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Abstract
Jeffrey Hoffstein et al. (Discrete Appl. Math. 130:37–49, 2003) introduced the Low
Hamming Weight products (LHWP) X = x1x2x3 as random exponent of elements in a
group or a ring to improve the operational efficiency, where each xi has Hamming
Weight Ham(xi) in its binary representation. The random power or multiple be used in
many cryptographic constructions, such as Diffie–Hellman key exchange, elliptic
curve ElGamal variants, and NTRU public-key cryptosystem. But their randomness is
just a conjecture, which lacks of the security proof. The main purpose of this paper is
using the analytic method and the properties of the character sums to prove the
distribution of the Hamming weight products, which is related to their
pseudorandomness and unpredictability. It is important to research the application of
LHWP in cryptographic constructions. Our theory shows that the LHWP are
exponentially close to the uniform distribution, namely, an attack on algorithm
(Hoffstein et al. in Discrete Appl. Math. 130:37–49, 2003) needs polynomial time to
reach exponentially close probabilities of success.
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1 Background
Jeffrey Hoffstein and Joseph H. Silverman [1] proposed a new algorithm of fast exponen-
tiation via Low Hamming Weight Products (LHWP), which is universally applied in cryp-
tography. For example, Diffie–Hellman key exchange needs to output a random power of
gk in a finite field F , if input an element g in F . Divesh Aggarwal [2] introduced a new
public-key cryptosystem whose security is based on the Mersenne Low Hamming Weight
Ratio: there exist two Low Hamming Weight integers A and B such that A

B is difficult to
distinguish from a uniformly random string. NTRU algorithm [3–5] is suspected to be
resistant to quantum attacks, their key generation requires a random polynomial product
fg in the ring.

The products X = x1x2x3 of integers in [1] acts as the exponent over G = F2n , where each
xi is a low Hamming weight number in its binary representation. It is a rapid method and
has significant advantage of reducing the computation of powers in a group such as the
Galois field F2n . These kinds of questions also appear in [2, 6–9], where the representation
of LHWP is applied to attack the relevant cryptosystems, and the Hamming weight model
can be concentrated on the Differential Power Analysis.
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The efficiency of the algorithm [1] is based on an assumption that a random multiplier
is a product of factors, which is called the Low Hamming Product Assumption (see Defi-
nition 2). The security of the algorithm [2] is based on the assumption of Low Hamming
Weight Ratio. They are all believed to be easily and rapidly computed, however, their ran-
domness or pseudorandomness just is a conjecture, which is widely used, but lacks the
solid foundation.

The main purpose of this paper is by using the analytic method and the bounds of the
character sums to prove that the LHWP are exponentially close to the uniform distri-
bution, which can imply their pseudorandomness. Furthermore, the theorem shows the
unpredictability of LHWP. In addition, an attack on algorithm [1] needs polynomial time
to reach exponentially close probabilities of success. The following are the definitions of
low Hamming weight and some fundamental concepts required:

Denote by

Ham(X) = Hamming weight of X

the number of 1s in the binary representation of X. In order to compute X faster, it is
more advantageous to choose X such that Ham(X) is small. However, if Ham(X) is too
small, then the algorithm can be exploited by an attacker who is trying to operate brutally.

Let p > 2n be a prime, and let Zp be the residue integer ring modulo p. All elements
c ∈Zp have the unique binary representation

c =
n–1∑

i=0

ki · 2i, ki ∈ {0, 1}.

with a fixed specified binary Hamming weight h =
∑

ki. The Hamming weight number is
equivalent to the Hamming distance from the all-zero string of the same length, which is
widely used in several disciplines including information theory, coding theory, and cryp-
tography. For example, the Hamming weight operation can be interpreted as a conversion
from the unitary numeral system to binary numbers. Victor K Wei shows that a gener-
alized Hamming weight is a natural generalization of the minimum distance. It is used
to characterize the cryptographic performance of a linear code over the wire-tap channel
(see [10]).

Definition 1 (Hamming weight inequalities; see [2], Lemma 2) Let p be a prime. For
nonzero A, B ∈Zp, denoting by Ham(A) the Hamming weight of the unique binary repre-
sentation of A, we have

1. Ham(A + B) ≤ Ham(A) + Ham(B).
2. Ham(A · B) ≤ Ham(A) · Ham(B).
3. If a binary string A �= 0n, then Ham(–A) = n – Ham(A).

Definition 2 (Low Hamming product assumption) Let h be an integer. Given n-bit strings
A and B of low Hamming weight h are independent, it is difficult to distinguish between
the product AB and a uniformly distributed random n-bit string.

The security proof in Sect. 3 also requires the regularity of the probability distributions.
The variation distance of two distributions X and Y over a finite domain D is defined
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as

�(X, Y ) =
1
2

∑

α∈D

∣∣Pr[X = α] – Pr[Y = α]
∣∣.

Recall that the definition of a statistical distance (sometimes it is called statistical closeness
(see [11]) is: Let n ∈ N be an integer, for every positive polynomial p(·), and all sufficient
large n, we say that two probability ensembles Xn and Yn are statistically close if �(Xn, Yn)
is a negligible function of 1

p(n) .

Similarly, δ-statistical closeness to uniform distribution (see [12, 13]) can be concluded
based on the definition of statistical distance:

Definition 3 (δ-statistical closeness) For some constant δ > 0, a random variable X is δ-
statistically close to a uniform random variable Y if

�(X) =
1
2

·
∑

α∈Z

∣∣∣∣pr[X = α] –
1

p – 1

∣∣∣∣ ≤ δ,

where we taking uniform probabilities of Y to equal 1
p–1 . More precisely, δ-statistically

close means that the statistical distance �(X) is exponentially small.

2 Main results
Motivated by the universal use of Hamming weight in cryptography, studying the uniform
distribution properties of LHWP is an important and interesting problem because it re-
veals some quality guarantee of their pseudorandomness. It is crucial for the security of
the algorithms. We start with the following problem:

Let p > 2n be a prime and denote by Zp the residue ring modulo p. Given h ∈ Zp, find
x1, x2, x3 ∈ Zp of Hamming weight h, where xi corresponds to an n-bit string of arbitrary
Hamming weight, such that X = x1x2x3 exists and is uniformly distributed in Zp. More
specifically,

x1x2x3 mod (p) (1)

is uniformly distributed, where p is a prime.
Let B be the set of integers with Hamming weight less than h, that is, if xi ∈ B, and

Ham(xi) ≤ h, where i = 1, 2, 3, then the cardinality

|B| =
∑

0≤j≤h

(
n
j

)
.

We consider the distribution of modular sums

X = x1x2x3 (mod p), x1, x2, x3 ∈ B.

To be more specific, given a fixed c ∈ Zp, denote by N(B, c) the number of solutions of
the congruence

x1x2x3 ≡ c (mod p), x1, x2, x3 ∈ B. (2)
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For such integers x1, x2, x3 ∈ B, denote the probability by P(B, c), it is clearly

P(B, c) =
1

|B|3 N(B, c).

In Sect. 4, we shall use the classical bounds of character sums to give a uniform distri-
bution proof for (2), which is related to the security of the algorithm [1]. That is, we shall
prove the following

Theorem Let 2n < p < 25n be a prime. For some constants δ > 0, ε > 0, the LHWP x = x1x2x3

is δ-statistically close to uniform distribution, namely

∑

c∈Zp

∣∣∣∣P(B, c) –
1

p – 1

∣∣∣∣ < p–ε < δ.

3 Some lemmas
Let χp be the set of multiplicative characters of the multiplicative group Z∗

p . Denote by χ∗
p

the subset of nontrivial characters.
In this section, we shall give several necessary lemmas, which appear in the proof of our

theorem. First, we have the following

Lemma 1 For any ε > 0, let χ be a nontrivial multiplicative character modulo 2n < p < 25n,
while B is the set of integers with Hamming weight less than h ≤ [ n

2 ] + 1 (here [ n
2 ] means

the greatest integer ≤ n
2 ). Then there exists γ > 0 such that

max
χ∈χ∗

p

∣∣∣∣
∑

X∈B
χ (X)

∣∣∣∣ ≤ |B|p–γ ,

where p
1
5 +ε ≤ |B| ≤ p.

Proof By [14, Theorem 3], we know that if x is a number the Hamming Weight of which
equals a fixed small j, then the following inequality holds:

∑

x
χ

(
f (x)

) � d
1
2

(
n
j

) 1
2

2
n
4 p

1
8 +o(1),

where d = deg f .
It is clear that |B| =

∑
0≤j≤h

(n
j
) ≤ 2n–1, then for any ε > 0, taking f (x) = X,

∑

x∈B
χ (X) �

∑

0≤j≤h

(
n
j

) 1
2

2
n
4 p

1
8 +o(1)

� |B|
(

n
j

) 1
2

2– 3n
4 p

1
8 +o(1)

� |B|2– 3n
4 p

1
8 +o(1).

From p < 25n, we obtain
∑

x∈B χ (X) � |B|p– 1
40 +o(1), thus taking γ = 1

40 > 0, the claim of
Lemma 1 holds. �
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Remark The most well known bound of maxχ∈χ∗
p |∑X∈B χ (X)| is Polya–Vinogradov in-

equality (see [15, Theorem 2.2], [14, Lemma 1]):

max
χ∈χ∗

p

∣∣∣∣
∑

X∈B
χ (X)

∣∣∣∣ ≤ p
1
2 ln p,

which is nontrivial for B ≥ p 1
2 +ε . However, this bound related to B is too large to be used

for our proof. In such cases we apply Lemma 1.

Lemma 2 Let X ∈ B be an integer, its binary representation being an n-bit string of Ham-
ming weight less than h, then |B| =

∑
0≤j≤h

(n
j
)
, therefore,

|B| ≤ 2nH(h/n) < pH(h/n),

where the entropy function is

H(γ ) = –γ logγ – (1 – γ ) log(1 – γ ).

Proof See [16, Sect. 10.11]. �

4 Proof of the Theorem
Recall that (see [17, Chap. 5]) if G is a finite Abelian group (multiplicative) of order |G|, a
character χ of G is a homomorphism from G into the multiplicative group U of complex
numbers of absolute value 1, that is, a mapping from G into U with χ (g1g2) = χ (g1)χ (g2)
for all g1, g2 ∈ G. Then supposing g and h are elements of a finite Abelian group G, the
following is the well-known property of character sums:

1
|G|

∑

χ∈χp

χ (g)χ (h) =

⎧
⎨

⎩
0, for g �= h,

1, for g = h.

In this section, we shall complete the proof of our theorem. Note that

∑

c∈Zp

∣∣∣∣P(B, c) –
1

p – 1

∣∣∣∣
2

=
∑

c∈Zp

∣∣∣∣
N(B, c)
|B|3 –

1
p – 1

∣∣∣∣
2

=
1

|B|6
∑

c∈Zp

∣∣∣∣N(B, c) –
|B|3
p – 1

∣∣∣∣
2

. (3)

Clearly, N(B, c) is the number of solutions of the congruence (2), thus we have

N(B, c) =
1

p – 1
∑

χ∈χp

∑

x1x2x3∈B
χ (x1x2x3)χ (c).

If χ = χ0 is the trivial character, then the corresponding term of N(B, c) is |B|3/(p – 1),
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We know that χ (c–1) = χ (c), and zz = |z|2, where z denotes the conjugate of a complex
number z. Then c–1 runs through Zp together with c, therefore

∑

c∈Zp

∣∣∣∣N(B, c) –
|B|3
p – 1

∣∣∣∣
2

=
∑

c∈Zp

(
1

p – 1
∑

χ∈χ∗
p

χ (c)
∣∣∣∣

∑

x1x2x3∈B
χ (x1x2x3)

∣∣∣∣

)2

=
1

(p – 1)2

∑

c∈Zp

∑

χ1χ2∈χ∗
p

χ1(c)χ2(c)
∣∣∣∣

(∑

X∈B
χ1(X)

)3∣∣∣∣

∣∣∣∣

(∑

X∈B
χ2(X)

)3∣∣∣∣

=
1

(p – 1)2

∑

χ1χ2∈χ∗
p

∣∣∣∣

(∑

X∈B
χ1(X)

)3∣∣∣∣

∣∣∣∣

(∑

X∈B
χ2(X)

)3∣∣∣∣
∑

c∈Zp

χ1(c)χ2(c).

Recalling the identity of characters (see [18, Theorem 5.4]), for any c ∈Zp

∑

χ∈χp

χ (c) =

⎧
⎨

⎩
p – 1, if χ = χ0,

0, otherwise,

where χ0 is the trivial character, the inner sum equals 0 unless

χ2(c) = χ1(c)–1 = χ1
(
c–1) = χ1(c), c ∈Zp,

Then,

∑

c∈Zp

∣∣∣∣N(B, c) –
|B|3
p – 1

∣∣∣∣
2

=
1

(p – 1)
∑

χ1χ2∈χ∗
p

∣∣∣∣

(∑

X∈B
χ1(X)

)3∣∣∣∣

∣∣∣∣

(∑

X∈B
χ2(X)

)3∣∣∣∣

=
1

(p – 1)
∑

χ∈χ∗
p

∣∣∣∣
∑

X∈B
χ (X)

∣∣∣∣
6

<
1

(p – 1)
max
χ∈χ∗

p

∣∣∣∣
∑

X∈B
χ (X)

∣∣∣∣
4 ∑

χ∈χp

∣∣∣∣
∑

X∈B
χ

(
X–1)

∣∣∣∣
2

=
1

(p – 1)
max
χ∈χ∗

p

∣∣∣∣
∑

X∈B
χ (X)

∣∣∣∣
4 ∑

X∈B

∑

χ∈χp

χ (X1)χ (X2).

Note that

1
(p – 1)

∑

χ∈χp

∣∣∣∣
∑

X∈B
χ (X1)χ (X2)

∣∣∣∣ = |B|.
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Therefore, from Lemma 1, we have

∑

c∈Zp

∣∣∣∣N(B, c) –
|B|3
p – 1

∣∣∣∣
2

= |B|5p–4γ .

Denote

w(B, c) =
∑

c∈Zp

∣∣∣∣N(B, c) –
|B|3
p – 1

∣∣∣∣.

Using the Cauchy–Schwarz inequality, we obtain

w2(B, c) ≤ p
∑

c∈Zp

∣∣∣∣N(B, c) –
|B|3
p – 1

∣∣∣∣
2

= |B|5p1–4γ . (4)

Combining (3) and (4), we can easily get

∑

c∈Zp

∣∣∣∣P(B, c) –
1

p – 1

∣∣∣∣ =
1

|B|3 w(B, c)

< |B|– 1
2 p

1
2 –2γ . (5)

Recalling that p > 2n, for 0 ≤ γ ≤ 1, A > 0, from Lemmas 1 and 2, as well as (5), for some
δ > 0, ε > 0, the following inequality holds:

∑

c∈Zp

∣∣∣∣P(B, c) –
1

p – 1

∣∣∣∣ < |B|– 1
2 p

1
2 –2γ < p

1
4 –2γ < p–ε < δ.

That is, the statistical distance is exponentially small. We also can conclude that the LHWP
are exponentially close to the uniform distribution, namely, and attack on algorithm [1]
needs polynomial time to reach exponentially close probabilities of success. This proves
the theorem.

5 Conclusion
Character sums are important and useful tools in the analytic number theory. In this paper
we use character sums to prove the pseudorandomness of LHWP, which play a central
role in cryptology, algorithms, and many other areas. It is important and meaningful to
establish the uniform distribution of such products for giving the security assurance of
cryptographic constructions. In addition, we need to emphasize that for our bounds to
be nontrivial, the cardinality of the LHWP B should be sufficiently large, however, it also
applies to sparse integers.

6 Notations
Throughout the paper the implied constants in symbols big “O” and “�” depend on the
small real parameter “γ > 0”. Notations A � B and A = O(B) are equivalent to |A| ≤ B. The
symbol small “o(1)” denotes the function tending to 0.
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