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Abstract
Real foams can be viewed as geometrically well-organized dispersions of more or less
spherical bubbles in a liquid. When the foam is so drained that the liquid content
significantly decreases, the bubbles become polyhedral-like and the foam can be
viewed now as a network of thin liquid films intersecting each other at the Plateau
borders according to the celebrated Plateau’s laws.
In this paper we estimate from below the surface area of a spherically bounded

piece of a foam. Our main tool is a new version of the divergence theorem which is
adapted to the specific geometry of a foam with special attention to its classical
Plateau singularities.
As a benchmark application of our results, we obtain lower bounds for the

fundamental cell of a Kelvin foam, lower bounds for the so-called cost function, and
for the difference of the pressures appearing in minimal periodic foams. Moreover, we
provide an algorithm whose input is a set of isolated points in space and whose
output is the best lower bound estimate for the area of a foam that contains the given
set as its vertex set.
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1 Introduction
A foam is a cell decomposition of the Euclidean 3-space R3 into a finite or infinite number
of properly embedded, connected 3D chambers. Here, the chambers are not assumed to
be either compact or homeomorphic to a ball in R

3, but to qualify as a foam we will assume
that they comply with the famous Plateau rules.

The Plateau rules are the following: Firstly, the interfaces between neighboring chambers
all have constant mean curvature; secondly, the interfaces meet in threes (at equal 2π/3
angles) along smooth edges; and thirdly, the edges always meet four at a time in isolated
points, where the angle between any pair of edges is precisely arccos(–1/3).

A foam is clearly represented by its 0-, 1-, and 2-skeleton, i.e., the union of its faces,
edges, and vertices. We will typically denote this union by F . The constant mean curvature
of the surface of each face in a foam is proportional to the pressure difference between the
two cells meeting along the face. Every foam is organized around two angles: Every vertex
treats the foam like the center vertex that locates the 6 inner wings in a regular tetrahedron,
and every edge organizes three of these wings to have equal angles 2π/3 between them,
see Fig. 1.
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Figure 1 Cutting off spherical scoops—extrinsic foam discs—from affine foams around an edge point (top
row) and a vertex point (bottom row), respectively

Plateau found these rules in the nineteenth century when he was studying the geometry
of assembled bubbles in equilibrium. From then on, foams have been largely studied be-
cause of their amazing physical and mathematical properties related, e.g., to packings and
isoperimetric problems, see [7, 15, 19].

The goal of this paper is to obtain lower bounds for the area of ’spherical scoops’ of
a foam. Locally the area of the tetrahedral linear foam (totally geodesic) inside a suffi-
ciently small ball of radius R centered at a foam vertex is similar to πθvR2, where θv =
3
π

arccos(–1/3) is the density of the tetrahedral 6-wing construction at the vertex, see Fig. 1.
This is the estimated area that we will apply for comparison at every vertex of the given
foam in order to achieve an effective lower bound for the total area of a foam.

We will assume throughout that the length of the mean curvature vector of the faces of
the foam F is bounded by a constant h as follows:

∣
∣H(x)

∣
∣ ≤ h for all x ∈ F . (1)

Our main objective is to determine a lower bound for the area of an extrinsic disc
(a ‘spherical scoop’) of a foam centered at a given vertex point. An extrinsic disc of ra-
dius R centered at a vertex point is the intersection of a ball of the Euclidean 3-space of
radius R centered at the vertex point of the foam. In Fig. 2 we show a numerical simulation
of an extrinsic disc of the Kelvin foam obtained by using the Surface Evolver program. In
general, an extrinsic disc does not have to be centered at a vertex point. Indeed, in this
paper we define it as follows.

Definition 1.1 (Extrinsic disc) Let F ⊂ R
3 be a foam. An extrinsic disc DR(o) of radius R

centered at o is the intersection F ∩BR(o), where BR(o) denotes the open Euclidean distance
ball with radius R and center o in R

3.

1.1 Main result. Area comparison
Let F be a foam satisfying the mean curvature bound (1). The main result of this paper
states that, for any point o (which is not necessarily a vertex point) in F and for every
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Figure 2 Piece of the Kelvin foam and an (enlarged) extrinsic disc of the Kelvin foam centered at a vertex
point

spherical scoop extrinsic foam disc DR(o) of radius R centered at o, a sharp lower bound
for the area of the extrinsic disc can be obtained in terms of the radius, the upper bound
for the norm of the mean curvature vector field, and the type of the point o.

More precisely, we can state the following main theorem.

Main Theorem Let F be a foam properly immersed satisfying the mean curvature bound
(1). Then the area of the extrinsic foam disc DR(o) of radius R centered at o is bounded from
below by

A
(

DR(o)
) ≥ θ (o) · e–2hR · πR2, (2)

where

θ (o) =

⎧

⎪⎨

⎪⎩

θv = 3
π

arccos(–1/3) if o is a vertex of F ,
θe = 3

2 if o lies in an edge of F ,
θf = 1 if o lies in a face of F .

(3)

Furthermore, equality in inequality (2) is attained if and only if every face element of the
extrinsic foam disc DR(o) is a piece of an affine plane containing o.

Remark 1.1 This main theorem can be viewed as a concrete explication of a general result
of [1] with special focus on the particular structural data that appear for Plateau foam
varifolds in R

3. In this paper we provide a proof using an adapted version of the divergence
theorem for foams. Moreover, in Theorem 5.2 we extend the main theorem and obtain an
even sharper global lower area bound for foams using a specific optimal measure on the
vertex set of the respective foams, see Definition 5.1.

Simplest examples 1.1 The simplest non-planar example of a foam consists of just one
spherical bubble F with 1 face (of radius ρ), no edges and no vertices. See Fig. 3. In this
case, Theorem 1.1 says that, for any point o on the sphere, the area of the extrinsic R-disc
centered at o is

A
(

F ∩ BR(o)
) ≥ πR2 · e–2R/ρ , (4)
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Figure 3 From left to right: cutting off extrinsic foam discs from a catenoid, a cylinder, and a sphere

where we have used the optimal mean curvature bound h = 1/ρ for F . Inequality (4) is
easily seen to be true for all R independent of the given ρ , since in this case we have

A
(

F ∩ BR(o)
)

=

{

πR2 for R ≤ 2ρ;
4πρ2 for R ≥ 2ρ.

(5)

Another simple example F with 1 face, no edges, and no vertices is the cylinder with
radius ρ , which is also on display in Fig. 3. The estimate of Theorem 1.1 is the same as
before:

A
(

F ∩ BR(o)
) ≥ πR2 · e–2R/ρ . (6)

Again this is easily verified; in particular, for very large R � ρ , the area is approximately
given by

A
(

F ∩ BR(o)
) ≈ 2πR · ρ � πR2e–2R/ρ . (7)

More precisely, for any finite value of R, the extrinsic R-disk contains the intrinsic flat R-
disk in the cylinder (with the overlapping segments of the flat intrinsic disk removed in
case R > πρ), so that the following estimate holds for all R and ρ :

A
(

F ∩ BR(o)
)

>

⎧

⎨

⎩

πR2 for R ≤ πρ,

πR2 – 2(R2 arccos( πρ

R ) – πρ
√

R2 – (πρ)2) for R ≥ πρ.

It follows directly that A(F ∩ BR(o)) ≥ πR2e–2R/ρ for all R and ρ as claimed.
Finally, we should mention also the example supplied by the catenoid F . This is a minimal

surface, so h = 0, and for any given point o ∈ F and very large R the intersection F ∩ BR(o)
is essentially two large discs of radius R as indicated on the left in Fig. 3. In consequence,
the area estimate is thus

A
(

F ∩ BR(o)
) ≈ 2πR2 > πR2, (8)

which again gives a rough verification of the theorem. We also mention here that the com-
parison A(F ∩ BR(o)) ≥ πR2 has in fact previously been proved for all values of R (and for
general minimal submanifolds in bounded ambient curvatures) via heat kernel compari-
son methods (see, e.g., [3, 13], and [14]).

As already alluded to, the main tool of the present paper is the statement and proof of
an adapted version of the divergence theorem for foams, Theorem 3.1.
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2 Outline of the paper
In Sect. 3 we introduce all required propositions and preliminaries, including the adapted
version of the divergence theorem, needed to prove the main theorem of the paper in
Sect. 4. The last part of the paper, Sect. 5, is devoted to showing some applications of the
main theorem. These applications are as follows:

1 A lower bound for the area of a compact foam, Sect. 5.1.
2 A recipe on how to use the main theorem to obtain a lower bound for the contribution

of the area of a cell to the total area of a foam. Actually, in Sect. 5.2, we show how to
obtain, via the main theorem, a lower bound for the area of a cell in the Kelvin foam.

3 A lower bound for the cost function in Sect. 5.3 and a lower bound for the pressure in
minimal foams in Sect. 5.4.

4 Finally, in Sect. 5.5, we provide an algorithm to compute a lower bound for the area of
a foam using only the positions of the vertices of the foam.

3 Preliminaries
By using an appropriate version of the divergence theorem on extrinsic discs of foams
and the general co-area formula given by geometric measure theory, we state the main
comparison theorem for the area of extrinsic foam discs.

In a foam F ⊂ R
3 there are three different kinds of points: the points on the interior of

the faces, the points on the interior of the edges, and the points on the vertices. Each face
in a foam is a smooth CMC surface (i.e., with constant norm of the mean curvature vector
field). They are orientable and support individually a well-defined normal vector field. We
can consider that each face of the foam is embedded in R

3.

3.1 Intrinsic and extrinsic distance function on a foam
Given the inclusion map i : F → R

3 for the foam to the Euclidean space R
3, we will say

that a map γ : I → F from the interval I ⊂ R is a piecewise smooth curve segment of F if
the composed map with the inclusion γ̃ : I → R

3, γ̃ = i ◦ γ is a piecewise smooth curve
segment of R3. Every piecewise smooth curve segment γ has length LF (γ ) given by the
length of the associated piecewise smooth curve segment γ̃ in R

3, i.e., LF (γ ) = L(γ̃ ).
Given two points, p, q ∈ F we can now define the intrinsic distance from p to q, denoted

by distF (p, q), to be the infimum of L(γ ) over all piecewise smooth curve segments γ from
p to q. With this definition, (F , distF ) becomes a metric space.

If we choose a point o ∈R
3, we can define the extrinsic distance function ro : F →R by

ro(x) = distR3 (o, x).

Hence, for any two points p, q ∈ F ,

∣
∣ro(p) – ro(q)

∣
∣ ≤ distR3 (p, q) ≤ distF (p, q).

That means that the extrinsic distance function is a 1-Lipschitz function on the metric
space (F , distF ). Observe that, since each face {Fi} of F is a smooth surface of R3, then the
extrinsic distance function is a C∞ function on Fi \ {o}. Moreover, for any vi ∈ TpFi,

dro(vi) =
〈∇F ro, vi

〉

=
〈∇R

3
ro, vi

〉 ≤ ‖vi‖, (9)
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which implies

∥
∥∇Fi ro

∥
∥ ≤ 1. (10)

By using Sard’s theorem, the set of critical values of ro : Fi \ {o} →R+ has zero Lebesgue
measure in R

+. The set of sublevel sets of the extrinsic distance is precisely the extrinsic
disc, namely

DR(o) =
{

x ∈ F : ro(x) < R
}

= F ∩ BR(o). (11)

The boundary of the extrinsic disc DR will be denoted by ∂DR, i.e.,

∂DR(o) =
{

x ∈ F : ro(x) = R
}

= F ∩ SR(o). (12)

Similarly, for ρ < R, the extrinsic annulus is

Aρ,R(o) :=
{

x ∈ F : ρ ≤ ro(x) ≤ R
}

. (13)

Hence, by using the co-area formula (see [18] for instance), we can state the following.

Proposition 3.1 Let DR(o) be an extrinsic disc of a foam F . Suppose that R is a regular
value of ro : Fi \ {o} → R for every face Fi of F , and suppose, moreover, that ∂DR meets
transversally every edge of F . Then

d
dt

A
(

Dt(o)
)
∣
∣
∣
∣
t=R

=
∑

i

∫

Fi∩∂DR

dLi

‖∇Fi ro‖ . (14)

3.2 Divergence theorem on foams
Let us now, without loss of generality, center a point o ∈ F of the foam F in the origin of R3

and consider the extrinsic disc DR(0) = F ∩BR(0) of radius R and center 0 ∈R
3. We impose,

moreover, that R is such that every edge meets ∂DR transversally. Such an extrinsic disc
DR(0) centered at 0 ∈ R

3 is not a smooth surface but is composed of a finite number fR

of faces (which are in fact individually smooth surfaces), a finite number of edges eR, and
a finite number of vertices vR. The faces, edges, and vertices of DR(0) are intersections of
faces, edges, and vertices of F with the ball BR(0). Hence,

DR(0) = {Fi}fR
i=1 ∪ {Ei}eR

i=1 ∪ {Vi}vR
i=1, (15)

where {Fi}fR
i=1, {Ei}eR

i=1, {Vi}vR
i=1 are the sets of faces, edges, and vertices respectively. Let us

denote

FR := {Fi}fR
i=1,

ER := {Ei}eR
i=1,

VR := {Vi}vR
i=1.

(16)
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Let us denote by ni a unit normal vector field to the face Fi. Hence, given a smooth vector
field X : BR(0) → TR

3 in BR(0) ⊂R
3, we can obtain a vector field XFi tangent and smooth

on each face Fi by using the normal vector field ni in such a way that

XFi := X – 〈X, ni〉ni. (17)

Denote by XF the application XF : F \ ER → TR
3 given by

XF (x) = XFi (x). (18)

On every face Fi of F , if R is a regular value of ro, the vector field ∇Fi ro = ∇R
3 ro –

〈∇R
3 ro, ni〉ni never vanishes on Fi ∩ ∂BR(0), in fact,

νR
i =

∇Fi ro

‖∇Fi ro‖ =
∇R

3 ro – 〈∇R
3 ro, ni〉ni

‖∇R3 ro – 〈∇R3 ro, ni〉ni‖

is the outward unit normal vector field to ∂DR on Fi ∩ ∂BR(0).
With these definitions we can state the following divergence theorem on foams.

Theorem 3.1 (Divergence theorem on foams) Let F ⊂ R
3 be a foam in R

3. Let DR(0) be
the extrinsic disc given by DR(0) = F ∩ BR(0), then for any vector field X : BR → TR

3

∫

DR(0)
div XF dA =

∫

∂DR(0)
〈X,νF〉dL, (19)

where

∫

∂DR(0)
〈X,νF〉dL :=

fR∑

i=1

∫

Fi∩∂BR(0)

〈

X,νR
i
〉

dLi. (20)

Proof We can directly relate the integral of the divergence of the tangential component
XF of vector field X ∈X(R3) to the sum of the divergence in each face. Namely,

∫

DR(0)
div XF dA :=

fR∑

i=1

∫

Fi

div XFi dAi. (21)

Observe that on each face Fi we can have two kinds of boundary components of ∂Fi:

∂Fi =
(

Fi ∩ ∂BR(0)
) ∪ (Fi ∩ ER). (22)

Accordingly, let us denote by νR
i the outward unit normal vector field on Fi ∩ ∂BR(0) with

νR
i = 0 if Fi ∩ ∂BR(0) = ∅ and by νi,j the outward unit normal vector field on Fi ∩ ej with

νi,j = 0 if Fi ∩ ej = ∅. Observe that by the structure of the foam and the three-faces-one-
edge with equal angles we have

fR∑

i=1

νi,j = 0 (23)
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for any j ∈ {1, . . . , eR}. Hence, by using the divergence theorem on each face (see Theo-
rem 14.34 of [12] for instance), we get

∫

DR(0)
div XF dA =

fR∑

i=1

∫

Fi

div XFi dAi

=
fR∑

i=1

(
∫

Fi∩∂BR(0)

〈

XFi ,ν
R
i
〉

dLi +
eR∑

j=1

∫

Fi∩ej

〈XFi ,νi,j〉dLi,j

)

=
fR∑

i=1

(
∫

Fi∩∂BR(0)

〈

X,νR
i
〉

dLi +
eR∑

j=1

∫

ej

〈X,νi,j〉dLj

)

=
fR∑

i=1

∫

Fi∩∂BR(0)

〈

X,νR
i
〉

dLi +
eR∑

j=1

∫

ej

〈

X,
fR∑

i=1

νi,j

〉

dLj

=
fR∑

i=1

∫

Fi∩∂BR(0)

〈

X,νR
i
〉

dLi. (24)

�

3.3 Laplacian of the coordinate functions of R3 on a CMC surface
Recall that given a smooth surface S ⊂R

3 in the Euclidean space R3, the covariant deriva-
tives on S and R

3 are related by the Gauss formula by

∇R
3

X Y = ∇S
XY + α(X, Y ) (25)

for any two vector fields X, Y ∈ X(S) and any two extensions X, Y ∈ X(R3). The term α is
the second fundamental form of S. Similarly, the Hessian operators HessS and HessR

3 are
related by the following.

Proposition 3.2 Let f : R3 →R be a smooth function, and let us denote also by f : S →R

the restriction of the function to the smooth surface S ⊂R
3, then

HessS f (X, Y ) = HessR
3

f (X, Y ) +
〈

α(X, Y ),∇R
3
f
〉

(26)

for any two vector fields X, Y ∈X(S) and any two extensions X, Y ∈X(R3).

Proof

HessS f (X, Y ) =
〈∇S

X∇Sf , Y
〉

= X
(〈∇Sf , Y

〉)

–
〈∇Sf ,∇S

XY
〉

= X
(〈∇R

3
f , Y

〉)

–
〈∇R

3
f ,∇S

XY
〉

= X
(〈∇R

3
f , Y

〉)

–
〈∇R

3
f ,∇R

3
X Y

〉

+
〈∇R

3
f ,α(X, Y )

〉

= HessR
3

f (X, Y ) +
〈

α(X, Y ),∇R
3
f
〉

. (27)
�

The above proposition leads us to the following one.
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Proposition 3.3 Let ϕ : S →R
3 be an immersed surface in R

3. Let us denote by {x, y, z} the
coordinate functions in R

3 and their restrictions to S. Let

H =
1
2

traceg(α) = (H1, H2, H3) (28)

be the mean curvature vector field of S. Then

�Sx = 2H1,

�Sy = 2H2,

�Sz = 2H3.

(29)

Proof Let us consider the following vector a = (a1, a2, a3) and the following function:

fa : R3 →R, (x, y, z) → fa(x, y, z) = a1x + a2y + a3z. (30)

One can easily check that

∇R
3
fa = a, (31)

and hence

HessR
3

fa(X, Y ) = 0, ∀X, Y ∈ X
(

R
3). (32)

Using therefore Proposition 3.2,

HessS fa(X, Y ) =
〈∇R

3
fa,α(X, Y )

〉

=
〈

a,α(X, Y )
〉

, (33)

thus, for any orthonormal basis {e1, e2} of TpS at p ∈ S,

�Sfa =
2

∑

i=1

HessS fa(ei, ei) =
2

∑

i=1

〈

a,α(ei, ei)
〉

=

〈

a,
2

∑

i=1

α(ei, ei)

〉

= 2〈a, H〉. (34)

Finally, the proposition follows for the particular cases a = (1, 0, 0) or a = (0, 1, 0) or a =
(0, 0, 1). �

3.4 Density of a foam
We denote by θ (o) the density of the point o, i.e., (see also Definition 2.5 of [15]),

θ (o) = lim
s→0+

A(Ds(o))
πs2 .

Since we are assuming that the foam is embedded, the density of a point in a face is just 1
because the area of the extrinsic disk Ds(o) of the face is equal to the area of the extrinsic
disk of the corresponding flat tangent plane ToF up to and including Taylor order 2 in s
around s = 0+ (see, e.g., [8] for further elaborations in this vein). The extrinsic disk of radius
s centered at an edge point, or at a vertex point, consists of 3, respectively 6, identical
sectors (wedge areas) of a full disk with wedge angles π and arccos(–1/3), respectively.
Since a sector of angle φ has area s2φ/2 (up to Taylor order 2 in s), we then get the following.
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Proposition 3.4 Let F ⊂R
3 be a foam. Then, for any o ∈ F ,

θ (o) =

⎧

⎪⎨

⎪⎩

3
π

arccos(–1/3) if o is a vertex of F ,
3
2 if o lies in the interior of an edge of F ,
1 if o lies in the interior of a face of F .

(35)

4 Proof of the main theorem
In Proposition 4.2 we will be able to obtain a lower bound for the area of an extrinsic disc
of foam. First we need the following.

Proposition 4.1 Let DR(o) be an extrinsic disc of a foam F . Suppose that R is a regular
value of ro : Fi \ {o} → R for every face Fi of F , and suppose, moreover, that ∂DR meets
transversally every edge of F . Then

A(DR)(1 – hR) ≤ R
2

fR∑

i=1

∫

Fi∩∂DR

∣
∣∇Fi ro

∣
∣dLi. (36)

Proof Without loss of generality suppose that o = 0 ∈ R
3. We are using the divergence

theorem on foams (Theorem 3.1) with the vector field in BR(o) given by

X = ∇R
3
φ, (37)

where ∇R
3 is the gradient of R3 and

φ =
1
4
(

x2 + y2 + z2). (38)

x, y, z being the coordinate functions in R
3. Hence, on every face Fi ⊂ F

XFi = ∇R
3
φ –

〈∇R
3
φ, ni

〉

ni = ∇Fiφ|Fi

=
1
2
(

x∇Fi x + y∇Fi y + z∇Fi z
)

.
(39)

Thus,

div XFi =
1
2
(〈∇Fi x,∇Fi x

〉

+
〈∇Fi y,∇Fi y

〉

+
〈∇Fi z,∇Fi z

〉)

+
1
2
(

x�Fi x + y�Fi y + z�Fi z
)

.
(40)

Denoting by H the mean curvature of the face Fi and applying Proposition 3.3, we have

div XFi =
1
2
(∣
∣∇Fi x

∣
∣
2 +

∣
∣∇Fi y

∣
∣
2 +

∣
∣∇Fi z

∣
∣
2) + 〈�r, H〉

=
1
2
(∣
∣∇R

3
x
∣
∣
2 –

〈∇R
3
x, n

〉2 +
∣
∣∇R

3
y
∣
∣
2

–
〈∇R

3
y, n

〉2 +
∣
∣∇R

3
z
∣
∣
2 –

〈∇R
3
z, n

〉2) + 〈�r, H〉

=
1
2
(

3 – |n|2) + 〈�r, H〉 = 1 + 〈�r, H〉. (41)
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Here, �r = (x, y, z). Then

div XFi ≥ 1 – |H|R ≥ 1 – hR. (42)

Using Theorem 3.1 and denoting ∂Di
R = Fi ∩ ∂DR, we obtain

A
(

DR(o)
)

(1 – hR) ≤
fR∑

i=1

∫

Fi

div XFi dAi =
fR∑

i=1

∫

∂Di
R

〈

X,νR
i
〉

dLi

=
fR∑

i=1

∫

∂Di
R

〈∇R
3
φ,νR

i
〉

dLi =
fR∑

i=1

∫

∂Di
R

ro

2
∥
∥∇Fi ro

∥
∥dLi. �

Proposition 4.2 Let F be a foam. For any R > 0, denote by h the maximum of the norm of
the mean curvature vector field in the faces of DR, i.e.,

h = max
x∈DR

∥
∥ �H(x)

∥
∥.

Then, for any ρ > 0 such that ρ < R,

A(DR)
R2 e2hR ≥ (

e
1

A(DR)
∫

Aρ,R∩R
(1–‖∇ro‖2) dV

)A(Dρ)
ρ2 e2hρ , (43)

where ∇ is the intrinsic gradient.

Proof Let us denote

R :=

⎧

⎨

⎩

x ∈ F | ro(x) is a regular value and

∂Dr0(x) meets the edges of F transversally

⎫

⎬

⎭

By using co-area formula, Proposition 3.1, and Proposition 4.1, we get

1
A(DR)

∫

Aρ,R∩R

(

1 – ‖∇ro‖2)dV =
1

A(DR)

∫ R

ρ

(∫

∂Dt

1 – ‖∇ro‖2

‖∇ro‖ dAt

)

dt

≤
∫ R

ρ

1
A(Dt)

(∫

∂Dt

(
1

‖∇ro‖ – ‖∇ro‖
)

dAt

)

dt

≤
∫ R

ρ

1
A(Dt)

(
d
dt

A(Dt) –
2
t

A(Dt)(1 – ht)
)

dt

=
∫ R

ρ

(
d
dt

log
(

A(Dt)
)

–
d
dt

(

log
(

t2) – 2ht
)
)

dt. (44)

Taking into account that the function t → A(Dt) is C∞ almost everywhere in [ρ, R] and
nondecreasing, then

log

( A(DR)
R2 e2hR

A(Dρ )
ρ2 e2hρ

)

≥ 1
A(DR)

∫

Aρ,R∩R

(

1 – ‖∇ro‖2)dV ≥ 0. (45)

Hence the proposition follows. �
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By using the above proposition,

A(DR) ≥ (

e
1

A(DR)
∫

Aρ,R∩R
(1–‖∇ro‖2) dV

)A(Dρ)
πρ2 e2hρ · e–2hRπR2.

Thence, letting ρ tend to 0 and using Proposition 3.4, we obtain

A(DR) ≥ (

e
1

A(DR)
∫

DR(o)∩R
(1–‖∇ro‖2) dV

)

θ (o) · e–2hRπR2. (46)

This inequality leads us to the statement and proof of the main theorem.

Main Theorem Let F be a foam properly immersed satisfying the mean curvature bound
(1). Then the area of the extrinsic disc DR(o) of radius R centered at o is bounded from below
by

A
(

DR(o)
) ≥ θ (o) · e–2hR · πR2, (47)

where

θ (o) =

⎧

⎪⎨

⎪⎩

θv = 3
π

arccos(–1/3) if o is a vertex of F ,
θe = 3

2 if o lies in the interior of an edge of F ,
θf = 1 if o lies in the interior of a face of F .

Furthermore, the equality in inequality (47) is attained if and only if every face of the ex-
trinsic foam disc DR(o) is a piece of an affine plane containing o.

Proof Observe that inequality (47) follows from inequality (46). Moreover, the equality in
inequality (47) implies the equality in (46), therefore

‖∇ro‖2 = 1

for every point in DR(o) ∩ R. Then every face of the extrinsic disc DR(o) is a piece of an
affine plane containing o. �

5 Applications
5.1 Compact foams
We apply our results to the setting of compact foams.

Theorem 5.1 Let F ⊂R
3 be a compact foam. Then, given a point o ∈ F , there exists Rmax <

∞ such that F = DRmax (o), there exists h < ∞ such that ‖ �H‖(x) ≤ h for any x ∈ F . The
maximum radius Rmax and the supremum of the norm of the mean curvature vector field
are related by

Rmax ≥ 1
h

.

Moreover, the foam has finite area A(F) < ∞ and is bounded from below by

A(F) ≥ θ (o)
e2

π

h2 ·
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Proof By Proposition 4.1 we know that

A(DR)(1 – hR) ≤ L(∂DR),

where L(∂DR) denotes the length of the boundary ∂DR. Let now {Ri} be a sequence for
regular values of the extrinsic distance converging to Rmax, then

A(DRmax )(1 – hRmax) = lim
i→∞ A(DRi )(1 – hRi) ≤ lim

i→∞ L(∂DRi ) = 0.

Hence we obtain

Rmax ≥ 1
h

.

Finally, by using the main theorem, we have

A(F) ≥ A(DRmax ) ≥ A(D1/h) ≥ θ (o)
e2

π

h2 . �

Simplest examples 5.1 The simplest example of a compact foam is a sphere SR of radius R
in R

3. From any base point on the sphere, we have Rmax = 2R so that

Rmax = 2R =
2
h

≥ 1
h

,

which is in complete agreement with the inequality Rmax ≥ 1
h . On the other hand, since

A(SR) = 4πR2 =
4π

h2 ≥ θ (o)
e2

π

h2 =
π

e2h2 .

Another simple example of a compact foam is a double bubble (see Fig. 4). The maximum
of the mean curvature is

h =
1
r2

.

Hence, by the above corollary,

Rmax ≥ r2.

Figure 4 Double bubble foam
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If we choose the center in the point P, it is easy to check that Rmax = 2r1 ≥ r2. The lower
bound for the area given by the above corollary is

A(F) ≥ 3
2e2 πr2

2.

5.2 Lower bound for the area of a cell of a Kelvin foam
The accuracy of the lower bounds for the area of a domain of a foam given by any method
based on the main theorem relies drastically on the number and the distribution of vertex
(or face, or edge) points that are chosen. If we choose very few points, the inequalities
given by the main theorem are far away from being sharp, but we can nevertheless obtain
a lower bound. In this subsection, as an example of an application, we show how to use
the main theorem directly to obtain a lower bound for the area of a foam. In this case we
use a cell of the Kelvin foam (where lower bounds for the area function are known).

The Kelvin foam arises from the problem of partitioning space into equal-volume cells,
using the least interface area. Kelvin described his foam as a relaxation of the Voronoi
partition for the body-centered cubic lattice, whose cells are congruent truncated octa-
hedra. As the foam relaxes, see [11], the symmetry present in the Voronoi partition is
preserved, and hence the vertices are fixed by symmetry. The square faces remain in their
mirror planes, although the edges bend within these planes. The diagonals of the hexagons
remain fixed along axes of rotational symmetry, while the hexagons become shaped like
monkey-saddles (see [11] and Fig. 2). Observe that the resulting foam is a minimal foam,
i.e., it has h = 0.

In this subsection we are interested in a lower bound for the contribution of each cell to
the total area of the foam. Observe that each face contributes in half part of its area to the
total area of the foam (since each face is in contact with two cells). We consider an extrinsic
disc centered at the center of each hexagonal face (these centers remain fixed under the
foam relaxation). If we denote by a the (extrinsic) distance between two adjacent vertices,
and if we choose the radii of such extrinsic discs as R1 = a

2 (less than 3
4 a, the maximal

distance between the center of the hexagons and the planes where the square faces lie)
and apply the main theorem, then we obtain the following lower bound for the area of
these extrinsic foam discs:

A1 =
number of hexagonal faces

8 · 1
2

· π
(

a
2

)2

. (48)

Now we can put an extrinsic disc of radius R2 = a
2 in each vertex, but now these discs

contribute only the fourth part to the total area because identical cells meet at four vertices,
and this gives us the following lower bound:

A2 =
number of vertices

24 · 1
4

· 3arccos(–1/3)
(

a
2

)2

. (49)

Since the square faces remain in their mirror planes but with edges bent within these
planes, the original square (of area a2) is contained in the final relaxed square face. Then
we obtain the lower bound

A3 =
number of square faces

6 · 1
2

(

a2 – π

(
a
2

)2)

, (50)
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where we have subtracted the contribution of the discs of the four vertices. Finally, we
obtain

Area of a cell of the Kelvin foam ≥ A1 + A2 + A3 ≈ 12.3832a2. (51)

Observe that by using a “slicing argument” the best lower bound estimation is obtained
in [11] as

Area of a cell of the Kelvin foam > 6
(√

3
2

+ 1
)

a2 ≈ 13.3485a2. (52)

5.3 Lower bounds for the cost function
A classical mathematical problem arising from the honeycomb conjecture and the Kelvin
problem is how the space R

3 could be partitioned into disjoint cells of equal volume with
the least area of surface between them. When we try to compare two different partitions
of the space, we need to apply a precise scale invariant quantity. One of the most used
quantities is the cost function (see [11])

μ =
A3

V2 ,

where A is the average interface area per cell and V is the average cell volume.
Given a foam F ⊂ R

3 and a domain Ω ⊂R
3 such that F ∩Ω �= ∅ (with perhaps Ω = R

3),
studying the scale-invariant cost function, we get—from an isoperimetric point of view—
an estimate for how effective the foam fills the domain Ω . Here

μ(Ω) :=
(A(F ∩ Ω)/n)3

(V(Ω)/n)2 , (53)

where n denotes the number of cells inside Ω . In the particular case of a minimal foam
we can state a lower bound for this cost function reading off only information about the
vertices and their distribution.

Given such a domain Ω , let us use the following notation:

n := number of cells inside Ω ,

vΩ := number of vertices inside Ω ,

vΩ :=
vΩ

n
,

d := minimal extrinsic distance between vertices,

νΩ :=
vΩ

V(Ω)
.

(54)

Corollary 5.1 Let F ⊂R
3 be a minimal foam in R

3, hence for any domain Ω ⊂R
3,

μ(Ω) ≥ vΩν2
ΩA3

0(d), (55)

where A0 is given by

A0(d) = θvπ

(
d
2

)2

, θv =
3
π

arccos
(

–
1
3

)

.
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Proof By using the main theorem,

μ(Ω) =
1
n

(A(F ∩ Ω))3

(V(Ω))2 ≥ 1
n

(vΩθvπd2)3

(V(Ω))2 =
(

vΩ

n

)(
vΩ

V(Ω)

)2(

θvπ

(
d
2

)2)3

. (56)
�

A classical related problem arising from Kelvin’s problem is concerned with the study of
the optimization of the cost function under partitions of the space in periodic domains (see
[11]). A partition of space is a division of R3 into disjoint cells. We are mainly interested
in the surfaces forming the interface between cells. The partitions that we consider will
be periodic with respect to some lattice, with some number n of cells in each periodic
domain. Obviously, we can use periodic minimal foams as examples of such partitions of
space.

In such a case, by using the lower bound given in [10] for the average number of vertices
in a periodic minimal foam, we get

vΩ ≥ 24.

Corollary 5.2 Let F ⊂ R
3 be a minimal and periodic foam in R

3, hence for any domain
Ω ⊂R

3,

μ(Ω) ≥ 24ν2
ΩA3

0(d). (57)

5.4 Lower bound for the pressure on minimal foams
A problem which is related to the isoperimetric properties is concerned with the pressure
distribution in a foam. We consider a dried foam in mechanical equilibrium with an ideal
gas in the bubble chambers. The gas in each chamber is assumed to satisfy the ideal gas
equation of state, and we assume that the entire foam is held at constant temperature.
In such a case the ratio of area per volume is fixed by the physical constraints involving
the temperature, pressure, and surface tension. Indeed, if we have a minimal foam F ⊂ Ω

inside a region Ω ⊂ R
3, since the foam is minimal, each cell is at the same pressure pin,

but there is also an extrinsic pressure pext coming from the boundary ∂Ω , and those two
pressures are related as follows (see [2, 4–6, 17]):

pint – pext =
3
2
σ

A(F)
V(Ω)

, (58)

where σ is the surface tension assumed to be homogeneous throughout the foam. Hence,

pint – pext =
3
2
σ

(
n

V(Ω)
μ(Ω)

) 1
3

. (59)

The pressure inside of each cell in the foam can therefore be estimated from below using
only the vertices as

pint ≥ pext +
3
2
σνΩA0(d). (60)
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5.5 Area and extrinsic vertex area
Given a domain Ω ∈ R

3, the main result allows us to construct an algorithm to estimate
lower bounds for the area of the domain Ω ∩F ⊂ F of a foam F . Given a finite set of points
X = {x1, x2, . . . , xN } ⊂ Ω . This set X has associated the following subset of RN :

DΩ (X) :=
{

(r1, r2, . . . , rN ) ⊂R
N | Bri (xi) ⊂ Ω for i = 1, . . . , N

and Bri (xi) ∩ Brj (xj) = ∅ for all i �= j
}

.
(61)

We define the extrinsic vertex area of X in Ω as follows.

Definition 5.1 Given a set of isolated points X in Ω ⊂R
3, the lower extrinsic vertex area

of X with h weight is given by

eva(X,Ω , h) := max
(r1,...,rN )∈DΩ (X)

{
∑

i

e–2hriθv · πr2
i

}

, (62)

where DΩ (X) is given by Definition (61) and θv = 3
π

arccos(–1/3) . The extrinsic vertex area
of X with h weight is given by

evA(X,Ω , h) := max
Z⊂X

{

eva(Z,Ω , h)
}

. (63)

Observe that the extrinsic vertex area associates an area to a set of points. By using our
main theorem, we can make use of the extrinsic vertex area associated to a set of points
X ⊂ Ω to obtain a lower bound for the area of a piece of the foam Ω ∩ F ⊂ F .

Theorem 5.2 Let F ⊂R
3 be a foam, and let Ω ⊂R

3 and assume that Ω ∩ F is a compact
subset of F . Denote by VΩ the set of vertices of Ω ∩ F , and denote by

h = max
x∈Ω∩F

‖ �H‖(x)

the maximum of the norm of the mean curvature vector field on the faces of Ω ∩ F . Then
the area of Ω ∩ F is bounded from below by

A(Ω ∩ F) ≥ evA(X,VΩ , h), (64)

where evA(X,VΩ , h) is the extrinsic vertex area of the vertex points VΩ with h weight.

Remark 5.1 Observe, moreover, that since by definition

evA(X,Ω , h) ≥ eva(X,Ω , h), (65)

then under the hypothesis of the above theorem we can state

A(Ω ∩ F) ≥ eva(X,VΩ , h). (66)

Remark 5.2 Given a set of N isolated points X in Ω ⊂ R
3, the corresponding DΩ (X) can

be understood as the set of admissible radii in order to place the extrinsic foam discs to
estimate the largest lower bound for the area of such a set of extrinsic discs. But observe
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that since the function

f : R →R, r → f (r) = e–2hrr2

is increasing only in the interval [0, 1
h ) (with [0,∞) if h = 0), then we can define the maxi-

mal radius rmax := 1
h and the maximal hypercube B∞

rmax := [0, rmax]N in such a way that

eva(X,Ω , h) = max
(r1,...,rN )∈DΩ (X)∩B∞

rmax

{
∑

i

e–2hriθv · πr2
i

}

.

Stated otherwise, the maximum in Definition 5.1 is obtained in

(r1, . . . , rN ) ∈ DΩ (X) with ri ≤ rmax =
1
h

for i = 1, . . . , N .

The presence of mean curvature on the faces of a foam forces, therefore, our method to
make use only of small extrinsic discs.

5.5.1 From the matrix of distances to the extrinsic vertex area
Let now X = {x1, . . . , xN } be a set of N isolated points inside a compact subset Ω ⊂ R

3

with boundary ∂Ω . We can define the matrix of distances DΩ (X) of X in Ω to be the
(N + 1) × (N + 1) matrix given by

[

DΩ (X)
]

i,j :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

distR3 (xi, xj) if i ≤ N and j ≤ N ,
distR3 (xi, ∂Ω) if i ≤ N and j = N + 1,
distR3 (xj, ∂Ω) if i = N + 1 and j ≤ N ,
0 if i = N + 1 and j = N + 1.

From this matrix we can define as well the reduced matrix of distances to be the N × N
matrix given by

[

dΩ (X)
]

i,j := min

{
[

DΩ (X)
]

i,j,
[

DΩ (X)
]

i,N+1,
[

DΩ (X)
]

j,N+1,
1
h

}

if N > 1, or by

[

dΩ (X)
]

1,1 := min

{

distR3 (x1, ∂Ω),
1
h

}

if N = 1. Observe that

DΩ (X) ∩ B∞
rmax =

{

r ∈R
N
+ | 0 ≤ ri + rj ≤ [dΩ (X)]i,j, ∀i and ∀j �= i

}
(67)

if N > 1, and

DΩ (X) ∩ B∞
rmax =

[

0,
[

dΩ (X)
]

1,1

]

if N = 1. By using inequalities (67), DΩ (X) ∩ B∞
rmax is a polytope. However, since

eva : RN →R, eva(�z) =
N

∑

i=1

πe–2hziθvz2
i
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has no critical points in DΩ (X) ∩ B∞
rmax \ {�0}, the maximum of the extrinsic vertex area is

attained in the boundary

eva(X,Ω , h) = max
�r∈∂(DΩ (X)∩B∞

rmax )

{ N
∑

i=1

πe–2hriθvr2
i

}

,

and hence,

evA(X,Ω , h) = max
Z⊂X

(

max
�r∈∂(DΩ (Z)∩B∞

rmax )

{ N
∑

i=1

πe–2hriθvr2
i

})

,

where Z ranges on subsets of X. Moreover, if

[

dΩ (X)
]

i,j ≤
2 –

√
2

h
, ∀i,∀j,

the function eva is a convex function in the polytope DΩ (X) ∩ B∞
rmax , and hence its maxi-

mum is attained in the vertices of DΩ (X) ∩ B∞
rmax . Then, in the case [dΩ (X)]i,j ≤ 2–

√
2

h (min-
imal foams for instance), an estimation of the evA can be obtained using the vertex enu-
meration problem. In Sect. 5.5.2 we provide an algorithm using precisely the approach of
the vertex enumeration problem.

Observe that since Z is a subset of X, then the matrix of distancesDΩ (Z) can be obtained
from the matrix DΩ (X) by removing several rows and the corresponding columns.

Example 5.1 Let Ω be a domain inside a minimal foam (h = 0) such that the matrix of
distances of the vertices X = {A, B, C} of Ω is

DΩ (X) =

⎛

⎜
⎜
⎜
⎝

0 1 2 4
1 0 3 4
2 3 0 4
4 4 4 0

⎞

⎟
⎟
⎟
⎠

.

The following graph can be useful in order to represent the distances between vertices and
the distances between vertices and the boundary ∂Ω :
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Figure 5 Domain DΩ (X) from Example 5.1

Then the reduced matrix of X = {A, B, C} is just

dΩ (X) =

⎛

⎜
⎝

0 1 2
1 0 3
2 3 0

⎞

⎟
⎠ ,

and the domain DΩ (X)∩B∞
rmax is the domain bounded (see Fig. 5) by the following inequal-

ities M.r ≤ b:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 + r2 ≤ 1,
r1 + r3 ≤ 2,
r2 + r3 ≤ 3,
–r1 ≤ 0,
–r2 ≤ 0,
–r3 ≤ 0,

(68)

where M is a matrix of zeros and ones relating the different radii among themselves and
with the boundary ∂Ω and b is the vector of distances. The vertices of the polytope
DΩ (X) ∩ B∞

rmax are

{

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 2), (0, 1, 1), (1, 0, 1)
}

.

It is not hard to see that

eva(X,Ω , 0) =
(

02 + 12 + 22)θvπ = 5θvπ .

If we choose Z1 = {B, C}, then

DΩ (Z1) =

⎛

⎜
⎝

0 3 4
3 0 4
4 4 0

⎞

⎟
⎠
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with

dΩ (Z1) =

(

0 3
3 0

)

and eva(Z1,Ω , 0) = 9θvπ . But we can check that

evA(X,Ω , 0) = eva
({A},Ω , 0

)

= eva
({B},Ω , 0

)

= eva
({C},Ω , 0

)

= 16θvπ .

5.5.2 Numerical solution of evA
In the previous section we have explained the way to obtain an estimation of the evA from
a set of points in a domain of the Euclidean space using the vertex enumeration problem.
The algorithm can be summarized as Algorithm 1

Figure 6 shows the distribution of balls that gives the eva and the evA of a set of points.
In this numerical simulation we have assumed that the set of vertices X is a set of 8 points
randomly contained in a ball of radius R = 10 (Ω = B10(�0) and ∂Ω = S10(�0)). Then, we have
estimated the distance matrix DΩ (X) from the set of inequalities M.r ≤ b as it appears in
expression (68). To solve this system, the interior-point algorithm (see [16] for instance)
has been used with the optimization tool in MATLAB. In Fig. 6(a), we show the maximum
value of eva found to be eva(X,Ω , 0) = 29.0257θvπ from the initial set of points.

Algorithm 1 evA calculation
1: Input:
2: X: set of N-isolated points into Ω ⊂R

3 with boundary ∂Ω .
3: Output:
4: evA = 0.
5: loop:
6: Estimate the distance matrix DΩ (X) in X with boundary ∂Ω .
7: Build the set of inequalities M.r ≤ b (see (68)).
8: Make an initial estimation of the radii r = (r1, . . . , rN ).
9: Re-estimated the distance vector b = b – M.r.

10: Calculate the normalized matrix Dij = Mij/bi by the distance vector b.
11: Convert the polytope DΩ (X) ∩ B∞

rmax (convex hull) defined by the matrix D in a list of
vertices V in the radii dual space.

12: Find the vertex Veva = (v́1, . . . , v́N ) in the polytope that maximize eva.
13: if evA > eva then
14: return break loop.

15: Assign the value evA = eva.
16: Find the L number coordinates in the vertex Veva, such that v́i = 0.
17: if L > 0 then
18: Remove the L points xi associated to the coordinate v́i = 0 and N ← N – L.
19: else
20: Remove the point xi associated to the coordinate v́i with minimum value and N ←

N – 1.
21: end loop
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Figure 6 (a) We show the solution that maximizes eva for the case of eight vertices inside the sphere domain
∂Ω . (b) We show the distribution of spheres that maximizes evA

To compute evA, in this simulated example, we have used Algorithm 1. Namely, we
have obtained a polytope DΩ (X) ∩ B∞

rmax in the radii dual space corresponding to all the
solutions that can be found from the set of inequalities. This polytope can be built from
the algorithm proposed in [9] that converts a convex set of constraint inequalities into a
set of vertices over the intersections of those inequalities (see lines 9–11 in Algorithm 1).
From the set of vertices V defined in the polytope, we choose one vertex Veva = (v́1, . . . , v́N )
that maximizes eva. Then, we search the coordinates in the vertex Veva with v́i = 0 or with
minimum value in the coordinate. This means that, for this solution, the points xi in Ω ⊂
R

3 have a small or vanishing radius, so they can be eliminated. In this example, only three
balls centered at three of the initial vertices survive in the final solution evA(X,Ω , 0) =
36.4422θvπ , while the points left are absorbed. In Fig. 6 (b) the final distribution of balls
is shown.
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