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Abstract
In this paper, a new reverse half-discrete Mulholland-type inequality with the
nonhomogeneous kernel of the form h(v(x) lnn) and the best possible constant factor
is obtained by using the weight functions and the technique of real analysis. The
equivalent reverses are considered. As corollaries, we deduce some new equivalent
reverse inequalities with the homogeneous kernel of the form kλ(v(x), lnn). A few
particular cases are provided. Our new reverse half-discrete Mulholland-type
inequality which has a nonhomogeneous kernel is more general than in the previous
homogeneous kernel work. The harmonized integration will have more applications.
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1 Introduction
Hilbert-type inequalities are a class of mathematical inequalities that generalize the clas-
sical analytic inequality. They have applications in various areas of mathematics such as
functional analysis, operator theory, and time scales [1–5].

Assuming that p > 1, 1
p + 1

q = 1, and am, bn ≥ 0 are such that 0 <
∑∞

m=1 ap
m < ∞ and

0 <
∑∞

n=1 bq
n < ∞, we have the following Hardy–Hilbert inequality with the best possible

constant factor π/ sin( π
p ) (cf. [6, Theorem 315]):

∞∑

n=1

∞∑

m=1

ambn

m + n
<

π

sin( π
p )

( ∞∑

m=1

ap
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (1)

We also have the following Mulholland’s inequality with the same best possible constant
factor π/ sin( π

p ) (cf. [6, Theorem 343]):

∞∑

n=2

∞∑

m=2

ambn

ln mn
<

π

sin( π
p )

( ∞∑

m=2

mp–1ap
m

) 1
p
( ∞∑

n=2

nq–1bq
n

) 1
q

. (2)

If f (x), g(y) ≥ 0, 0 <
∫ ∞

0 f p(x) dx < ∞, and 0 <
∫ ∞

0 gq(y) dy < ∞, then we have the fol-
lowing integral analogue of (1) with the best possible constant factor π/ sin( π

p ), named
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Hardy–Hilbert integral inequality (cf. [6, Theorem 316]):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy < π

(∫ ∞

0
f 2(x) dx

∫ ∞

0
g2(y) dy

) 1
2

. (3)

Inequalities (1)–(3) with their reverses play an important role in analysis and its appli-
cations. Some new extensions and applications were given in [7–14].

In 1934, a half-discrete Hilbert-type inequality with the nonhomogeneous kernel was
given as follows (cf. [6, Theorem 351]): If K(x) is decreasing, 0 < φ(s) =

∫ ∞
0 K(x)xs–1 dx <

∞, f (x) ≥ 0, 0 <
∫ ∞

0 f p(x) < ∞, then

∞∑

m=1

np–2
(∫ ∞

0
K(nx)f (x) dx

)p

< φp
(

1
q

)∫ ∞

0
f p(x) dx. (4)

Recently, some new extensions of (4) were provided in [15–20].
In 2016, Hong [21] discussed an equivalent description of (1) with a general homoge-

neous kernel related to some parameters and the optimal constant factors. Similar works
were considered in the papers [22]–[23]. Recently, Mulholland-type inequalities with ho-
mogeneous kernel were obtained in [24–26]. However, only a few reverse Mulholland-type
inequalities with parameters were given in [27].

In this paper, by means of the weight functions and the techniques of real analysis, a new
reverse half-discrete Mulholland-type inequality with a general nonhomogeneous kernel
of the form h(v(x) ln n) is given. The best possible constant factor and some equivalent re-
verses are considered. As a corollary, we deduce some new equivalent reverse inequalities
with a general homogeneous kernel of the form kλ(v(x), ln n). A few particular cases are
provided. Our new reverse Mulholland-type inequality with a nonhomogeneous kernel is
more inclusive and encompasses previous studies that focused on homogeneous kernels.
This advancement in harmonized integration is expected to have broader applications and
implications.

2 Some lemmas
Definition 1 Suppose that σ ∈ R = (–∞,∞), h(u) is a nonnegative measurable function
of u > 0, h(u)uσ–1 (u > 0) is decreasing with

k(σ ) :=
∫ ∞

0
h(u)uσ–1 du ∈ R+ = (0,∞),

v(x) > 0, v′(x) > 0 (x > 0), with v(0+) = 0 and v(∞) = ∞. For N = {1, 2, . . .}, we define the
following weight functions:

ω(σ , n) := lnσ n
∫ ∞

0
h
(
v(x) ln n

) v′(x)
(v(x))1–σ

dx
(
n ∈ N\{1}), (5)

ω(σ , x) :=
(
v(x)

)σ
∞∑

n=2

h
(
v(x) ln n

) lnσ–1 n
n

(x ∈ R+). (6)

Setting u = v(x) ln n, we find

ω(σ , n) = k(σ ) :=
∫ ∞

0
h(u)uσ–1 du

(
n ∈ N\{1}). (7)
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Lemma 1 Under the assumptions of Definition 1, we have the following inequalities:

k(σ )
(
1 – θ (x)

)
< ω(σ , x) < k(σ ) (x ∈ R+), (8)

where θ (x) := 1
k(σ )

∫ v(x) ln 2
0 h(u)uσ–1 du ∈ (0, 1) (x > 0).

Proof From the assumption that h(u)uσ–1 (u > 0) is decreasing, we find that 1
y h(v(x) ln y) ×

lnσ–1 y is strictly decreasing with respect to y ∈ (1,∞). In view of the decreasingness prop-
erty of the series, for x ∈ R+, we have

ω(σ , x) <
(
v(x)

)σ
∫ ∞

1
h
(
v(x) ln y

) lnσ–1 y
y

dy u=v(x) ln y=
∫ ∞

0
h(u)uσ–1 du = k(σ ),

ω(σ , x) >
(
v(x)

)σ
∫ ∞

2
h
(
v(x) ln y

) lnσ–1 y
y

dy u=v(x) ln y=
∫ ∞

v(x) ln 2
h(u)uσ–1 du

=
∫ ∞

0
h(u)uσ–1 du –

∫ v(x) ln 2

0
h(u)uσ–1 du

= k(σ )
(

1 –
1

k(σ )

∫ v(x) ln 2

0
h(u)uσ–1 du

)

= k(σ )
(
1 – θ (x)

)
> 0,

where θ (x) := 1
k(σ )

∫ v(x) ln 2
0 h(u)uσ–1 du ∈ (0, 1) (x > 0). Hence, we have (8).

The lemma is proved. �

Remark 1 (i) If v(x) > 0, v′(x) < 0, v(0+) = ∞, v(∞) = 0, we can still obtain (7) and (8), only
replacing v′(x) by |v′(x)| in (5). (ii) If σ ≤ 1, h′(u) ≤ 0, then the function h(u)uσ–1 is still
decreasing with respect to u > 0.

Lemma 2 Under the assumptions of Definition 1, and with p < 1 (p �= 0), 1
p + 1

q = 1, we
suppose that f (x) is a nonnegative measurable function in R+, and an ≥ 0 (n ∈ N\{1}) is
such that

0 <
∫ ∞

0

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx < ∞ and 0 <
∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n < ∞.

(i) For p < 0 (0 < q < 1), we have the following reverse inequalities:

J̃1 :=

[ ∞∑

n=2

lnpσ–1 n
n

(∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

)p
] 1

p

> k(σ )
[∫ ∞

0

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
, (9)

J̃2 :=

[∫ ∞

0

(
v(x)

)qσ–1v′(x)

( ∞∑

n=2

h
(
v(x) ln n

)
an

)q

dx

] 1
q

> k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

; (10)
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(ii) For 0 < p < 1 (q < 0), we have the following reverse inequalities:

Ĵ1 :=

[ ∞∑

n=2

lnpσ–1 n
n

(∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

)p
] 1

p

> k(σ )
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
, (11)

Ĵ2 :=

[∫ ∞

0

(v(x))qσ–1v′(x)
(1 – θ (x))q–1

( ∞∑

n=2

h
(
v(x) ln n

)
an

)q

dx

] 1
q

> k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

. (12)

Proof (i) For p < 0 (0 < q < 1), by the reverse Hölder’s inequality (cf. [28]), we have

∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

=
∫ ∞

0
h
(
v(x) ln n

)
[

(v(x))
1–σ

q f (x)

(v′(x))
1
q ln

1–σ
p n

][
(v′(x))

1
q ln

1–σ
p n

(v(x))
1–σ

q

]

dx

≥
[∫ ∞

0
h
(
v(x) ln n

) (v(x))(1–σ )(p–1)

(v′(x))p–1 ln1–σ n
f p(x) dx

] 1
p

×
[∫ ∞

0
h
(
v(x) ln n

)v′(x) ln(1–σ )(q–1) n
(v(x))1–σ

dx
] 1

q

=
(ω(σ , n))

1
q n

1
p

lnσ– 1
p n

[∫ ∞

0
h
(
v(x) ln n

) (v(x))(1–σ )(p–1)

(v′(x))p–1n ln1–σ n
f p(x) dx

] 1
p

.

For p < 0, by (8), we obtain (ω(σ , x))
1
p > (k(σ ))

1
p , and

J̃1 ≥ (
k(σ )

) 1
q

[ ∞∑

n=2

∫ ∞

0
h
(
v(x) ln n

) (v(x))(1–σ )(p–1)

(v′(x))p–1n ln1–σ n
f p(x) dx

] 1
p

=
(
k(σ )

) 1
q

[∫ ∞

0
ω(σ , x)

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p

>
(
k(σ )

)
[∫ ∞

0

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
.

Hence, (9) follows.
By the reverse Hölder’s inequality and (6), we have

∞∑

n=2

h
(
v(x) ln n

)
an

=
∞∑

n=2

h
(
v(x) ln n

)
[

(v(x))
1–σ

q

n
1
p ln

1–σ
p n

][
n

1
p ln

1–σ
p n

(v(x))
1–σ

q
an

]
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≥
[ ∞∑

n=2

h
(
v(x) ln n

) (v(x))(1–σ )(p–1)

n ln1–σ n

] 1
p

×
[ ∞∑

n=2

h
(
v(x) ln n

)n1–q ln(1–σ )(q–1) n
(v(x))1–σ

aq
n

] 1
q

=
(
ω(σ , x)

) 1
p (v(x))

1
q –σ

(v′(x))
1
q

[ ∞∑

n=2

h
(
v(x) ln n

)v′(x)nq–1 ln(1–σ )(q–1) n
(v(x))1–σ

aq
n

] 1
q

.

Since p < 0, by (8), we obtain (ω(σ , x))
1
p > (k(σ ))

1
p , and

J̃2 =

[∫ ∞

0

(
v(x)

)qσ–1v′(x)

( ∞∑

n=2

h
(
v(x) ln n

)
an

)q

dx

] 1
q

>
(
k(σ )

) 1
p

[ ∞∑

n=2

(∫ ∞

0
h
(
v(x) ln n

)v′(x) ln(1–σ )(q–1) n
(v(x))1–σ n1–q dx

)

aq
n

] 1
q

=
(
k(σ )

) 1
p

( ∞∑

n=2

ω(σ , n)
lnq(1–σ )–1 n

n1–q aq
n

) 1
q

=
(
k(σ )

) 1
p

[

k(σ )
∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

= k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

.

Then, (10) follows.
(ii) For 0 < p < 1 (q < 0), by the reverse Hölder’s inequality, we obtain

∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

=
∫ ∞

0
h
(
v(x) ln n

)
[

(v(x))
1–σ

q f (x)

(v′(x))
1
q ln

1–σ
p n

][
(v′(x))

1
q ln

1–σ
p n

(v(x))
1–σ

q

]

dx

≥
[∫ ∞

0
h
(
v(x) ln n

) (v(x))(1–σ )(p–1)

(v′(x))p–1 ln1–σ n
f p(x) dx

] 1
p

×
[∫ ∞

0
h
(
v(x) ln n

)v′(x) ln(1–σ )(q–1) n
(v(x))1–σ

dx
] 1

q

=
(
ω(σ , n)

) 1
q n

1
p

lnσ– 1
p n

[∫ ∞

0
h
(
v(x) ln n

) (v(x))(1–σ )(p–1)f p(x)
(v′(x))p–1n ln1–σ n

dx
] 1

p
.

In view of 0 < p < 1 (q < 0) and (8), we obtain

Ĵ1 ≥ (
k(σ )

) 1
q

[ ∞∑

n=2

∫ ∞

0
h
(
v(x) ln n

) (v(x))(1–σ )(p–1)f p(x)
(v′(x))p–1n ln1–σ n

dx

] 1
p

=
(
k(σ )

) 1
q

[∫ ∞

0
ω(σ , x)

(v(x))p(1–σ )–1f p(x)
(v′(x))p–1 dx

] 1
p
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>
(
k(σ )

) 1
q

[∫ ∞

0
(k(σ )

(
1 – θ (x)

) (v(x))p(1–σ )–1f p(x)
(v′(x))p–1 dx

] 1
p

=
(
k(σ )

)
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
.

Then, (11) follows.
By the reverse Hölder’s inequality and (6), we have

∞∑

n=2

h
(
v(x) ln n

)
an =

∞∑

n=2

h
(
v(x) ln n

)
[

(v(x))
1–σ

q

n
1
p ln

1–σ
p n

][
n

1
p ln

1–σ
p n

(v(x))
1–σ

q
an

]

≥
[ ∞∑

n=2

h
(
v(x) ln n

) (v(x))(1–σ )(p–1)

n ln1–σ n

] 1
p

×
[ ∞∑

n=2

h
(
v(x) ln n

) ln(1–σ )(q–1) n
(v(x))1–σ n1–q aq

n

] 1
q

=
(
ω(σ , x)

) 1
p (v(x))

1
q –σ

(v′(x))
1
q

[ ∞∑

n=2

h
(
v(x) ln n

)v′(x) ln(1–σ )(q–1) n
(v(x))1–σ n1–q aq

n

] 1
q

.

Since 0 < p < 1, by (8), we obtain (ω(σ , x))
1
p > [k(σ )(1 – θ (x))]

1
p , and

Ĵ2 =

[∫ ∞

0

(v(x))qσ–1v′(x)
(1 – θ (x))q–1

( ∞∑

n=2

h
(
v(x) ln n

)
an

)q

dx

] 1
q

>
(
k(σ )

) 1
p

[ ∞∑

n=2

(∫ ∞

0
h
(
v(x) ln n

)v′(x) ln(1–σ )(q–1) n
(v(x))1–σ n1–q dx

)

aq
n

] 1
q

=
(
k(σ )

) 1
p

[ ∞∑

n=2

ω(σ , n)
lnq(1–σ )–1 n

n1–q aq
n

] 1
q

= k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

.

Hence, we have (12).
The lemma is proved. �

Lemma 3 If k(σ ) =
∫ ∞

0 h(u)uσ–1 du is finite in an open interval I ⊂ R, then k(σ ) is contin-
uous at σ ∈ I .

Proof For any σ ∈ I , ε > ε0 > 0, such that σ ± ε0 ∈ I , we have

0 ≤ k(σ ± ε) =
∫ 1

0
h(u)uσ±ε–1 du +

∫ ∞

1
h(u)uσ±ε–1 du

≤
∫ 1

0
h(u)uσ–ε–1 du +

∫ ∞

1
h(u)uσ+ε–1 du
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≤
∫ 1

0
h(u)uσ–ε0–1 du +

∫ ∞

1
h(u)uσ+ε0–1 du

≤ F(σ ) := k(σ – ε0) + k(σ + ε0) < ∞,

where F(σ ) (σ ∈ I) is called the dominating function. By Lebesgue dominated convergence
theorem (cf. [29]), we have

k(σ ± ε) → k(σ )
(
ε → 0+)

,

namely, k(σ ) is continuous with respect to σ ∈ I .
The lemma is proved. �

3 Main results
Theorem 1 Suppose that p < 1 (p �= 0), 1

p + 1
q = 1, σ ∈ R, v(x) > 0, v′(x) > 0, v(0+) = 0, h(u) ≥

0, h(u)uσ–1 is a decreasing function of u > 0, k(σ ) =
∫ ∞

0 h(u)uσ–1 du ∈ R+, and f (x), an ≥ 0
are such that

0 <
∫ ∞

0

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx < ∞ and 0 <
∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n < ∞.

(i) If p < 0 (0 < q < 1), then we have the following inequality equivalent to (9) and (10):

I =
∞∑

n=2

an

∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

> k(σ )
[∫ ∞

0

(v(x))p(1–σ )–1f p(x)
(v′(x))p–1 dx

] 1
p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

; (13)

(ii) If 0 < p < 1 (q < 0), then we have the following inequality equivalent to (11) and (12):

I =
∞∑

n=2

an

∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

> k(σ )
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p

×
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

, (14)

where θ (x) := 1
k(σ )

∫ v(x) ln 2
0 h(u)uσ–1 du ∈ (0, 1) (x > 0).

Proof (i) “(9) 
⇒ (13)” Since p < 0 (0 < q < 1), by the reverse Hölder’s inequality, we have

I =
∞∑

n=2

[
1

n
1
p ln

1
p –σ n

∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

]
[
n

1
p ln

1
p –σ nan

]

≥ J̃1

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

. (15)

In view of (9), we obtain (13).
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“(13) 
⇒ (9)” If (13) is valid, then we define the following function:

an :=
lnpσ–1 n

n

(∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

)p–1 (
n ∈ N\{1}).

If J̃1 = ∞, then (9) is naturally valid; if J̃1 = 0, then it is impossible to make (9) valid, namely,
J̃1 > 0. Supposing that 0 < J̃1 < ∞, by (13), we have

∞ >
∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n = J̃ p
1 = I

> k(σ )
[∫ ∞

0

(v(x))p(1–σ )–1f p(x)
(v′(x))p–1 dx

] 1
p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

> 0,

J̃1 =

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
p

> k(σ )
[∫ ∞

0

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
,

namely, (9) follows. Hence, (13) and (9) are equivalent.
“(10) 
⇒ (13)” By the reverse Hölder’s inequality, we also have

I =
∫ ∞

0

[
v(x)

1
q –σ

(v′(x))
1
q

f (x) dx
][

(v′(x))
1
q

v(x)
1
q –σ

∞∑

n=2

h
(
v(x) ln n

)
an

]

≥
[∫ ∞

0

v(x)p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
J̃2. (16)

In view of (10), we obtain (13).
“(13) 
⇒ (10)” If (13) is valid, then we consider the following function:

f (x) :=
(
v(x)

)qσ–1v′(x)

( ∞∑

n=2

h
(
v(x) ln n

)
an

)q–1

(x ∈ R+).

If J̃2 = ∞, (10) is naturally valid; if J̃2 = 0, it is impossible to make (10) valid, namely, J̃2 > 0.
Suppose that 0 < J̃2 < ∞. Then, by (13), we have

∞ >
∫ ∞

0

(v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx = J̃ q
2 = I

> k(σ )
[∫ ∞

0

(v(x))p(1–σ )–1f p(x)
(v′(x))p–1 dx

] 1
p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

> 0,

J̃2 =
[∫ ∞

0

(v(x))p(1–σ )–1f p(x)
(v′(x))p–1 dx

] 1
q

> k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

,

namely, (10) follows. Then, (13) and (10) are equivalent.
Hence, (9), (10), and (13) are equivalent.



Peng et al. Journal of Inequalities and Applications        (2023) 2023:114 Page 9 of 18

(ii) “(11) 
⇒ (14)” If 0 < p < 1 (q < 0), then by the reverse Hölder’s inequality, we have

I =
∞∑

n=2

[
lnσ– 1

p n

n
1
p

∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

]
[
n

1
p ln

1
p –σ nan

]

≥ Ĵ1

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

. (17)

In view of (11), we obtain (14).
“(14) 
⇒ (11)”. If (14) is valid, then we consider the following function:

an :=
lnpσ–1 n

n

(∫ ∞

0
h
(
v(x) ln n

)
f (x) dx

)p–1 (
n ∈ N\{1}).

If Ĵ1 = ∞, (11) is naturally valid; if Ĵ1 = 0, then it is impossible to make (11) valid, namely,
Ĵ1 > 0. Supposing that 0 < Ĵ1 < ∞, by (14), we have

∞ >
∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n = Ĵ p
1 = I

> k(σ )
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

> 0,

Ĵ1 =

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
p

> k(σ )
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
,

namely, (11) follows. Hence, (14) and (11) are equivalent.
“(12) 
⇒ (14)”. By the reverse Hölder’s inequality, we also have

I =
∫ ∞

0

[
(
1 – θ (x)

) 1
p (v(x))

1
q –σ

(v′(x))
1
q

f (x) dx
]

×
[

(v(x))σ– 1
q (v′(x))

1
q

(1 – θ (x))
1
p

∞∑

n=2

h
(
v(x) ln n

)
an

]

≥
[∫ ∞

0

(
1 – θ (x)

)v(x)p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
Ĵ2. (18)

In view of (12), we obtain (14).
“(14) 
⇒ (12)”. If (14) is valid, we set the following function:

f (x) :=
(v(x))qσ–1v′(x)
(1 – θ (x))q–1

( ∞∑

n=2

h
(
v(x) ln n

)
an

)q–1

(x ∈ R+).
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If Ĵ2 = ∞, (12) is naturally valid; if Ĵ2 = 0, it is impossible to make (12) valid, namely Ĵ2 > 0.
Supposing that 0 < Ĵ2 < ∞, by (14), we have

∞ >
∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx = Ĵ q
2 = I

> k(σ )
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

> 0,

Ĵ2 =
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1

(v′(x))p–1 f p(x) dx
] 1

q

> k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

,

namely, (12) follows. Then, (12) and (14) are equivalent.
Hence, (11), (12), and (14) are equivalent.
The theorem is proved. �

Definition 2 If there exists a constant M > 0 such that
∣
∣
∣
∣
θ (x)
va(x)

∣
∣
∣
∣ ≤ M, x ∈ (0, 1),

then we write θ (x) = O(va(x)), x ∈ (0, 1).

Theorem 2 Under the assumptions of Theorem 1, consider k(σ ) ∈ R+ (σ ∈ I) (I is an open
interval).

(i) If p < 0 (0 < q < 1), then the constant factor k(σ ) in (13), (9), and (10) is the best possible;
(ii) If 0 < p < 1 (q < 0), there exists a constant a > 0 such that θ (x) = O(va(x)) (x ∈ (0, 1)),

namely, the constant factor k(σ ) in (14), (11), and (12) is the best possible.

Proof For any ε > 0 such that σ – ε
q ∈ I , we set the following functions:

ãn :=
lnσ– ε

q –1 n
n

, n ∈ N\{1},

f̃ (x) =

⎧
⎨

⎩

(v(x))σ+ ε
p –1v′(x), 0 < x ≤ 1,

0, x > 1.

(i) If p < 0 (0 < q < 1), then in view of the decreasingness property of the series, we have

L1 :=
[∫ ∞

0

(v(x))p(1–σ )–1̃f p(x)
(v′(x))p–1 dx

] 1
p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q ãq

n

] 1
q

=
[∫ 1

0

(
v(x)

)ε–1v′(x) dx
] 1

p
( ∞∑

n=2

1
n lnε+1 n

) 1
q

≥
[

(v(1))ε

ε

] 1
p
(∫ ∞

2

1
y lnε+1 y

dy
) 1

q
=

(v(1))
ε
p

ε ln
ε
q 2

,
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I1 :=
∫ ∞

0

∞∑

n=2

ãnh
(
v(x) ln n

)
f̃ (x) dx

=
∫ 1

0

(
v(x)

)ε–1v′(x)ω
(

σ –
ε

q
, x

)

dx <
1
ε

(
v(1)

)εk
(

σ –
ε

q

)

.

If there exists a positive constant k ≥ k(σ ) such that (13) is valid when we replace k(σ )
by k, then, in particular, we have εI1 > εkL1, namely

(
v(1)

)εk
(

σ –
ε

q

)

>
k · (v(1))

ε
p

ln
ε
q 2

.

In view of Lemma 3, k(σ ) is continuous. When ε → 0+ in the above inequality, we find
k(σ ) ≥ k. Hence, k = k(σ ) is the best possible constant factor in (13).

The constant factor k(σ ) in (9) (resp. (10)) is the best possible. Otherwise, by (15) (resp.
(16)), we would reach a contradiction that the constant factor in (13) is not the best pos-
sible.

(ii) If 0 < p < 1 (q < 0), then in view of the assumption and the decreasingness property
of the series, we obtain

L2 :=
[∫ ∞

0

(
1 – θ (x)

) (v(x))p(1–σ )–1̃f p(x)
(v′(x))p–1 dx

] 1
p

×
[ ∞∑

n=2

nq–1 lnq(1–σ )–1 ñaq
n

] 1
q

=
[∫ 1

0

(
v(x)

)ε–1v′(x) dx –
∫ 1

0
O

(
va+ε–1(x)

)
dx

] 1
p

×
(

1
2 lnε+1 2

+
∞∑

n=3

1
n lnε+1 n

) 1
q

≥
[

1
ε

((
v(1)

)ε – εO(1)
)
] 1

p
(

1
2 lnε+1 2

+
∫ ∞

2

dy
y lnε+1 y

) 1
q

=
1
ε

[(
v(1)

)ε – εO(1)
] 1

p

(
ε

2 lnε+1 2
+

1
lnε 2

) 1
q

,

I1 =
∫ 1

0

(
v(x)

)ε–1v′(x)ω
(

σ –
ε

q
, x

)

dx <
1
ε

(
v(1)

)εk
(

σ –
ε

q

)

.

If there exists a positive constant k ≥ k(σ ) such that (14) is valid when we replace k(σ )
by k, then, in particular, we have εI1 > εkL2 and

(
v(1)

)εk
(

σ –
ε

q

)

> k
[
(
(
v(1)

)ε – εO
(
v(1)

)] 1
p

(
ε

2 lnε+1 2
+

1
lnε 2

) 1
q

.

As ε → 0+, in view of the continuity of k(σ ), we find k(σ ) ≥ k. Hence, k = k(σ ) is the best
possible constant factor of (14).

The constant factor k(σ ) in (11) (resp. (12)) is the best possible. Otherwise, by (17) (resp.
(18)), we would reach a contradiction that the constant factor in (17) is not the best pos-
sible.
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The theorem is proved. �

4 Some corollaries and particular cases
Replacing v(x) by v–1(x) in Theorems 1 and 2, by Remark 1, setting

θ0(x) :=
1

k(σ )

∫ v–1(x) ln 2

0
h(u)uσ–1 du ∈ (0, 1) (x > 0),

we have the following corollary:

Corollary 1 Under the assumptions of Theorem 1, consider k(σ ) ∈ R+ (σ ∈ I).
(i) If p < 0 (0 < q < 1), then we have the following equivalent inequalities with the best

possible constant factor k(σ ):

∞∑

n=2

an

∫ ∞

0
h
(
v–1(x) ln n

)
f (x) dx

> k(σ )
[∫ ∞

0

(v(x))p(1+σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

,

[ ∞∑

n=2

lnpσ–1 n
n

(∫ ∞

0
h
(
v–1(x) ln n

)
f (x) dx

)p
] 1

p

> k(σ )
[∫ ∞

0

(v(x))p(1+σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
,

[∫ ∞

0

v′(x)
(v(x))qσ+1

( ∞∑

n=2

h
(
v–1(x) ln n

)
an

)q

dx

] 1
q

> k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

.

(ii) If 0 < p < 1 (q < 0), and there exists a constant a > 0 such that θ0(x) = O( 1
va(x) ) (0 < x <

1), then we have the following equivalent inequalities with the best possible constant factor
k(σ ):

∞∑

n=2

an

∫ ∞

0
h
(
v–1(x) ln n

)
f (x) dx

> k(σ )
[∫ ∞

0

(
1 – θ0(x)

) (v(x))p(1+σ )–1

(v′(x))p–1 f p(x) dx
] 1

p

×
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

,

[ ∞∑

n=2

lnpσ–1 n
n

(∫ ∞

0
h
(
v–1(x) ln n

)
f (x) dx

)p
] 1

p

> k(σ )
[∫ ∞

0

(
1 – θ0(x)

) (v(x))p(1+σ )–1

(v′(x))p–1 f p(x) dx
] 1

p
,
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[∫ ∞

0

(1 – θ0(x))1–qv′(x)
(v(x))qσ+1

( ∞∑

n=2

h
(
v–1(x) ln n

)
an

)q

dx

] 1
q

> k(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

.

Definition 3 If λ ∈ R, the nonnegative measurable function kλ(x, y) ((x, y) ∈ R2
+ = (0,∞)×

(0,∞)) satisfies kλ(ux, uy) = u–λkλ(x, y), for any u, x, y ∈ R+, then we call kλ(x, y) a homoge-
neous function of degree –λ.

Setting h(u) = kλ(1, u), kλ(σ ) :=
∫ ∞

0 kλ(1, u)uσ–1 du, μ = λ – σ , defining

θλ(x) :=
1

kλ(σ )

∫ v–1(x) ln 2

0
kλ(1, u)uσ–1 du ∈ (0, 1) (x > 0),

and replacing f (x) by v–λ(x)f (x) in Corollary 1, we have

Corollary 2 Suppose that p < 1 (p �= 0), 1
p + 1

q = 1, μ,σ ,λ ∈ R, μ + σ = λ, kλ(1, u) > 0,
kλ(1, u)uσ–1 is decreasing for u > 0, kλ(σ ) ∈ R+(σ ∈ I), v(x) > 0, v′(x) > 0 (x > 0), with v(0+) =
0, v(∞) = ∞, and f (x), an ≥ 0, are such that

0 <
∫ ∞

0

(v(x))p(1–μ)–1

(v′(x))p–1 f p(x) dx < ∞ and 0 <
∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n < ∞.

(i) If p < 0 (0 < q < 1), then we have the following equivalent reverse inequalities with the
best possible constant factor kλ(σ ):

∞∑

n=2

an

∫ ∞

0
kλ

(
v(x), ln n

)
f (x) dx

> kλ(σ )
[∫ ∞

0

(v(x))p(1–μ)–1

(v′(x))p–1 f p(x) dx
] 1

p
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

,

[ ∞∑

n=2

lnpσ–1 n
n

(∫ ∞

0
kλ

(
v(x), ln n

)
f (x) dx

)p
] 1

p

> kλ(σ )
[∫ ∞

0

(v(x))p(1–μ)–1

(v′(x))p–1 f p(x) dx
] 1

p
,

[∫ ∞

0

v′(x)
(v(x))1–qμ

( ∞∑

n=2

kλ

(
v(x), ln n

)
)

an)q dx

] 1
q

> kλ(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

.

(ii) If 0 < p < 1 (q < 0), and there exists a constant a > 0 such that θλ(x) = O( 1
va(x) ) (0 < x <

1), then we have the following equivalent reverse inequalities with the best possible constant
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factor kλ(σ ):

∞∑

n=2

an

∫ ∞

0
kλ

(
v(x), ln n

)
f (x) dx

> kλ(σ )
[∫ ∞

0

(
1 – θλ(x)

) (v(x))p(1–μ)–1

(v′(x))p–1 f p(x) dx
] 1

p

×
[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

,

[ ∞∑

n=2

lnpσ–1 n
n

(∫ ∞

0
kλ

(
v(x), ln n

)
f (x) dx

)p
] 1

p

> kλ(σ )
[∫ ∞

0

(
1 – θλ(x)

) (v(x))p(1–μ)–1

(v′(x))p–1 f p(x) dx
] 1

p
,

[∫ ∞

0

(v(x))qμ–1v′(x)
(1 – θλ(x))q–1

( ∞∑

n=2

kλ

(
v(x), ln n

)
)

an)q dx

] 1
q

> kλ(σ )

[ ∞∑

n=2

lnq(1–σ )–1 n
n1–q aq

n

] 1
q

.

Example 1 (i) We set h(u) = kλ(1, u) = 1
(1+u)λ (λ > 0), μ > 0, 0 < σ ≤ 1, σ + μ = λ. Then we

find that h(u) = 1
(1+u)λ is decreasing as a function of u > 0,

h(
(
v(x) ln n

)
=

1
(1 + v(x) ln n)λ

, kλ

(
v(x), ln n

)
=

1
(v(x) + ln n)λ

,

k(σ ) = kλ(σ ) =
∫ ∞

0

uσ–1

(1 + u)λ
du = B(σ ,λ – σ ) = B(μ,σ ) ∈ R+,

0 < θ (x) =
1

B(μ,σ )

∫ v(x) ln 2

0

1
(1 + u)λ

uσ–1 du

≤ 1
B(μ,σ )

∫ v(x) ln 2

0
uσ–1 du =

1
σB(μ,σ )

(
v(x) ln 2

)σ ,

0 < θλ(x) =
1

B(μ,σ )

∫ v–1(x) ln 2

0

1
(1 + u)λ

uσ–1 du

≤ 1
B(μ,σ )

∫ v–1(x) ln 2

0
uσ–1 du =

1
σB(μ,σ )

(
ln 2
v(x)

)σ

,

a = σ > 0, and I = (0,λ). In view of Theorems 1 and 2, as well as Corollary 2, we have two
classes of equivalent reverse inequalities with the particular kernels and the best possible
constant factor B(μ,σ ).

In particular, for v(x) = ln(1 + x), the related inequalities are called half-discrete
Mulholland-type inequalities.
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(ii) We set h(u) = kλ(1, u) = ln u
uλ–1 (λ > 0), μ > 0, 0 < σ ≤ 1, σ + μ = λ. Then we find that

h(u) = ln u
uλ–1 is decreasing with respect to u > 0 (cf. [7]),

h(
(
v(x) ln n

)
=

ln(v(x) ln n)
(v(x) ln n)λ – 1

, kλ

(
v(x), ln n

)
=

ln(v(x)/ ln n)
vλ(x) – lnλ n

,

k(σ ) = kλ(σ ) =
∫ ∞

0

uσ–1 ln u
uλ – 1

du

=
1
λ2

∫ ∞

0

v(σ /λ)–1 ln v
v – 1

dv =
[

π

λ sin(πσ /λ)

]2

∈ R+.

We obtain

θ (x) =
[

π

λ sin(πσ /λ)

]–2 ∫ v(x) ln 2

0

uσ /2 ln u
uλ – 1

u
σ
2 –1 du.

Since uσ /2 ln u
uλ–1 → 0(u → 0+), there exists a constant M > 0 such that 0 < uσ /2 ln u

uλ–1 ≤ M (u ∈
(0, v(1) ln 2]). For x ∈ (0, 1), we have

0 < θ (x) ≤
[

π

λ sin(πσ /λ)

]–2

M
∫ v(x) ln 2

0
u

σ
2 –1 du

=
[

π

λ sin(πσ /λ)

]–2 2M
σ

(
v(x) ln 2

) σ
2 .

In the same way, we can find that

0 < θλ(x) ≤
[

π

λ sin(πσ /λ)

]–2 2M
σ

(
ln 2
v(x)

) σ
2

.

So we set a = σ
2 > 0 and I = (0,λ). In view of Theorems 1 and 2, as well as Corollary 2, we

have two classes of equivalent reverse inequalities with the particular kernels and the best
possible constant factor [ π

λ sin(πσ /λ) ]2.
(iii) We set h(u) = kλ(1, u) = (min{1,u})η

(max{1,u})λ+η (μ,σ > –η,σ ≤ 1 – η,μ + σ = λ). Then we find
that

h(
(
v(x) ln n

)
=

(min{1, v(x) ln n})η
(max{1, v(x) ln n})λ+η

,

kλ

(
v(x), ln n

)
=

(min{v(x), ln n})η
(max{v(x), ln n})λ+η

.

In view of the assumptions, we still find that

h(u)uσ–1 =
(min{1, u})ηuσ–1

(max{1, u})λ+η
=

⎧
⎨

⎩

uη+σ–1, 0 < u < 1,
1

uμ+η+1 , u ≥ 1,

is decreasing with respect to u > 0, and

k(σ ) = kλ(σ ) =
∫ ∞

0

(min{1, u})η
(max{1, u})λ+η

uσ–1 du
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=
∫ 1

0
uη+σ–1 du +

∫ ∞

1

1
uλ+η

uσ–1 du

=
1

η + σ
+

1
η + μ

=
2η + λ

(η + σ )(η + μ)
∈ R+.

We consider

θ (x) =
(η + σ )(η + μ)

2η + λ

∫ v(x) ln 2

0

(min{1, u})η
(max{1, u})λ+η

uσ–1 du.

For x ∈ (0, 1), there exist constants b, M > 0 such that bv(1) ln 2 ≤ 1 and

0 < θ (x) ≤ (η + σ )(η + μ)
2η + λ

M
∫ bv(x) ln 2

0

(min{1, u})ηuσ–1

(max{1, u})λ+η
du

=
(η + σ )(η + μ)

2η + λ
M

∫ bv(x) ln 2

0
uη+σ–1 du =

η + μ

2η + λ
M

(
bv(x) ln 2

)η+σ .

In the same way, we can find that

0 < θλ(x) ≤ η + μ

2η + λ
M

(
b ln 2
v(x)

)η+σ

.

So we set a = η + σ > 0 and I = (–η,λ + η). In view of Theorems 1 and 2, as well as Corol-
lary 2, we have two classes of equivalent reverse inequalities with the particular kernels
and the best possible constant factor [ π

λ sin(πσ /λ) ]2.
In particular, (a) for η = 0, we have μ,σ > 0, σ ≤ 1, μ + σ = λ,

h(
(
v(x) ln n

)
=

1
(max{1, v(x) ln n})λ ,

kλ

(
v(x), ln n

)
=

1
(max{v(x), ln n})λ ,

k(σ ) = kλ(σ ) = λ
σμ

∈ R+, a = σ > 0, and I = (0,λ).
(b) For η = –λ, we have μ,σ > λ, σ ≤ 1, μ + σ = λ,

h(
(
v(x) ln n

)
=

1
(min{1, v(x) ln n})λ ,

kλ

(
v(x), ln n

)
=

1
(min{v(x), ln n})λ ,

k(σ ) = kλ(σ ) = –λ
σμ

∈ R+, a = –μ > 0, and I = (λ, 0) (λ < 0).
(c) For λ = 0, η > 0, –η < σ < η, σ ≤ 1 – η, we have

h(u) = k0(1, u) =
(

min{1, u}
max{1, u}

)η

,

k(σ ) = k0(σ ) =
2η

η2 – σ 2 ∈ R+,

h
(
v(x) ln n

)
=

(
min{1, v(x) ln n}
max{1, v(x) ln n}

)η

,
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k0
(
v(x), ln n

)
=

(
min{v(x), ln n}
max{v(x), ln n}

)η

,

a = η + σ > 0, and I = (–η,η).

5 Conclusions
In this paper, using the weight functions and the techniques of real analysis, a new reverse
half-discrete Mulholland-type inequality with the nonhomogeneous kernel of the form
h(v(x) ln n) is obtained in Theorem 1. The best possible constant factor and some equiva-
lent reverses are considered in Theorem 2. In Corollary 2, we deduce some new equivalent
reverse inequalities with the homogeneous kernel of the form kλ(v(x), ln n). Some partic-
ular cases are provided in Example 1. These lemmas and theorems provide an extensive
account of such inequalities.

In contrast to the extensive research conducted on the homogeneous kernel, the investi-
gation of nonhomogeneous kernel is complex and applied to obtain a reverse half-discrete
Hilbert-type inequality. The new reverse half-discrete Mulholland-type inequality with
the nonhomogeneous kernel transforms the field of study into a multidimensional space.
It becomes even more comprehensive in applications and consequences. The potential
impact of our research is to inequalities involving higher-order derivative functions and
multiple upper limit functions. It would be a remarkable achievement in the framework
of a half-discrete Hilbert-type inequality with a nonhomogeneous kernel.
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