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Abstract
In this paper, we transform the classical linear discriminant analysis (LDA) into a
smooth difference-of-convex optimization problem. Then, a new
difference-of-convex algorithm with extrapolation is introduced and the
convergence of the algorithm is established. Finally, for a face recognition problem,
the proposed algorithm achieves better classification performance compared with
several current algorithms in the literature.
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1 Introduction
Dimensionality reduction (DR) plays an important role in pattern recognition, and it has
been studied extensively. Several kinds of DR methods are widely studied, such as principal
component analysis (PCA) [6], linear discriminant analysis (LDA) [1], etc. Among them,
LDA is a powerful tool for feature extraction and has been extensively studied, including
multimodal DR [12], audiovisual speech recognition [8], and tensor extension on image
representation [3, 11, 13]. In LDA the dimensionality is reduced from a d-dimensional
space to an h-dimensional space (where h < d). LDA tries to find the optimal projection
direction by maximizing the between-class variance while simultaneously minimizing the
within-class variance in the projected space.

So far, there have been two major concerns for traditional LDA. First, the within-class
scatter matrix is singular and cannot be inverted. Although one can use the generalized
inverse instead, the estimate will be very unstable due to lack of observations. Second, high
dimensionality makes direct matrix operation formidable, hence hindering the applicabil-
ity of this method. To resolve the singularity problem, the authors [2] gave a regularized
linear discriminant analysis (RLDA), i.e., added a multiple of identity matrix γ I to the
within-class scatter matrix Sw.
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By introducing a slightly biased covariance estimate, not only the singularity problem,
but also the stabilization of the sample covariance estimate is solved. However, the diffi-
culties caused by high dimensional matrix direct operations have not been solved.

In this paper, motivated by [2] and [5], we transform the LDA into a smooth difference-
of-convex optimization problem, a new difference-of-convex algorithm with extrapolation
is introduced and the convergence of the algorithm is established. Furthermore, the pro-
posed new RLDA can resolve the singularity problem. More importantly, the algorithm
has great advantages in computation time and the number of iterations. Finally, we prove
the convergence of this algorithm, and the new RLDA achieves better classification per-
formance compared with some other algorithms for face recognition.

The article is organized as follows. In Sect. 2, we recall some useful notations and defi-
nitions. In Sect. 3, the new RLDA is given, and a new difference-of-convex algorithm with
extrapolation is introduced to solve the new RLDA. Then the convergence of the gener-
ated subsequence is given. Numerical results are given in Sect. 4. Finally, Sect. 5 concludes
this paper.

2 Notation and preliminaries
We now define the notation used in this paper. All vectors are column vectors. Given a
training data set T = {(x1, l1), . . . , (xm, lm)}, where xt ∈ R

n is the input and lt ∈ {1, . . . , c}
is the corresponding label, t = 1, . . . , m, we organize the m inputs by a matrix X =
(x1, . . . , xm) ∈ R

n×m. Assume that the ith class contains mi samples. Then
∑c

i=1 mi = m.
Denote xi as the mean of samples in the ith class and x as the center of the whole set of
samples, that is, xi = (1/mi)

∑mi
j=1 xij and x = (1/m)

∑m
l=1 xl , where xij is the jth element in

the ith class. Based on this, the following matrices are useful in the following analysis:

Sb =
1
m

c∑

i=1

mi(xi – x)(xi – x)�, (1)

Sw =
1
m

c∑

i=1

mi∑

j=1

(xij – xi)(xij – xi)�. (2)

For w ∈ R
n and a sample x ∈ R

n, w�x maps x into a 1-D vector. Generally, if W =
(w1, . . . , wd) ∈R

n×d with d ≤ n, then W�x maps each x ∈R
n into a d-dimensional space.

As a supervised dimensionality reduction method, LDA aims at finding the optimal
transformation vector w1, . . . , wd , d ≤ c – 1 that maximizes the Rayleigh coefficient

JLDA(wh) =
wT

h Sbwh

wT
h Swwh

(3)

such that wT
h Swwl = 0, 1 ≤ l < h ≤ d. It is proved that (3) can be reduced to the following

eigenvalue decomposition problem:

Sbwh = λSwwh, (4)

where Sw is nonsingular, and λ �= 0. Since the rank of Sb is at most c – 1, the number of
extracted features is less than or equal to c – 1.
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3 New DC algorithm for the new form of RLDA
As mentioned before, the classical LDA requires that Sw is nonsingular. In addition, high
dimensionality makes direct matrix operation formidable, hence hindering the applicabil-
ity of the method proposed in [2].

To solve such a problem, RLDA adds a multiple of identity matrix γ I to the within-class
scatter matrix Sw. It is noted that the regularization parameter γ is larger than zero. The
corresponding objective function and eigenvalue decomposition problem become

JRLDA(wh) =
wT

h Sbwh

wT
h (Sw + γ I)wh

(5)

and

(Sw + γ I)–1Sbwh = λwh. (6)

For (5), we transform a fraction problem into a difference-of-convex problem, and a new
difference-of-convex algorithm with extrapolation is proposed to solve the problem effi-
ciently. We construct a new form of RLDA with a minus operator as follows. In this paper,
we only consider the binary classification case, i.e., d = 1. The formulation is given as fol-
lows:

w∗ = arg min
w

f (w) = –w�Sbw + λw�Sww + γ w�w, (7)

where λ is a positive tuning parameter and γ is a positive regularization parameter.
The geometric interpretation of problem (7) is clear. Optimizing the first term of (7)

means maximizing the scatter between class scatter, which forces the data points from
different classes to be as far as possible; whereas minimizing the second term of (7) makes
the within-class scatter as small as possible. The third term is the regularization item and
it can be avoided if Sw is nonsingular.

It is obvious that (7) is a smooth difference-of-convex optimization problem. For this
problem, we proposed a new DC algorithm with extrapolation.

To move on, let

g(w) = λw�Sww + γ w�w, h(w) = w�Sbw.

Then f (w) = g(w) – h(w).
Obviously, g(w) and h(w) are smooth convex functions. Motivated by [4, 7], we introduce

a new DC algorithm with extrapolation to find stationary points of the smooth problem
f (w).

We note from

wt+1 = arg min
w

{

λw�Sww + γ w�w –
〈
2Sbwt , w

〉
+

L
2
∥
∥w – wt∥∥2

}

(8)

that wt+1 is the global minimizer of a strongly convex function.
In this algorithm, motivated by [7], we set

βt =
θt–1 – 1

2θt
with θt+1 =

1 +
√

1 + 4θ2
t

2
, θ–1 = θ0 = 1.
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Algorithm 1 A new DC algorithm with extrapolation (DCe) for (7)

Input: w0 ∈ dom P1, {βt} ⊆ [0, 1
2 ) with supβt < 1

2 . Set w–1 = w0

Process:
for t = 0, 1, 2, . . .

Set
wt = wt + βt(wt – wt–1),
wt+1 = arg min

w
g(w) – 〈∇h(wt), w〉 + L

2 ‖w – wt‖2

= arg min
w

{λw�Sww + γ w�w – 〈2Sbwt , w〉 + L
2 ‖w – wt‖2}.

end for

In what follows, we prove a global subsequential convergence result of Algorithm 1,
which is applied to solving (7).

Theorem 1 (Global subsequential convergence) Let {wt} be a sequence generated by the
DC algorithm with extrapolation for solving (7). Then the following statements hold.

(i) The sequence {wt} is bounded.
(ii) limt→∞ ||wt+1 – wt|| = 0.
(iii) The accumulation point of {wt} is a stationary point of (7).

Proof First we prove (i). We note from (8) that wt+1 is the global minimizer of a strongly
convex function. Using this and comparing the objective values of this strongly convex
function at wt+1 and wt , we see immediately that

g
(
wt+1) –

〈∇h
(
wt), wt+1〉 +

L
2
∥
∥wt+1 – wt∥∥2

≤ g
(
wt) –

〈∇h
(
wt), wt〉 +

L
2
∥
∥wt – wt∥∥2 –

L
2
∥
∥wt+1 – wt∥∥2.

(9)

Then we have

f
(
wt+1)

≤ g
(
wt+1) – h

(
wt) –

〈∇h
(
wt), wt+1 – wt〉

≤ g
(
wt) – h

(
wt) –

〈∇h
(
wt), wt – wt〉 +

L
2
∥
∥wt – wt∥∥2 –

L
2
∥
∥wt+1 – wt∥∥2 (10)

≤ g
(
wt) – h

(
wt) + L

∥
∥wt – wt∥∥2 –

L
2
∥
∥wt+1 – wt∥∥2

≤ f
(
wt) + L

∥
∥wt – wt∥∥2 –

L
2
∥
∥wt+1 – wt∥∥2,

where the first inequality follows from the convexity of h(w), the second inequality follows
from (9), the third inequality follows from the fact that ∇h is Lipschitz continuous with a
modulus of L > 0. Now, invoking the definition of w, we obtain further from (10) that

f
(
wt+1) ≤ f

(
wt) + Lβ2

t
∥
∥wt – wt–1∥∥2 –

L
2
∥
∥wt+1 – wt∥∥2. (11)
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Consequently, we have upon rearranging terms that

L
(

1
2

– β2
t

)
∥
∥wt – wt–1∥∥2 ≤

[

f
(
wt) +

L
2
∥
∥wt – wt–1∥∥2

]

–
[

f
(
wt+1) +

L
2
∥
∥wt+1 – wt∥∥2

]

.
(12)

Since {βt} ⊂ [0, 1
2 ), we deduce from (12) that the sequence

{

f
(
wt) +

L
2
∥
∥wt – wt–1∥∥2

}

is nonincreasing. This together with the fact that w0 = w–1 gives

f
(
wt) ≤ f

(
wt) +

L
2
∥
∥wt – wt–1∥∥2 ≤ f

(
w0)

for all t ≥ 0, which shows that {wt} is bounded. This proves (i).
Next we prove (ii). Summing both sides of (12) from t = 0 to ∞, we obtain that

L
∞∑

t=0

(
1
2

– β2
t

)
∥
∥wt – wt–1∥∥2

≤ f
(
w0) – lim inf

t→∞

[

f
(
wt+1) +

L
2
∥
∥wt+1 – wt∥∥2

]

≤ f
(
w0) – v < ∞.

Since supβt < 1
2 , we deduce immediately from the above relation that

lim
t→∞

∥
∥wt+1 – wt∥∥ = 0.

This proves (ii).
Finally, let w∗ be an accumulation point of {wt} and let {wti} be a subsequence such that

limi→∞ wti = w∗. Then, from the first-order optimality condition of subproblem (8), we
have

–L
(
wti+1 – wti

)
= ∇g

(
wti+1) – ∇h

(
wti

)
.

Using this together with the fact that wti = wti + βti (wti – wti–1), we obtain further that

–L
[(

wti+1 – wti
)

– βti

(
wti – wti–1)] = ∇g

(
wti+1) – ∇h

(
wti

)
. (13)

In addition, ‖wti+1 – wti‖ → 0 from (ii) together with the continuity of ∇g and of ∇h, we
have upon passing to the limit in (13) that

0 = ∇g
(
w∗) – ∇h

(
w∗).

This completes the proof. �
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4 Numerical examples
In this section, experimental results are given to evaluate the performance of the pro-
posed method. Several related DR methods, including RLDA, RSLDA [5], and PDCA
[7], are recalled for comparison. For RLDA and RSLDA [5], parameters ρ and λ are se-
lected from {0.1, 0.5, 1, 5, 10} and {0.1, 0.5, 1, 5, 10}, respectively. We choose δ for RSLDA
from {0.01, 0.05, 0.1, 0.5, 1, 5}. For our method, parameters λ and γ are selected from
{0.1, 0.5, 1, 5, 10, 50, 100} and {0.01, 0.05, 0.1, 0.5, 0.6, 0.7, 0.8, 0.9}, respectively. Note that
the parameters for all the methods are optimally selected from their own sets. Numerical
experiments are done in Matlab R2018b on a laptop computer with Intel(R), Core(TM),
CPU i7-8550U @ 1.80GHz, and 16 GB memory running Microsoft Windows 10.

To show the effectiveness of the proposed method, we focus on testing the proposed
algorithm based on human face datasets that are included in FERET and ORL. The FERET
dataset includes 200 persons’ images, and each one has 7 different images. Each image is
80 × 80 with 256 grayscale levels per pixel. The ORL dataset includes 40 individuals’ face
images, and each face has 10 different images. Each image is 112 × 92 with 256 grayscale
levels per pixel. Figure 1 and Fig. 2 show partial sample faces of FERET and ORL databases.
A random subset with p(2, 3, . . . , 10) images per subject is taken to form the training set,
while the rest of the data comprise the test set. For each given p, the average result over

Figure 1 FERET

Figure 2 ORL
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ten random splits is considered. Figure 1 and Fig. 2 show partial sample faces from FERET
and ORL databases as follows.

The classification accuracy is used as an indicator to test the performance of the meth-
ods. The corresponding numerical results of the algorithms are listed in Tables 1 and 2
respectively. Here, “iter” denotes the number of iterations, time is measured in seconds,
and “tnr” denotes the classification accuracy.

It can be easily seen from Table 1 and Table 2 that the proposed Algorithm 1 requires
fewer iterations and less computing time to achieve higher accuracy than both RSLDA
and RLDA. Furthermore, we show the relationship between reduced dimension and clas-
sification accuracies in Fig. 3. From the figure, we can see that for all of the methods, the
accuracies all have ascending trends in terms of the increase of reduced dimensions in
general. Algorithm 1 is more superior.

Table 1 Numerical results for the data of FERET

RLDA RSLDA PDCA DCe

p iter/time/tnr iter/time/tnr iter/time/tnr iter/time/tnr

2 12/0.1874/70.74 13/0.1631/64.71 2/0.0123/72.73 2/0.0024/76.67
3 10/0.2114/76.08 10/0.1812/70.59 2/0.0138/76.92 2/0.0062/80.59
4 9/0.2329/77.70 9/0.1912/72.22 2/0.0146/78.47 4/0.0105/85.00
5 11/0.2532/83.34 9/0.1948/83.23 4/0.0171/84.62 4/0.0113/86.92
6 10/0.2793/86.3 9/0.2450/85.75 4/0.030/87.14 4/0.0226/87.25
7 9/0.3258/93.91 9/0.2858/93.33 4/0.0388/94.86 5/0.0394/95.31

Table 2 Numerical results for the data of ORL

RLDA RSLDA PDCA DCe

p iter/time/tnr iter/time/tnr iter/time/tnr iter/time/tnr

2 12/0.1341/54.21 11/0.1166/52.94 2/0.0129/58.33 2/0.0033/66.67
3 9/0.1774/63.84 14/0.1524/66.67 3/0.0158/69.23 3/0.0081/70.59
4 11/0.2142/78.87 12/0.1849/76.47 3/0.0146/80.00 3/0.0142/80.47
5 12/0.2509/79.66 13/0.2229/80.65 4/0.0230/81.25 4/0.0233/83.33
6 8/0.3047/84.04 8/0.2850/82.35 4/0.0379/83.33 4/0.0406/85.00
7 8/0.3563/85.49 8/0.3270/85.29 5/0.0882/87.50 4/0.0610/87.89
8 10/0.4387/87.00 9/0.3995/86.24 6/0.1007/86.67 4/0.1449/88.24
9 11/0.4849/90.91 10/0.4581/90.18 7/0.1710/92.12 4/0.1788/90.91
10 9/0.6017/92.95 9/0.5774/92.12 9/0.2906/93.75 5/0.2864/95.95

Figure 3 The trajectories of tnr of the database with respect to different reduced dimensions



Wang et al. Journal of Inequalities and Applications         (2023) 2023:90 Page 8 of 8

5 Conclusions
In this paper, a new RLDA is proposed. A new DC algorithm with extrapolation is intro-
duced for a smooth DC problem, and the convergence of this algorithm is given. Numer-
ical results show that the proposed algorithm achieves better classification performance
compared with current algorithms for face recognition. In the future, we may consider
several more practical applications of RLDA in optimal control and so on [9, 10].
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