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Abstract
The distance between consecutive zeros of a first-order differential equation with
several variable delays is studied. Here, we show that the distribution of zeros of
differential equations with variable delays is not an easy extension of the case of
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some existing results. Two illustrative examples are given to show the advantages of
the proposed results over the known ones.
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1 Introduction
Consider the differential equation with several variable delays

x′(t) +
n∑

j=1

aj(t)x
(
gj(t)

)
= 0, t ≥ t0, (1)

where aj, gj ∈ C([t0,∞), [0,∞)), gj(t) is a strictly increasing function such that gj(t) ≤ t,
limt→∞ gj(t) = ∞, j = 1, 2, . . . , n. We make use of the following notation:

hi(t) = max
1≤j≤i

gj(t), wi(t) = min
1≤j≤i

gj(t), i = 1, 2, . . . , n.

Therefore,

h–k
j (t) ≥ h–k

i (t) and w–k
j (t) ≤ w–k

i (t), i ≥ j, i, j = 1, 2, . . . , n, k = 1, 2, . . . ,

where h–1
j (t) and w–1

j (t) are the inverse of the functions hj(t) and wj(t), j = 1, 2, . . . , n.

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-023-03017-w
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-023-03017-w&domain=pdf
mailto:b.elmatary@qu.edu.sa
mailto:bassantmarof@yahoo.com
http://creativecommons.org/licenses/by/4.0/


Attia and El-Matary Journal of Inequalities and Applications        (2023) 2023:103 Page 2 of 12

Consequently,

max
1≤j≤i

w–k
j (t) = w–k

i (t) and max
1≤j≤i

h–k
j (t) = h–k

1 (t), i = 1, 2, . . . , n, k = 1, 2, . . . .

Let t∗ ≥ t0 and x(t) be a continuous function on [t∗,∞). The function x(t) is said to be a
solution of Eq. (1) on [t∗,∞) if x(t) is continuously differentiable on [w–1

n (t∗),∞) and satis-
fying Eq. (1) for t ≥ w–1

n (t∗). Any solution of Eq. (1) is called oscillatory if it has arbitrarily
large zeros; otherwise, it is called nonoscillatory. Equation (1) is called oscillatory if all its
solutions are oscillatory; otherwise, it is called nonoscillatory.

The oscillation theory of delay differential equations has received a great deal of atten-
tion in recent years; see the monographs [1, 2, 13–15] and the papers [3–12, 16–27] for
more details. Many efforts have been made to establish sufficient and/or necessary oscilla-
tion criteria for Eq. (1); see [1, 3, 9, 11, 13, 15, 17]. In oscillation theory, the distribution of
zeros of delay differential equations has always been an important problem. In this topic,
not only is the existence of zeros demonstrated, but efforts are also being made to deter-
mine their locations. In fact, the study of the distribution of zeros raises many challenges.
This explains the few studies that concern the distance between zeros compared to the
oscillation.

Many upper bounds for the distance between consecutive zeros of the delay differential
equations

x′(t) + a(t)x(t – σ ) = 0, t ≥ t0, (2)

and

x′(t) + a(t)x
(
g(t)

)
= 0, t ≥ t0, (3)

where σ > 0, a, g ∈ C([t0,∞), [0,∞)), g(t) is a strictly increasing function such that
limt→∞ g(t) = ∞, have been obtained by [6–11, 17, 18, 20–27]. Further, some results con-
cerning the lower bounds for the distance between consecutive zeros of all solutions of
Eqs. (2) and (3) were investigated in [6–10, 17]. For example, Barr [6] showed that the
lower bound of the distance between zeros of an oscillatory solution of Eq. (3) goes to
infinity when t – g(t) is not bounded. Therefore, we will restrict our attention to the case
when t –gj(t) < ∞, j = 1, 2, . . . , n. In this work, we obtain new upper bounds for the distance
between consecutive zeros of all solutions of Eq. (1), which would improve the above-
mentioned ones. We conclude by providing two illustrative examples to show the appli-
cability and importance of some of our findings.

2 Main results
Let t1 ≥ t0 and Dt1 (x) be the upper bound of the distance between consecutive zeros of all
solutions of Eq. (1) on the interval [t1,∞). Throughout this paper, it is assumed that

sup
t≥t1

{
t – gj(t)

}
< ∞ for j = 1, 2, . . . , n.
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Let r ∈ {1, 2, . . . , n} and the sequence {Rk(ηr)}k≥0 be defined by R0(ηr) = 1 and

R1(ηr) =
1

1 – ηr
,

Rk(ηr) =
1

1 – ηr – 1
2η2

r Rk–1(ηr)
, k = 2, 3, . . . ,

(4)

where

∫ t

hr (t)

r∑

j=1

aj(s) ds ≥ ηr for t ≥ h–1
r (t1).

Lemma 2.1 Let k ∈ N0, r ∈ {1, 2, . . . , n} and x(t) be a solution of Eq. (1) such that x(t) > 0
on [T0, T1], T0 ≥ t1, T1 ≥ h–1

r (w–k
r (w–1

n (T0))). Then

x(hr(t))
x(t)

≥ Rk(ηr) for t ∈ [
h–(k–1)

r
(
w–k

r
(
w–1

n (T0)
))

, T1
]
, (5)

where w0
r (T0) = T0.

Proof Since x(t) > 0 on [T0, T1], it follows from Eq. (1) that x′(t) ≤ 0 on [w–1
n (T0), T1], and

hence

x(hr(t))
x(t)

≥ 1 = R0(ηr) for t ∈ [
h–1

r
(
w–1

n (T0)
)
, T1

]
.

In view of Eq. (1) and the positivity of x(t) on [T0, T1], we have

x′(t) +
r∑

j=1

aj(t)x
(
gj(t)

) ≤ 0 for t ∈ [
w–1

n (T0), T1
]
. (6)

Integrating from hr(t) to t, we get

x(t) – x
(
hr(t)

)
+

∫ t

hr(t)

r∑

j=1

aj(s)x
(
gj(s)

)
ds ≤ 0 for t ∈ [

h–1
r

(
w–1

n (T0)
)
, T1

]
. (7)

Since hr(t) ≥ gj(t), so hr(t) ≥ gj(s) for hr(t) ≤ s ≤ t, j = 1, 2, . . . , r, it follows from (6) that

x
(
gj(s)

) ≥ x
(
hr(t)

)
+

∫ hr(t)

gj(s)

r∑

j1=1

aj1 (s1)x
(
gj1 (s1)

)
ds1, t ∈ [

h–1
r

(
w–1

r
(
w–1

n (T0)
))

, T1
]
.

Substituting into (7), we obtain

x(t) – x
(
hr(t)

)
+ x

(
hr(t)

)∫ t

hr (t)

r∑

j=1

aj(s) ds

+
∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr(t)

gj(s)

r∑

j1=1

aj1 (s1)x
(
gj1 (s1)

)
ds1 ds ≤ 0 (8)
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for t ∈ [h–1
r (w–1

r (w–1
n (T0))), T1]. Therefore,

x(t) – x
(
hr(t)

)
+ x

(
hr(t)

)∫ t

hr (t)

r∑

j=1

aj(s) ds ≤ 0 for t ∈ [
h–1

r
(
w–1

r
(
w–1

n (T0)
))

, T1
]
.

That is,

x(hr(t))
x(t)

≥ 1
1 –

∫ t
hr (t)

∑r
j=1 aj(s) ds

≥ 1
1 – ηr

= R1(ηr) for t ∈ [
h–1

r
(
w–1

r
(
w–1

n (T0)
))

, T1
]
. (9)

Also, since h2
r (t) ≥ gj1 (s1) for hr(t) ≤ s ≤ t, gj(s) ≤ s1 ≤ hr(t), j, j1 = 1, 2, . . . , r. Then

x
(
gj1 (s1)

) ≥ x
(
h2

r (t)
)

+
∫ h2

r (t)

gj1 (s1)

r∑

j2=1

aj2 (s2)x
(
gj2 (s2)

)
ds2, gj1 (s1) ≤ s2 ≤ h2

r (t)

for t ∈ [h–1
r (w–2

r (w–1
n (T0))), T1]. From this and (8), it follows that

x(t) – x
(
hr(t)

)
+ x

(
hr(t)

)∫ t

hr (t)

r∑

j=1

aj(s) ds

+ x
(
h2

r (t)
)∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr (t)

gj(s)

r∑

j1=1

aj1 (s1) ds1 ds

+
∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr (t)

gj(s)

r∑

j1=1

aj1 (s1)
∫ h2

r (t)

gj1 (s1)

r∑

j2=1

aj2 (s2)x
(
gj2 (s2)

)
ds2 ds1 ds ≤ 0 (10)

for t ∈ [h–1
r (w–2

r (w–1
n (T0))), T1]. Using the positivity of x(t) on [T0, T1], we have

x(t) – x
(
hr(t)

)
+ x

(
hr(t)

)∫ t

hr (t)

r∑

j=1

aj(s) ds

+ x
(
h2

r (t)
)∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr (t)

gj(s)

r∑

j1=1

aj1 (s1) ds1 ds ≤ 0

for t ∈ [h–1
r (w–2

r (w–1
n (T0))), T1]. Therefore,

x(hr(t))
x(t)

≥ 1

1 –
∫ t

hr(t)
∑r

j=1 aj(s) ds – x(h2
r (t))

x(hr(t))
∫ t

hr(t)
∑r

j=1 aj(s)
∫ hr (t)

gj(s)
∑r

j1=1 aj1 (s1) ds1 ds
(11)
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for t ∈ [h–1
r (w–2

r (w–1
n (T0))), T1]. Clearly,

∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr (t)

gj(s)

r∑

j1=1

aj1 (s1) ds1 ds ≥
∫ t̄

hr (t)

r∑

j=1

aj(s)
∫ s

gj(s)

r∑

j1=1

aj1 (s1) ds1 ds

–
∫ t̄

hr(t)

r∑

j=1

aj(s)
∫ s

hr(t)

r∑

j1=1

aj1 (s1) ds1 ds

≥ η2
r –

∫ t̄

hr (t)

r∑

j=1

aj(s)
∫ s

hr (t)

r∑

j1=1

aj1 (s1) ds1 ds, (12)

where t̄ ∈ (hr(t), t] such that
∫ t̄

hr (t)
∑r

j=1 aj(s) ds = ηr . It is easy to see that (see [13,
Lemma 2.1.3])

∫ t̄

hr (t)

r∑

j=1

aj(s)
∫ s

hr (t)

r∑

j1=1

aj1 (s1) ds1 ds =
1
2

(∫ t̄

hr(t)

r∑

j=1

aj(s) ds

)2

=
1
2
η2

r .

From this and (12), we get

∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr (t)

gj(s)

r∑

j1=1

aj1 (s1) ds1 ds ≥ 1
2
η2

r .

Substituting into (11), we have

x(hr(t))
x(t)

≥ 1

1 – ηr – 1
2η2

r
x(h2

r (t))
x(hr(t))

for t ∈ [
h–1

r
(
w–2

r
(
w–1

n (T0)
))

, T1
]
. (13)

In view of (9), we have

x(h2
r (t))

x(hr(t))
≥ R1(ηr) for t ∈ [

h–2
r

(
w–1

r
(
w–1

n (T0)
))

, T1
]
.

This together with (13) implies that

x(hr(t))
x(t)

≥ 1
1 – ηr – 1

2η2
r R1(ηr)

= R2(ηr) for t ∈ [
h–1

r
(
w–2

r
(
w–1

n (T0)
))

, T1
]
.

Therefore,

x(h2
r (t))

x(hr(t))
≥ R2(ηr) for t ∈ [

h–2
r

(
w–2

r
(
w–1

n (T0)
))

, T1
]
.

From this and (13), we get

x(hr(t))
x(t)

≥ 1
1 – ηr – 1

2η2
r R2(ηr)

= R3(ηr)

for t ∈ [h–1
r (w–3

r (w–1
n (T0))), T1] ⊆ [h–2

r (w–2
r (w–1

n (T0))), T1].
Repeating this procedure k times, we obtain (5). The proof is complete. �
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Let r ∈ {1, 2, . . . , n} and the sequence {Bi
j,r(s, t)}i≥1, j = 1, 2, . . . , r, be defined by

B1
j,r(s, t) = aj(s), hr(t) ≤ s ≤ t for t ≥ w–1

r (t1)

Bi
j,r(s, t) = aj(s)

∫ hr (t)

gj(s)

r∑

j1=1

Bi–1
j1,r

(
s1, hr(t)

)
ds1, hr(t) ≤ s ≤ t, i = 2, 3, . . .

for t ≥ w–i
r (t1).

Theorem 2.1 Assume that k ∈N and r ∈ {1, 2, . . . , n}. If

k∑

i=1

i∏

j=2

Rk+1–j(ηr)
∫ t

hr (t)

r∑

j=1

Bi
j,r

(
s, hr(t)

)
ds ≥ 1 for all t ≥ w–k–1

r (t1),

then Eq. (1) oscillates and Dt1 (x) ≤ supt≥t1{h–1
r (w–k

r (w–1
n (t))) – t}.

Proof Suppose the contrary, let x(t) be a positive solution of Eq. (1) on [T0, T1], T0 ≥ t1,
T1 > h–1

r (w–k
r (w–1

n (T0))). Using a similar argument as in the proof of Lemma 2.1, we obtain
(10). That is,

x(t) – x
(
hr(t)

)
+

2∑

i=1

x
(
hi

r(t)
)∫ t

hr (t)

r∑

j=1

Bi
j,r

(
s, hr(t)

)
ds

+
∫ t

hr (t)

r∑

j=1

aj(s)
∫ hr (t)

gj(s)

r∑

j1=1

aj1 (s1)
∫ h2

r (t)

gj1 (s1)

r∑

j2=1

aj2 (s2)x
(
gj2 (s2)

)
ds2 ds1 ds ≤ 0,

for t ∈ [h–1
r (w–2

r (w–1
n (T0))), T1], where h1

r (t) = hr(t). It follows that

x(t) – x
(
hr(t)

)
+

2∑

i=1

∫ t

hr (t)
x
(
hi

r(t)
) r∑

j=1

Bi
j,r

(
s, hr(t)

)
ds ≤ 0

for t ∈ [h–1
r (w–2

r (w–1
n (T0))), T1]. By repeating this argument k times, we get

x(t) – x
(
hr(t)

)
+

k∑

i=1

∫ t

hr (t)
x
(
hi

r(t)
) r∑

j=1

Bi
j,r

(
s, hr(t)

)
ds ≤ 0 (14)

for t ∈ [h–1
r (w–k

r (w–1
n (T0))), T1]. Since

x
(
hi

r(t)
)

=

( i∏

j=2

x(hj
r(t))

x(hj–1
r (t))

)
x
(
hr(t)

)
, i = 1, 2, . . . .

By using (5) and the fact that

hj–1
r (t) ∈ [

h–1
r

(
w–k+(j–1)

r
(
w–1

n (T0)
))

, T1
]
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for t ∈ [h–1
r (w–k

r (w–1
n (T0))), T1], we obtain

x(hj
r(t))

x(hj–1
r (t))

≥ Rk+1–j(ηr) for t ∈ [
h–1

r
(
w–k

r
(
w–1

n (T0)
))

, T1
]
.

Then

x
(
hi

r(t)
) ≥

( i∏

j=2

Rk+1–j(ηr)

)
x
(
hr(t)

)
, i = 1, 2, . . . .

Substituting into (14), we get

x(t) – x
(
hr(t)

)
+ x

(
hr(t)

) k∑

i=1

i∏

j=2

Rk+1–j(ηr)
∫ t

hr (t)

r∑

j=1

Bi
j,r

(
s, hr(t)

)
ds ≤ 0

for t ∈ [h–1
r (w–k

r (w–1
n (T0))), T1], that is,

x(t) +

( k∑

i=1

i∏

j=2

Rk+1–j(ηr)
∫ t

hr (t)

r∑

j=1

Bi
j,r

(
s, hr(t)

)
ds – 1

)
x
(
hr(t)

) ≤ 0

for t ∈ [h–1
r (w–k

r (w–1
n (T0))), T1]. This contradiction completes the proof. �

Theorem 2.2 Assume that k ∈N0. If

n∏

i=1

( n∏

j=1

∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 Rk (ηj1 )aj1 (s1) ds1 ds

) 1
n

≥ 1
nn for t ≥ h–1

1
(
w–1

n (t1)
)
, (15)

then Eq. (1) oscillates and Dt1 (x) ≤ supt≥t1{h–2
1 (w–(k+2)

n (t)) – t}.

Proof Assume that x(t) is a solution of Eq. (1) such that x(t) > 0 on [T0, T1], T0 ≥ t1, T0 >
h–2

1 (w–(k+2)
n (T1)). Integrating Eq. (1) from hi(t) to t, i = 1, 2, . . . , n, we get

x(t) – x
(
hi(t)

)
+

∫ t

hi(t)

n∑

j=1

aj(s)x
(
gj(s)

)
ds = 0 for t ∈ [

h–1
1

(
w–1

n (T0)
)
, T1

]
. (16)

It follows from Eq. (1) and hj(t) ≥ gj(s), hi(t) ≤ s ≤ t, j = 1, 2, . . . , n, that

x
(
gj(s)

)
= x

(
hj(t)

)
e
∫ hj(t)

gj(s)
∑n

j=1 aj(s1)
x(gj(s1))

x(s1) ds1 .

Substituting into Eq. (16), we get

x(t) – x
(
hi(t)

)
+

n∑

j=1

x
(
hj(t)

)∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 aj1 (s1)

x(gj1 (s1))
x(s1) ds1 ds = 0

for t ∈ [
h–1

1
(
w–2

n (T0)
)
, T1

]
. (17)
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By using (5), we have

x(hj(s1))
x(s1)

≥ x(gj(s1))
x(s1)

≥ Rk(ηj), gj(s) ≤ s1 ≤ hj(t), hi(t) ≤ s ≤ t, i, j = 1, 2, . . . , n,

for t ∈ [h–1
j (w–1

j (h–1
j (w–k

j (w–1
n (T0))))), T1] ⊆ [h–2

j (w–(k+1)
j (w–1

n (T0))), T1]. This together with
(17) leads to

x(t) – x
(
hi(t)

)
+

n∑

j=1

x
(
hj(t)

)∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 aj1 (s1)Rk (ηj1 ) ds1 ds ≤ 0

for t ∈ [
h–2

1
(
w–(k+2)

n (T0)
)
, T1

]
.

That is,

x
(
hi(t)

)
>

n∑

j=1

x
(
hj(t)

)∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 aj1 (s1)Rk (ηj1 ) ds1 ds

for t ∈ [
h–2

1
(
w–(k+2)

n (T0)
)
, T1

]
.

By using the arithmetic–geometric mean, we obtain

x
(
hi(t)

)
> n

( n∏

j=1

x
(
hj(t)

)
) 1

n
( n∏

j=1

∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 aj1 (s1)Rk (ηj1 ) ds1 ds

) 1
n

for t ∈ [h–2
1 (w–(k+2)

n (T0)), T1]. Taking the product of both sides

n∏

j=1

x
(
hj(t)

)
> nn

( n∏

j=1

x
(
hj(t)

)
) n∏

i=1

( n∏

j=1

∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 aj1 (s1)Rk (ηj1 ) ds1 ds

) 1
n

for t ∈ [h–2
1 (w–(k+2)

n (T0)), T1]. Therefore,

n∏

i=1

( n∏

j=1

∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑n
j1=1 aj1 (s1)Rk (ηj1 ) ds1 ds

) 1
n

<
1

nn for t ∈ [
h–2

1
(
w–(k+2)

n (T0)
)
, T1

]
,

which contradicts (15). The proof is complete. �

Remark 2.1
(i) It should be noted that w–1

n (t) – t < ∞ when supt≥t1{t – gj(t)} < ∞ for j = 1, 2, . . . , n.
Therefore, all upper bounds of the distance between zeros of all solutions of Eq. (1)
obtained in this work are bounded. For example,

h–1
r

(
w–k

r
(
w–1

n (t)
))

– t ≤ w–(k+2)
n (t) – t

= w–1
n

(
w–(k+1)

n
)

– w–(k+1)
n (t) + w–(k+1)

n (t) – · · · + w–1
n (t) – t

< ∞.
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(ii) Since

Rk(d) ≥ fk(d), k = 0, 1, . . . ,

for some values of d, where

∫ t

hn(t)

n∑

j=1

aj(s) ds ≥ d for t ≥ h–1
n (t1),

and the sequence {Rk(d)}k≥1 is defined by (4), and

f0(d) = 1, f1(d) =
1

1 – d
, fk(d) =

fk–2(d)
fk–2(d) + 1 – edfk–2(d) , k = 2, 3, . . . .

Then, by using a similar argument as in the proof of Lemma 2.1, we can improve
[11, Lemma 2.4] and consequently all results that use it, as [11, Theorem 2.23].

3 Numerical examples
This section is devoted to validating the main theoretical findings through several exam-
ples. We first begin with the following example:

Example 3.1 Consider the differential equation with multiple delays

x′(t) + a1(t)x
(
g1(t)

)
+ a2(t)x

(
g2(t)

)
= 0, t ≥ 3, (18)

where a1(t) = μ, a2(t) = ρ , μ,ρ > 0,

g1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t – 2 if t ∈ [3i, 3i + 1],
1
4 (5t – 3i – 9) if t ∈ [3i + 1, 3i + 2],
1
4 (3t + 3i – 5) if t ∈ [3i + 2, 3i + 3],

i ∈N,

g2(t) = t – 1
4 . Clearly,

t – 2 ≤ g1(t) ≤ t –
7
4

.

Since h1(t) = g1(t) and h2(t) = g2(t), so w1(t) = g1(t) and w2(t) = min1≤j≤2 gj(t) = g1(t). It
follows that

max
1≤j≤2

w–i
j (t) = w–i

2 (t) ≤ t + 2i.

Let

I(t) =
2∏

i=1

( 2∏

j=1

∫ t

hi(t)
aj(s)e

∫ hj(t)
gj(s)

∑2
j1=1 Rk (ηj1 )aj1 (s1) ds1 ds

) 1
2

.



Attia and El-Matary Journal of Inequalities and Applications        (2023) 2023:103 Page 10 of 12

Then

I(t) ≥
(

μρ

∫ t

h1(t)
e(μ+ρ)(h1(t)–g1(s)) ds ×

∫ t

h1(t)
e(μ+ρ)(h2(t)–g2(s)) ds

) 1
2

×
(

μρ

∫ t

h2(t)
e(μ+ρ)(h1(t)–g1(s)) ds ×

∫ t

h2(t)
e(μ+ρ)(h2(t)–g2(s)) ds

) 1
2

.

Therefore,

I(t) ≥
(

μρ

∫ t

t– 175
100

e(μ+ρ)(t–s– 1
4 ) ds ×

∫ t

t– 175
100

e(μ+ρ)(t–s) ds
) 1

2

×
(

μρ

∫ t

t– 1
4

e(μ+ρ)(t–s– 1
4 ) ds ×

∫ t

t– 1
4

e(μ+ρ)(t–s) ds
) 1

2

=
μρe –1

4 (μ+ρ)(e 7
4 (μ+ρ) – 1)(e 1

4 (μ+ρ) – 1)
(μ + ρ)2 >

1
4

for μ ≥ 1
2

,ρ ≥ 56
115

.

Consequently, Theorem 2.2 with k = 0 implies that D3(x) ≤ supt≥3{w–4
2 (t) – t} ≤ 8 for μ ≥

1
2 , ρ ≥ 56

115 .
Observe that none of the results in [11] apply to Eq. (18) when 0 < μ+ρ ≤ 4

e . The reason
for this is that

max
1≤j≤2

gj(t) = t –
1
4

,

which leads to

∫ t

max1≤j≤2 gj(t)

(
a1(s) + a2(s)

)
ds ≤ 1

4
(μ + ρ) <

1
e

for μ + ρ <
4
e

.

Next, we move to the next example.

Example 3.2 Consider the differential equation

x′(t) +
1
2

x
(

t –
11
10

)
+

1
2

x(t – 1) + x(t – ε) = 0, t ≥ 11
10

, (19)

where 0 < ε < 1
2 . This equation is of the form (1) with a1(t) = a2(t) = 1

2 , a3(t) = 1, g1(t) =
t – 11

10 , g2(t) = t – 1, and g3(t) = t – ε. Clearly,

h2(t) = max
1≤j≤2

gj(t) = t – 1, w2(t) = min
1≤j≤2

gj(t) = t –
11
10

, w3(t) = min
1≤j≤3

gj(t) = t –
11
10

and

h–k
2 (t) = t + k, w–k

2 (t) = max
1≤j≤2

w–k
j (t) = t +

11
10

k, w–k
3 (t) = max

1≤j≤3
w–k

j (t) = t +
11
10

k.
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Since

1∑

i=1

i∏

j=2

Rk+1–j(ηr)
∫ t

h2(t)

2∑

j=1

Bi
j,2

(
s, h2(t)

)
ds =

∫ t

h2(t)

2∑

j=1

aj(s) ds = 1.

Then, according to Theorem 2.1 with k = 0, Eq. (19) is oscillatory and D 11
10

(x) ≤
supt≥ 11

10
{h–1

2 (w–1
2 (w–1

3 (t))) – t} = 16
5 .

Observe, however, that

max
1≤j≤3

gj(t) = t – ε.

It is not difficult to show that all results of [11], [3, Theorem 3] and [3, Theorem 4] fail to
apply to Eq. (19) for sufficiently small ε. Also, observe that

∫ t

gj(t)
aj(s) ds < 1 for j = 1, 2, 3.

Therefore, [3, Theorem 2] cannot give an approximation to D 11
10

(x) for sufficiently small ε

better than 16
5 .

4 Conclusion
In this paper, we studied the distribution of zeros of first-order delay differential equations.
Also, we obtained upper bounds for the zeros of a first-order differential equation with
several delays. Finally, some examples are demonstrated to prove the theoretical results.
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