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Abstract
By using an integral arithmetic mean, a generalization of Levinson’s inequality given in
(Pečarić et al. in Convex Functions, Partial Orderings, and Statistical Applications.
Mathematics in Science and Engineering, vol. 187, 1992) and results from (Vukelić in
Appl. Anal. Discrete Math. 14:670–684, 2020), we give extension of Wulbert’s result
from (Wulbert in Math. Comput. Model. 37:1383–1391, 2003). Also, we obtain
inequalities with divided differences for the functions of higher order.
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1 Introduction
Suppose f is a continuous function defined on an interval I with a nonempty interior.
Then, define

F(x, y) =

⎧
⎨

⎩

1
y–x

∫ y
x f (t) dt, x, y ∈ I, x �= y,

f (x), x = y ∈ I.
(1.1)

In a seminal work [14], Wulbert proved that the integral arithmetic mean F , defined in
(1.1), exhibits convexity on the interval I2 when the underlying function f is convex over
the interval I . In a separate study [15], Zhang and Chu independently rediscovered this
result without making any reference to Wulbert’s findings. Their work revealed that the
convexity of the integral arithmetic mean F hinges on the crucial condition that f must be
convex on the interval I .

Since it will hold significant importance for our forthcoming analysis, let us take into
consideration a real-valued function f defined on the interval [a, b]. The divided difference
of order n for the function f at distinct points x0, x1, . . . , xn ∈ [a, b] is defined recursively
(as elucidated in [1, 9]) in the following manner:

f [xi] = f (xi) (i = 0, . . . , n)

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-023-03028-7
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-023-03028-7&domain=pdf
mailto:garas@arhitekt.hr
http://creativecommons.org/licenses/by/4.0/
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and

f [x0, . . . , xn] =
f [x1, . . . , xn] – f [x0, . . . , xn–1]

xn – x0
, n ∈N0.

The value f [x0, . . . , xn] remains invariant regardless of the order in which the points
x0, . . . , xn are arranged.

The definition can be further extended to accommodate scenarios where some (or all)
of the points coincide. Provided that f (j–1)(x) exists, we establish the following notation:

f [x, . . . , x
︸ ︷︷ ︸

j-times

] =
f (j–1)(x)
(j – 1)!

. (1.2)

In the context of divided differences, the following holds:

f [x0, . . . , xn] =
n∑

i=0

f (xi)
ω′(xi)

, where ω(x) =
n∏

j=0

(x – xj).

In conclusion, it is evident that the following property holds for divided differences:

f [x0, . . . , xn] =
n∑

i=0

f (xi)
∏n

j=0,j �=i(xi – xj)
.

Under the condition that the function f has a continuous nth derivative on the interval
[a, b], we can represent the divided difference f [x0, . . . , xn] using integral notation (refer to
[9, p. 15]) as

f [x0, . . . , xn] =
∫

�n

f (n)

( n∑

i=0

uixi

)

du0 · · · dun–1,

where

�n =

{

(u0, . . . , un–1) : ui ≥ 0,
n–1∑

i=0

ui ≤ 1

}

and un = 1 –
∑n–1

i=0 ui.
The notion of n-convexity is attributed to Popoviciu [10]. For the present study, we ad-

here to the definition as presented by Karlin [6].

Definition 1 A function f : [a, b] → R is said to be n-convex on [a, b], n ≥ 0, if for all
choices of (n + 1) distinct points in [a, b], the nth order divided difference of f satisfies

f [x0, . . . , xn] ≥ 0.

It is worth noting that Popoviciu’s work demonstrated the fundamental result that any
continuous n-convex function defined on the interval [a, b] can be represented as the uni-
form limit of a sequence of n-convex polynomials. Moreover, [7] provides an extensive
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collection of related results and essential inequalities attributed to Favard, Berwald, and
Steffensen.

The proof of the Jensen inequality for divided differences can be found in [4]:

Theorem 1 Let f be an (n + 2)-convex function on (a, b) and x ∈ (a, b)n+1. Then

G(x) = f [x0, . . . , xn]

is a convex function of the vector x = (x0, . . . , xn). Consequently,

f

[ m∑

i=0

aixi
0, . . . ,

m∑

i=0

aixi
n

]

≤
m∑

i=0

aif
[
xi

0, . . . , xi
n
]

(i is an upper index) (1.3)

holds for all ai ≥ 0 such that
∑m

i=0 ai = 1.

In the context of future research, the notion of a generalized divided difference will hold
relevance. Provided below is the definition for reference.

Consider a real-valued function f (x, y) defined on I × J (I = [a, b], J = [c, d]). The divided
difference of order (n, m) for the function f at distinct points x0, . . . , xn ∈ I and y0, . . . , ym ∈ J
is defined as follows (see [9, p. 18]):

f

[
x0, . . . , xn

y0, . . . , ym

]

= f [y0, . . . , ym][x0, . . . , xn]

= f [x0, . . . , xn][y0, . . . , ym]

=
n∑

i=0

m∑

j=0

f (xi, yj)
ω′(xi)w′(yj)

, (1.4)

where ω(x) =
∏n

i=0(x – xi), w(y) =
∏m

j=0(y – yj).
Following the aforementioned definition, we can establish the concept of (n, m)-

convexity, which is as follows (see [9, p. 18]):

Definition 2 A function f : I × J →R is said to be (n, m)-convex, or convex of order (n, m),
if for all distinct points x0, . . . , xn ∈ I, y0, . . . , ym ∈ J ,

f

[
x0, . . . , xn

y0, . . . , ym

]

≥ 0. (1.5)

If this inequality is strict, then f is said to be strictly (n, m)-convex.

In [11], Popoviciu presented and proved the following theorem:

Theorem 2 If the partial derivative f (n+m)
xnym (∂ (n+m)f /∂xn∂ym) of f exists, then f is (n, m)-

convex iff

f (n+m)
xnym ≥ 0. (1.6)

If the inequality in (1.6) is strict, then f is strictly (n, m)-convex.
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In this research, we build upon the generalization of Levinson’s inequality, and thus, we
begin by stating the fundamental Levinson’s inequality as follows (see [8] and [12]):

Theorem 3 Let f be a real valued 3-convex function on [0, 2a]. Then for 0 ≤ xk ≤ a, pk > 0
(1 ≤ k ≤ n), and Pk =

∑k
i=1 pi (2 ≤ k ≤ n) we have

1
Pn

n∑

k=1

pkf (xk) – f

(
1

Pn

n∑

k=1

pkxk

)

≤ 1
Pn

n∑

k=1

pkf (2a – xk) – f

(
1

Pn

n∑

k=1

pk(2a – xk)

)

. (1.7)

If f ′′′ > 0, then the equality holds iff x1 = · · · = xn.

In [2], Bullen provided a proof for the generalization of Theorem 3:

Theorem 4
a) Let f be a real-valued 3-convex function on [a, b] and xk , yk (1 ≤ k ≤ n) be 2n points

on [a, b] such that

max{x1, . . . , xn} ≤ min{y1, . . . , yn}, x1 + y1 = · · · = xn + yn. (1.8)

If pk > 0 (1 ≤ k ≤ n), then

1
Pn

n∑

k=1

pkf (xk) – f

(
1

Pn

n∑

k=1

pkxk

)

≤ 1
Pn

n∑

k=1

pkf (yk) – f

(
1

Pn

n∑

k=1

pkyk

)

. (1.9)

If f is strictly 3-convex there is equality in (1.9) if and only if x1 = · · · = xn.
b) If (1.9) holds for a continuous function f , (1.8) is satisfied by 2n-distinct points and

pk > 0 for k ∈ [1, n], then f is 3-convex.

It is shown in [9] that the condition (1.8) can be weakened, i.e., the following result holds:

Theorem 5 Let f be a 3-convex function on [a, b], pi > 0 (1 ≤ i ≤ n), xk , yk (1 ≤ k ≤ n) be
points in [a, b] such that

x1 + y1 = · · · = xn + yn = 2c (1.10)

and

xi + xn–i+1 ≤ 2c, (1.11)

(pixi + pn–i+1xn–i+1)/(pi + pn–i+1) ≤ c, for 1 ≤ i ≤ n. (1.12)

Then (1.9) is valid.

The primary objective of this paper is to provide an extension of Wulbert’s result, as
presented in [14], for 3-convex functions. We will also consider relevant findings from
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[13]. Moreover, we aim to establish an inequality involving divided differences by utilizing
the generalization of Levinson’s inequality given in [9]. As a significant outcome, we will
demonstrate the convexity of higher order for functions defined by divided differences.

2 Inequalities involving averages
Theorem 6 Let f be a real-valued 3-convex function on [a, b] and let F be defined in (1.1).
Then for pi > 0 (1 ≤ i ≤ n), a ≤ xk , x̃k , yk , ỹk ≤ b (1 ≤ k ≤ n) such that

x1 + y1 = · · · = xn + yn = 2c, x̃1 + ỹ1 = · · · = x̃n + ỹn = 2c,

xi + xn–i+1 ≤ 2c, x̃i + x̃n–i+1 ≤ 2c,

pixi + pn–i+1xn–i+1

pi + pn–i+1
≤ c,

pix̃i + pn–i+1x̃n–i+1

pi + pn–i+1
≤ c, 1 ≤ i ≤ n,

and Pk =
∑k

i=1 pi (2 ≤ k ≤ n) we have

1
Pn

n∑

k=1

pkF(xk , x̃k) – F(x̄, ¯̃x) ≤ 1
Pn

n∑

k=1

pkF(yk , ỹk) – F(ȳ, ¯̃y), (2.1)

where x̄ = 1
Pn

∑n
k=1 pkxk , ¯̃x = 1

Pn

∑n
k=1 pkx̃k , ȳ = 1

Pn

∑n
k=1 pkyk , and ¯̃y = 1

Pn

∑n
k=1 pkỹk .

Consequently, for l + m = 3 the integral arithmetic mean (1.1) is (l, m)-convex on [a, b]2.

Proof Since the conditions

sx̃1 + (1 – s)x1 + sỹ1 + (1 – s)y1 = · · · = sx̃n + (1 – s)xn + sỹn + (1 – s)yn = 2c,

sx̃i + (1 – s)xi + sx̃n–i+1 + (1 – s)xn–i+1 ≤ 2c,

pi(sx̃i + (1 – s)xi) + pn–i+1(sx̃n–i+1 + (1 – s)xn–i+1)
pi + pn–i+1

≤ c, 1 ≤ i ≤ n,

from Theorem 5 are satisfied, by using inequality (1.9), we get

1
Pn

n∑

k=1

pkF(xk , x̃k) – F(x̄, ¯̃x)

=
1

Pn

n∑

k=1

pk

∫ 1

0
f
(
sx̃k + (1 – s)xk

)
ds

–
∫ 1

0
f

(

s
1

Pn

n∑

k=1

pkx̃k + (1 – s)
1

Pn

n∑

k=1

pkxk

)

ds

=
∫ 1

0

[
1

Pn

n∑

k=1

pkf
(
sx̃k + (1 – s)xk

)
– f

(
1

Pn

n∑

k=1

pk
(
sx̃k + (1 – s)xk

)
)]

ds

≤
∫ 1

0

[
1

Pn

n∑

k=1

pkf
(
sỹk + (1 – s)yk

)
– f

(
1

Pn

n∑

k=1

pk
(
sỹk + (1 – s)yk

)
)]

ds

=
1

Pn

n∑

k=1

pk

∫ 1

0
f
(
sỹk + (1 – s)yk

)
ds
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–
∫ 1

0
f

(

s
1

Pn

n∑

k=1

pkỹk + (1 – s)
1

Pn

n∑

k=1

pkyk

)

ds

=
1

Pn

n∑

k=1

pkF(yk , ỹk) – F(ȳ, ¯̃y).

Now, if we put n = 2, x1 = x, x2 = y2 = x + 3h
2 , y1 = x + 3h, x̃1 = x̃2 = y, ỹ1 = ỹ2 = y, 2x + 3h =

2y = 2c, p1 = 1, p2 = 2, then inequality (2.1) reduces to

1
3

F(x, y) – F(x + h, y) ≤ 1
3

F(x + 3h, y) – F(x + 2h, y).

Using the definition in (1.4), we get

2h3(F[x, x + h, x + 2h, x + 3h]
)
[y] ≥ 0.

It is a known fact that if this property holds for all possible x, y, h > 0, then F is (3, 0)-
convex, as stated in [11].

If we put n = 2, x1 = x, x2 = x + 2h1, y1 = x + 2h1, y2 = x, x̃1 = x̃2 = y, ỹ1 = ỹ2 = y + h2,
p1 = p2 = 1, 2x + 2h1 = 2y + h2 = 2c then inequality (2.1) reduces to

1
2
(
F(x, y) + F(x + 2h1, y)

)
– F(x + h1, y)

≤ 1
2
(
F(x + 2h1, y + h2) + F(x, y + h2)

)
– F(x + h1, y + h2).

Using the definition in (1.4), we get

h2
1h2

(
F[x, x + h1, x + 2h1]

)
[y, y + h2] ≥ 0.

Continuing the previous arguments, since this property holds for all possible x, h1, y, h2 >
0, we can deduce that F is (2, 1)-convex.

The proofs for (0, 3)- and (1, 2)-convexity exhibit similarities, leading us to conclude that
F is (l, m)-convex on [a, b]2 when l + m = 3. �

Remark 1 Theorem 6 can be regarded as a generalization of Theorem 5 since inequality
(2.1) for xk = x̃k and yk = ỹk , k = 1, . . . , n reproduces inequality (1.9).

For similar results regarding Jensen’s inequality involving averages of convex functions,
refer to [3] and [5].

3 Inequalities for divided differences
Theorem 7 Let f be an (n + 3)-convex function on [a, b] and x, y ∈ [a, b]n+1. Then for xi

k ,
yi

k , (0 ≤ k ≤ n) (“i” is an upper index), ai > 0 (0 ≤ i ≤ m), such that
∑m

i=0 ai = 1,

xi
0 + yi

0 = xi
1 + yi

1 = · · · = xi
n + yi

n = 2c,

xi
k + xm–i

k ≤ 2c,
(
aixi

k + am–ixm–i
k

)
/(ai + am–i) ≤ c,
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we have

m∑

i=0

aif
[
xi

0, . . . , xi
n
]

– f

[ m∑

i=0

aixi
0, . . . ,

m∑

i=0

aixi
n

]

≤
m∑

i=0

aif
[
yi

0, . . . , yi
n
]

– f

[ m∑

i=0

aiyi
0, . . . ,

m∑

i=0

aiyi
n

]

. (3.1)

Consequently,

G(x) = f [x0, x1, x2]

is an (l1, l2, l3)-convex function of the vector x = (x0, x1, x2), when l1 + l2 + l3 = 3.

Proof Since the conditions

n∑

j=0

ujx0
j +

n∑

j=0

ujy0
j = · · · =

n∑

j=0

ujxm
j +

n∑

j=0

ujym
j = 2c,

n∑

j=0

ujxi
j +

n∑

j=0

ujxm–i
j ≤ 2c,

ai
∑n

j=0 ujxi
j + am–i

∑n
j=0 ujxm–i

j

ai + am–i
≤ c, 0 ≤ i ≤ m,

from Theorem 5 are satisfied, by using inequality (1.9), for the 3-convex function f (n), we
get

m∑

i=0

aif
[
xi

0, . . . , xi
n
]

– f

[ m∑

i=0

aixi
0, . . . ,

m∑

i=0

aixi
n

]

=
m∑

i=0

ai

∫

�n

f (n)

( n∑

j=0

ujxi
j

)

du0 · · · dun–1

–
∫

�n

f (n)

( n∑

j=0

uj

m∑

i=0

aixi
j

)

du0 · · · dun–1

=
∫

�n

[ m∑

i=0

aif (n)

( n∑

j=0

ujxi
j

)

– f (n)

( m∑

i=0

ai

n∑

j=0

ujxi
j

)]

du0 · · · dun–1

≤
∫

�n

[ m∑

i=0

aif (n)

( n∑

j=0

ujyi
j

)

– f (n)

( m∑

i=0

ai

n∑

j=0

ujyi
j

)]

du0 · · · dun–1

=
m∑

i=0

ai

∫

�n

f (n)

( n∑

j=0

ujyi
j

)

du0 · · · dun–1

–
∫

�n

f (n)

( n∑

j=0

uj

m∑

i=0

aiyi
j

)

du0 · · · dun–1

=
m∑

i=0

aif
[
yi

0, . . . , yi
n
]

– f

[ m∑

i=0

aiyi
0, . . . ,

m∑

i=0

aiyi
n

]

.
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Now, if we put n = 2, m = 1,

x0
0 = y0, x1

0 = y0 +
3h
2

,

y0
0 = y0 + 3h, y1

0 = y0 +
3h
2

,

x0
1 = x1

1 = y0
1 = y1

1 = y1,

x0
2 = x1

2 = y0
2 = y1

2 = y2,

a0 =
1
3

, a1 =
2
3

,

then inequality (3.1) reduces to

1
3

G(y0, y1, y2) – G(y0 + h, y1, y2)

≤ 1
3

G(y0 + 3h, y1, y2) – G(y0 + 2h, y1, y2).

Using the generalization of definition (1.4), we get

2h3((G[y0, y0 + h, y0 + 2h, y0 + 3h]
)
[y1]

)
[y2] ≥ 0.

As observed in the proof of Theorem 6, since this property holds for all possible
y0, y1, y2, h > 0, we can conclude that G is (3, 0, 0)-convex.

If we put n = 2, m = 1,

x0
0 = y1

0 = y0, x1
0 = y0

0 = y0 + 2h0,

x0
1 = x1

1 = y1,

x0
2 = x1

2 = y0
2 = y1

2 = y2,

y0
1 = y1

1 = y1 + h1,

a0 = a1 =
1
2

then inequality (3.1) reduces to

1
2

G(y0, y1, y2) +
1
2

G(y0 + 2h0, y1, y2) – G(y0 + h0, y1, y2)

≤ 1
2

G(y0 + 2h0, y1 + h1, y2) +
1
2

G(y0, y1 + h1, y2) – G(y0 + h0, y1 + h1, y2).

Using the generalization of definition (1.4), we get

h2
0h1

((
G[y0, y0 + h0, y0 + 2h0]

)
[y1, y1 + h1]

)
[y2] ≥ 0.

As before, since this holds for all possible y0, y1, y2, h0, h1 > 0, G is (2, 1, 0)-convex.
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If we put n = 2, m = 3,

x0
0 = x2

0 = y1
0 = y3

0 = y0, x1
0 = x3

0 = y0
0 = y2

0 = y0 + h0,

x0
1 = x3

1 = y1
1 = y2

1 = y1, x1
1 = x2

1 = y0
1 = y3

1 = y1 + h1

x0
2 = x1

2 = y2
2 = y3

2 = y2, x2
2 = x3

2 = y0
2 = y1

2 = y2 + h2,

a0 = a1 = a2 = a3 =
1
4

,

then inequality (3.1) reduces to

1
4

G(y0, y1, y2) +
1
4

G(y0 + h0, y1 + h1, y2)

+
1
4

G(y0, y1 + h1, y2 + h2) +
1
4

G(y0 + h0, y1, y2 + h2)

≤ 1
4

G(y0 + h0, y1 + h1, y2 + h2) +
1
4

G(y0, y1, y2 + h2)

+
1
4

G(y0 + h0, y1, y2) +
1
4

G(y0, y1 + h1, y2).

Using the generalization of definition (1.4), we get

1
4

h0h1h2
((

G[y0, y0 + h0]
)
[y1, y1 + h1]

)
[y2, y2 + h2] ≥ 0.

Continuing the previous arguments, since this property holds for all possible y0, y1, y2,
h0, h1, h2 > 0, we can conclude that G is (1, 1, 1)-convex.

The proofs for (0, 3, 0)-, (0, 0, 3)-, (1, 2, 0)-, (0, 2, 1)-, (0, 1, 2)-, (2, 0, 1)-, and (1, 0, 2)-
convexity share similarities. �
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1Faculty Architecture, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia. 2Croatian Academy of Sciences and Art,
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