζ�–1)

∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)f
(
s, z�(s), ζ�–1I

σ�
w z�(s)

)
ds

+
1

�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)w(s)ψ ′(s)f
(
s, z�(s), ζ�–1I

σ�
w z�(s)

)
ds

∣
∣
∣
∣

≤ εζ�–1 Iσ�
w ρ(ζ ) ≤ ελρρ(ζ ).

According to Theorem 3.3, the (Bvpwfdvo) has a solution h ∈ C(L,R) defined by h(ζ ) =
h�(ζ ) for ζ ∈ L�, � = 1, 2, . . . , n, where

h� =

⎧
⎨

⎩

0, ζ ∈ [0, ζ�–1],

h̃�, ζ ∈ L�,

and h̃� ∈ E� is a solution of (Bvpwfdco). According to Lemma 3.1, the integral equation

h̃�(ζ ) = –
w(ζ�)ψ1–σ�

(ζ�, ζ�–1)
w(ζ )ψ1–σ�

(ζ , ζ�–1) ζ�–1I
σ�
w

(
f
(
ζ , h̃�(ζ ), ζ�–1I

σ�
w h̃�(ζ )

))

ζ=ζ�

+ ζ�–1I
σ�
w

(
f
(
ζ , h̃�(ζ ), ζ�–1I

σ�
w h̃�(ζ )

))
,

holds. Let ζ ∈ L�, where � ∈ {1, 2, . . . , n}. Then by Equations (3.3) and (3.4), we obtain

w(ζ )
∣
∣z(ζ ) – h(ζ )

∣
∣

= w(ζ )
∣
∣z(ζ ) – h�(ζ )

∣
∣ = w(ζ )

∣
∣z�(ζ ) – h̃�(ζ )

∣
∣

≤
∣
∣
∣
∣w(ζ )z�(ζ ) +

ψ1–σ�
(ζ�, ζ�–1)

�(σ�)ψ1–σ�
(ζ , ζ�–1)

×
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)f
(
s, z�(s), ζ�–1I

σ�
w z�(s)

)
ds

–
1

�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)w(s)ψ ′(s)f
(
s, z�(s), ζ�–1I

σ�
w z�(s)

)
ds

∣
∣
∣
∣

ψ1–σ�
(ζ�, ζ�–1)

�(σ�)ψ1–σ�
(ζ , ζ�–1)

×
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)w(s)ψ ′(s)
∣
∣
∣
∣f

(
s, z�(s), ζ�–1I

σ�
w z�(s)

)
– f

(
s, h̃�(s), ζ�–1I

σ�
w h̃�(s)

)∣
∣ds

+
1

�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)w(s)ψ ′(s)
∣
∣
∣
∣f

(
s, z�(s), ζ�–1I

σ�
w z�(s)

)
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– f
(
s, h̃�(s), ζ�–1I

σ�
w h̃�(s)

)∣
∣ds

≤ ελρρ(ζ ) +
ψ1–σ�

(ζ�, ζ�–1)
�(σ�)ψ1–σ�

(ζ , ζ�–1)

×
∫ ζ�

ζ�–1

ψσ�–1(ζ�, s)ψ–δ(s, 0)ψ ′(s)
(
Vw(s)

∣
∣z�(s) – h̃�(s)

∣
∣

+ Ww(s) ζ�–1I
σ�
w

∣
∣z�(s) – h̃�(s)

∣
∣
)

ds

+
1

�(σ�)

∫ ζ

ζ�–1

ψσ�–1(ζ , s)ψ–δ(s, 0)ψ ′(s)
(
Vw(s)

∣
∣z�(s) – h̃�(s)

∣
∣

+ Ww(s) ζ�–1I
σ�
w

∣
∣z�(s) – h̃�(s)

∣
∣
)

ds

≤ ελρρ(ζ ) +
ψσ�–1(ζ , ζ�–1)

�(σ�)

×
∫ ζ�

ζ�–1

ψ–δ(s, 0)ψ ′(s)
(
Vw(s)

∣
∣z�(s) – h̃�(s)

∣
∣ + Ww(s) ζ�–1I

σ�
w

∣
∣z�(s) – h̃�(s)

∣
∣
)

ds

+
ψσ�–1(ζ , ζ�–1)

�(σ�)

∫ ζ

ζ�–1

ψ–δ(s, 0)ψ ′(s)
(
Vw(s)

∣
∣z�(s) – h̃�(s)

∣
∣

+ Ww(s) ζ�–1I
σ�
w

∣
∣z�(s) – h̃�(s)

∣
∣
)

ds

≤ ελρρ(ζ ) +
(ψ1–δ(ζ�, 0) – ψ1–δ(ζ�–1, 0))ψσ�–1(ζ , ζ�–1)

(1 – δ)�(σ�)

×
(

V
∥
∥z�(s) – h̃�(s)

∥
∥

E�
+ W

ψσ�
(ζ , ζ�–1)

�(σ� + 1)
‖z� – h̃�‖E�

)

+
(ψ1–δ(ζ , 0) – ψ1–δ(ζ�–1, 0))ψσ�–1(ζ , ζ�–1)

(1 – δ)�(σ�)

×
(

V
∥
∥z�(s) – h̃�(s)

∥
∥

E�
+ W

ψσ�
(ζ , ζ�–1)

�(σ� + 1)
‖z� – h̃�‖E�

)

≤ ελρρ(ζ ) + d‖z – h‖w.

Then,

‖z – h‖w(1 – d) ≤ ελρρ(ζ ),

which implies that for any ζ ∈ L, we have

∣
∣z(ζ ) – h(ζ )

∣
∣ ≤ ‖z – h‖w ≤ ελρ

(1 – d)
ρ(ζ ).

Then the (Bvpwfdvo) is UHRs. �

5 Example
Let L := [0, 2], η = 0, η1 = 1, η2 = 2. Consider the scalar (Bvpwfdvo)

⎧
⎨

⎩

D
σ (ζ )
0+ h(ζ ) = 3

17ψσ (ζ )(ζ , 0) + ψ– 1
5

(ζ , 0) h(ζ )
ζ+7 + ψ(ζ ,0)

ζ3+2 I
σ (ζ )
0+ h(ζ ), t ∈ L,

h(0) = 0, h(2) = 0,
(5.1)
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where w(ζ ) = 1 + t2, ψ(ζ ) = – arctan 1
1+ζ

, this implies that ψ ′(ζ ) = 1
1+(1+ζ )2 and

σ (ζ ) =

⎧
⎨

⎩

1.4, ζ ∈ L1 := [0, 1],

1.8, ζ ∈ L1 := ]1, 2].
(5.2)

Denote

f (ζ , h, z) =
3

17
ψσ (ζ )(ζ , 0) + ψ– 1

5
(ζ , 0)

h
ζ + 7

+
ψ(ζ , 0)
ζ 3 + 2

)z, (ζ , h, z) ∈ [0, 2] ×R×R.

For δ = 1
5 , V = 1

7 , and W = 1
2 , the assumption (H2) holds. Indeed,

∣
∣f (η, h1, z1) – f (η, h2, z2)

∣
∣ =

∣
∣
∣
∣

h1

ζ + 7
+

ψ 6
5

(ζ , 0)

ζ 3 + 2
z1 –

h2

ζ + 7
–

ψ 6
5

(ζ , 0)

ζ 3 + 2
z2

∣
∣
∣
∣

≤ 1
ζ + 7

|h1 – h2| +
ψ 6

5
(ζ , 0)

ζ 3 + 2
|z1 – z2|

≤ 1
7
|h1 – h2| +

1
2
|z1 – z2|.

By (5.2), according to (Bvpwfdco), we consider two auxiliary bvps of ψ-wfd of constant
order

⎧
⎨

⎩

D1.4
0+ h(ζ ) = 3

17ψ1.4(ζ , 0) + ψ– 1
5

(ζ , 0) h(ζ )
ζ+7 + ψ(ζ ,0)

ζ3+2 I1.4
0+ h(ζ ), t ∈ L1,

h(1) = 0, h(2) = 0,
(5.3)

and
⎧
⎨

⎩

D1.8
0+ h(ζ ) = 3

17ψ1.8(ζ , 0) + ψ– 1
5

(ζ , 0) h(ζ )
ζ+7 + ψ(ζ ,0)

ζ3+2 I1.8
0+ h(ζ ), t ∈ L2,

h(1) = 0, h(2) = 0,
(5.4)

Secondly, we demonstrate that the requirement (3.3) is satisfied for � = 1. Consequently,

2ψσ1–1(ζ1, ζ0)(ψ1–δ(ζ1, 0) – ψ1–δ(ζ0, 0))
(1 – δ)�(σ1)

(

V + W
ψσ1 (ζ1, ζ0)
�(σ1 + 1)

)

� 0.162691784641 < 1.

Let ρ(ζ ) = ψ 3
5

(ζ , 0). Then we attain

I
1.4
0+ ρ(ζ ) =

1
(ζ 2 + 1)�(1.4)

∫ ζ

0
ψ0.4(ζ , s)

(
ζ 2 + 1

)
ψ 3

5
(s, 0)ψ ′(s) ds

=
5ψ 3

5
(t, 0)

�(1.4)

∫ ζ

0
ψ ′(s)ψ0.4(ζ , s) ds

≤ 1.03
�(2.4)

ψ 3
5

(t, 0) = λρρ(ζ ),

where λρ = 1.03
�(2.4) . Then, assumption (H3) is satisfied.
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By Theorem 2.10, the bvp (5.3) has a solution h̃1 ∈ E1. We demonstrate that the Require-
ment (3.3) is satisfied for � = 2. Consequently,

2ψσ2–1(ζ2, ζ1)(ψ1–δ(ζ2, 0) – ψ1–δ(ζ1, 0))
(1 – δ)�(σ2)

(

V + W
ψσ2 (ζ2, ζ1)
�(σ2 + 1)

)

� 0.0117027930094 < 1.

As a result, the Condition (3.3) is satisfied. We also attain

I
1.8
0+ ρ(ζ ) =

1
(ζ 2 + 1)�(1.8)

∫ ζ

1
ψ0.8(ζ , s)

(
ζ 2 + 1

)
ψ 3

5
(s, 0)ψ ′(s) ds

=
5ψ 3

5
(t, 0)

�(1.8)

∫ ζ

1
ψ ′(s)ψ0.8(ζ , s) ds

≤ 1.03
�(2.8)

ψ 3
5

(t, 0) = λρρ(ζ ),

where λρ = 1.26
�(2.8) . Then, assumption (H3) is satisfied.

By Theorem 2.10, the bvp (5.4) has a solution h̃2 ∈ E2.
Hence, Theorem 3.3 provides a solution for the bvp (5.2).

h(ζ ) =

⎧
⎨

⎩

h̃1(ζ ), ζ ∈ L1,

h2(ζ ), ζ ∈ L2,

where

h2(ζ ) =

⎧
⎨

⎩

0, ζ ∈ L1,

h̃2(ζ ), ζ ∈ L2.

According to Theorem 4.1, the bvp for ψ-wfd (5.2) is UHRs with respect to ρ .
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