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Abstract
This paper is concerned with the local asymptotic stability problem for a competitive
Lotka–Volterra system with time-varying delays. By constructing the novel
augmented Lyapunov–Krasovskii functionals and using the Wirtinger integral
inequality, some alternative stability criteria are obtained by means of linear matrix
inequalities. In particular, our constructed functionals contain some cross terms
related to four different time delays. The proposed stability conditions in this paper
are less conservative as compared with the most existing ones due to using some
advanced techniques. Finally, a numerical example illustrates the effectiveness and
improvement of the obtained results.
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1 Introduction
More than sixty years ago, Lotka and Volterra laid the foundation for the science of compe-
tition between different species in [1, 2]. Over the several decades, considerable work has
been done for N-species Lotka–Volterra (L-V) type systems to discuss their persistence,
extinction, and global or local asymptotic behavior in [3–16]. For example,the interspecific
competition has been observed based on the experiments in [4], partial persistence and ex-
tinction in N-dimensional competitive systems have been addressed in [6], and [7] shows
a discrete delay decomposition approach to analyse stability of linear retarded and neutral
systems. The permanence of stochastic L-V systems has been analyzed in [8–12]. In [13],
sufficient and necessary conditions for permanence and extinction in a three-dimensional
competitive L-V system have been proposed. In [14], a two species non-autonomous com-
petitive phytoplankton system with Beddington–DeAngelis functional response has been
proposed and sufficient conditions that guarantee the extinction of a species and global
attractivity of the other one have been obtained. The stability analysis problem for com-
petitive L-V system has also been one of the interesting research issues, and its global and
local asymptotic stability problems have been sufficiently focused in [12, 14–16].

Considering the important influence of time delays on the system, there is consider-
able work on the persistence, extinction, and asymptotical stability of L-V competitive
systems with delays in [3, 17–24]. For example, in [3] Teng has established the criteria un-
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der which a part of species is driven to extinction while other are persistent or all species
are coexistent globally asymptotically stable. In [17], Oca and Pérez have extended the
principle of competitive exclusion N-species nonautonomous L-V competition systems
of differential equations with infinite delay, and in [18], Qiu and Deng have studied the
optimal harvesting of a stochastic delay competitive L-V model with Lévy jumps sys-
tematically. For the stability analysis of time-delay systems, it has been identified that the
Lyapunov–Krasovskii (L-K) theory based on the L-K functionals is less conservative than
the Lyapunov–Razumikhin approach. By constructing some appropriate L-K functionals,
the conditions for global or local asymptotic stability for competitive L-V systems with
delays have been obtained in [3, 19–24]. By employing a linear matrix inequality (LMI)
approach, a series of sufficient criteria which can ensure the stability of the positive equi-
librium for the given L-V systems have been proposed in [22–24]. Specially, by using the
LMI optimization approach, Park has obtained a stability criterion for the local stability of
the positive equilibrium of the two-species L-V systems with discrete delays in [22]; Qiu
and Cao have obtained sufficient criteria which guarantee the exponential stability of the
same system in [23]; Sun and Meng have addressed the local asymptotic stability for the
L-V system with time-varying delays in [24].

The integral terms are common in the derivative of L-K functionals, and the over-
approximation methods are used to replace the integral terms with some more effective
expressions. Unavoidably, the use of any inequalities will introduce some conservatism
in the analysis and consequently in the resulting stability conditions. Over the past two
decades, the inequality 2ab ≤ a2 + b2 has been used in [21], the inequality σ

∫ σ

0 w(s) ds ≥
[
∫ σ

0 w(s) ds]2 has been adopted in [22] and [23], and Jensen’s inequality [z(t) – z(t –
τij(t))]T W [z(t) – z(t – τij(t))] ≤ hij

∫ t
t–τij(t) żT (s)W ż(s) ds has been employed in [24], respec-

tively. The inherent conservative nature of these inequalities has led to some possible con-
servatism in the obtained conditions. Recently, the less conservative Wirtinger-based in-
equality has been proposed in [25, 26]. By incorporating augmented L-K functionals, some
more effective stability conditions have been established for linear time-delay systems in
[25, 26]. Unfortunately, for the competitive L-V system with time delays, the existing stabil-
ity conditions are all based on the conservative inequalities and the simple L-K functionals.
More importantly, the relationships between multiple delays are neglected in constructing
the L-K functionals. Therefore, the existing results concerning the delayed L-V system are
conservative to some extent, which motivates the present research.

In this paper, the following two-species competitive L-V system with time-varying de-
lays is considered:

⎧
⎨

⎩

dx(t)
dt = x(t)[b1 – a11x(t – τ11(t)) – a12y(t – τ12(t))],

dy(t)
dt = y(t)[b2 – a21x(t – τ21(t)) – a22y(t – τ22(t))],

(1)

where x(t) and y(t) stand for densities of both the populations at time t, respectively; bi, aij

are positive scalars and 0 ≤ τij(t) ≤ τij, τ̇ij(t) ≤ dij with dij ≥ 0, τij > 0 (i, j = 1, 2). The initial
condition of system (1) is given as

⎧
⎨

⎩

x(s) = φ1(s) ≥ 0, –τ ≤ s ≤ 0,φ1(0) > 0,

y(s) = φ2(s) ≥ 0, –τ ≤ s ≤ 0,φ2(0) > 0,
(2)

where τ = max1≤i,j≤2{τij(t)}, and φ1(s), φ2(s) are assumed to be continuous.
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If a11/a21 > b1/b2 > a12/a22, by denoting z∗ = (x∗, y∗) with x∗ = b1a22–b2a12
a11a22–a12a21

, y∗ =
b2a11–b1a21

a11a22–a12a21
, it is seen that x∗, y∗ ∈ (0, 1). The four equilibrium points of system (1) are

(0, 0), (0, b2
a22

), ( b1
a11

, 0), and z∗ respectively. Define all positive solutions z(t) = (x(t), y(t)) of
system (1). The point z∗ is the only one positive equilibrium point. The equilibrium point
z∗ indicates the coexistence of the two species.

In this paper, we are mainly concerned with the local stability problem of the positive
equilibrium z∗ of system (1). To reduce the possible conservatism in analyzing the stability
of time-delay systems, this paper will choose the novel augmented L-K functionals and the
less conservative integral inequalities in [26]. In particular, it should be pointed out that
the second L-K functional proposed in this paper includes the cross terms between differ-
ent time delays. The developed stability conditions in this paper are less conservative as
compared with the existing ones in [22–24]. A numerical example shows the effectiveness
and benefit of the proposed results.

Notation. The superscript “T” stands for the transpose of a matrix. The matrix R > 0
means that R is symmetric and positive definite, Rn denotes the n-dimensional Euclidean
space. In the paper, I and 0 are used to denote the identity and zero matrices with proper
dimension. The symmetric terms in a symmetric matrix are denoted by ∗. In addition, we
denote He(A) = A + AT .

2 Preliminaries
Letting u(t) = x(t) – x∗, v(t) = y(t) – y∗, system (1) can be written as

⎧
⎨

⎩

u̇(t) = [u(t) + x∗][–a11u(t – τ11(t)) – a12v(t – τ12(t))],

v̇(t) = [v(t) + y∗][–a21u(t – τ21(t)) – a22v(t – τ22(t))],
(3)

Correspondingly, the linearized model of (3) can be described by

⎧
⎨

⎩

u̇(t) = –a11x∗u(t – τ11(t)) – a12x∗v(t – τ12(t)),

v̇(t) = –a21y∗u(t – τ21(t)) – a22y∗v(t – τ22(t)).
(4)

Let zT (t) = (uT (t), vT (t)) and rewrite (4) in the following matrix form:

ż(t) = –A11z
(
t – τ11(t)

)
– A12z

(
t – τ12(t)

)

– A21z
(
t – τ21(t)

)
– A22z

(
t – τ22(t)

)
, (5)

where

A11 =

[
a11x∗ 0

0 0

]

, A12 =

[
0 a12x∗

0 0

]

,

A21 =

[
0 0

a21y∗ 0

]

, A22 =

[
0 0
0 a22y∗

]

.

The following lemma of Wirtinger-based integral inequality plays an important role in
the proof of our main results
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Lemma 1 ([26]) For a given matrix R > 0, the following inequality holds for differentiable
function w(t) in [a, b] →R

n:

∫ b

a
ẇT (u)Rẇ(u) ≥ 1

b – a
(
w(b) – w(a)

)T R
(
w(b) – w(a)

)
+

3
b – a

ΩT RΩ , (6)

where Ω = w(b) + w(a) – 2
b–a

∫ b
a w(u) du.

3 Main results
In this section, by using the augmented L-K functionals and the Wirtinger-based integral
inequality, one can obtain the following theorems for ensuring the local asymptotic sta-
bility of the L-V system (1). First of all, we will consider the case of constant delays, i.e.,
τij(t) = τij (t ≥ 0).

Theorem 1 The positive equilibrium z∗ of the L-V system (1) with constant delays is locally
asymptotically stable, if there exist 10 × 10-dimensional matrix P1 > 0, 2 × 2-dimensional
matrices Qij ≥ 0, Rij > 0, i, j = 1, 2, such that the following LMI holds:

ψ1 = He
(
FT

1 P1F0
)

+ Γ1 + Υ1 < 0, (7)

where Γ1 = diag{∑2
i,j=1 Qij, 0, 0, 0, 0, –Q11, –Q12, –Q21, –Q22} and

F1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

F0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 –A11 –A12 –A21 –A22

I 0 0 0 0 –I 0 0 0
I 0 0 0 0 0 –I 0 0
I 0 0 0 0 0 0 –I 0
I 0 0 0 0 0 0 0 –I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Υ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ1
6

τ11
R11

6
τ12

R12
6

τ21
R21

6
τ22

R22 –2R11 –2R12 –2R21 –2R22

∗ – 12
τ2

11
R11 0 0 0 6

τ11
R11 0 0 0

∗ ∗ – 12
τ2

12
R12 0 0 0 6

τ12
R12 0 0

∗ ∗ ∗ – 12
τ2

21
R21 0 0 0 6

τ21
R21 0

∗ ∗ ∗ ∗ – 12
τ2

22
R22 0 0 0 6

τ22
R22

∗ ∗ ∗ ∗ ∗ Λ2 AT
12ΣA12 AT

21ΣA21 AT
22ΣA22

∗ ∗ ∗ ∗ ∗ ∗ Λ3 AT
21ΣA21 AT

22ΣA22

∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ4 AT
22ΣA22

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

Λ1 = –4(R11 + R12 + R21 + R22), Λ2 = AT
11ΣA11 – 4R11,

Λ3 = AT
12ΣA12 – 4R12, Λ4 = AT

21ΣA21 – 4R21,

Λ5 = AT
22ΣA22 – 4R22, Σ = τ 2

11R11 + τ 2
12R12 + τ 2

21R21 + τ 2
22R22.
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Proof Consider the following augmented L-K functional:

V (t) = z̄T
1 (t)P1z̄1(t) +

2∑

i,j=1

∫ t

t–τij

zT (s)Qijz(s) ds

+
2∑

i,j=1

τij

∫ t

t–τij

∫ t

θ

żT (s)Rijż(s) ds dθ , (8)

where z̄1(t) = [zT (t),
∫ t

t–τ11
zT (s) ds,

∫ t
t–τ12

zT (s) ds,
∫ t

t–τ21
zT (s) ds,

∫ t
t–τ22

zT (s) ds]T .
Clearly, functional (8) is positive since P1 > 0, Qij > 0, and Rij > 0. Denoting that ξ1(t) =

[z̄T
1 (t), zT (t – τ11), zT (t – τ12), zT (t – τ21), zT (t – τ22)]T , we have

z̄1(t) = F1ξ1(t), ˙̄z1(t) = F0ξ1(t). (9)

Considering the derivative of V (t) along system (5), we have

V̇ (t) = ξT
1 (t)He

(
FT

1 P1F0
)
ξ1(t) + zT (t)

( 2∑

i,j=1

Qij

)

z(t)

–
2∑

i,j=1

zT (t – τij)Qijz(t – τij) + żT (t)

( 2∑

i,j=1

τ 2
ij Rij

)

ż(t)

–
2∑

i,j=1

τij

∫ t

t–τij

żT (s)Rijż(s) ds. (10)

By using Lemma 1, it follows that

V̇ (t) ≤ ξT
1 (t)He

(
FT

1 P1F0
)
ξ1(t) + zT (t)

( 2∑

i,j=1

Qij

)

z(t)

–
2∑

i,j=1

zT (t – τij)Qijz(t – τij)

+

[ 2∑

i,j=1

Aijz(t – τij)

]T( 2∑

i,j=1

τ 2
ij Rij

)[ 2∑

i,j=1

Aijz(t – τij)

]

–
2∑

i,j=1

{
[
z(t – τij) – z(t)

]T Rij
[
z(t – τij) – z(t)

]

– 3
[

z(t – τij) + z(t) –
2
τij

∫ t

t–τij

z(s) ds
]T

Rij

×
[

z(t – τij) + z(t) –
2
τij

∫ t

t–τij

z(s) ds
]}

= ξT
1 (t)ψ1ξ1(t),

where ψ1 is defined in (7). If LMI (7) is satisfied, we have V̇ (t) ≤ ξT
1 (t)ψ1ξ1(t) < 0 and the

proof of Theorem 1 is complete. �
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Remark 1 Note that if LMI (7) is true, it follows that V̇ (t) ≤ –λ‖z(t)‖2, where λ > 0 is
the minimal eigenvalue of the matrix –ψ1. This implies that system (5) is asymptotically
stable. Then it can be concluded that the positive equilibrium z∗ of the L-V system (1) is
locally asymptotically stable.

Remark 2 In [22–24], an LMI-based approach has been used to address the stability prob-
lem of systems (1), and some significant results have been obtained. However, it is worth
mentioning that the proposed conditions are conservative since the chosen L-K functional
is simple and the adopted inequalities are conservative. Compared with the approaches
used in [22–24], this paper has utilized more accurate Wirtinger inequality to estimate
the upper bound of the derivative of L-K functional (8). In particular, it is noted that some
augmented terms have been added in the L-K functional (8) to use Wirtinger inequality
effectively.

Theorem 2 The positive equilibrium z∗ of the L-V system (1) with constant delays is locally
asymptotically stable if there exist 22 × 22-dimensional matrix P2 > 0, 2 × 2-dimensional
matrices Qkl

ij ≥ 0 and Rkl
ij > 0, (i, j, k, l = 1, 2) such that the following LMI holds:

ψ2 = He
(
F̃T

1 P2F̃0
)

+ Γ2 + Υ2 < 0, (11)

where

F̃1 =

[
F1 010×12

012×18 Ξ

]

, F̃0 =

[
F0 010×12

Ω̃ Ξ

]

,

Γ2 =

[
Γ1 018×12

012×18 012×12

]

+ diag{010×10, Q̄, 012×12},

Υ2 =

[
Υ1 018×12

012×18 012×12

]

+

⎡

⎢
⎣

010×10 010×8 010×12

∗ Φ1 – 2Φ2 6Φ3

∗ ∗ –12Φ4

⎤

⎥
⎦ ,

with F0, F1, Γ1, Υ1 denoted in Theorem 1 and

Ω̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 –I I 0 0
0 0 0 0 0 –I 0 I 0
0 0 0 0 0 –I 0 0 I
0 0 0 0 0 0 –I I 0
0 0 0 0 0 0 –I 0 I
0 0 0 0 0 0 0 –I I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Q̄ = – diag

{ 2∑

k,l=1

(τ11 – τkl)Qkl
11,

2∑

k,l=1

(τ12 – τkl)Qkl
12,

2∑

k,l=1

(τ21 – τkl)Qkl
21,

2∑

k,l=1

(τ22 – τkl)Qkl
22

}

,

Ξ = diag
{

(τ11 – τ12)I, (τ11 – τ21)I, (τ11 – τ22)I,

(τ12 – τ21)I, (τ12 – τ22)I, (τ21 – τ22)I
}

,
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Φ1 =

⎡

⎢
⎢
⎢
⎣

AT
11Σ̃A11 AT

11Σ̃A12 AT
11Σ̃A21 AT

11Σ̃A22

∗ AT
12Σ̃A12 AT

12Σ̃A21 AT
12Σ̃A22

∗ ∗ AT
21Σ̃A21 AT

21Σ̃A22

∗ ∗ ∗ AT
22Σ̃A22

⎤

⎥
⎥
⎥
⎦

,

Φ2 =

⎡

⎢
⎢
⎢
⎣

Φ21 R12
11 R21

11 R22
11

∗ Φ22 R21
12 R22

12

∗ ∗ Φ23 R22
21

∗ ∗ ∗ Φ24

⎤

⎥
⎥
⎥
⎦

,

Φ3 =

⎡

⎢
⎢
⎢
⎣

R12
11 R21

11 R22
11 0 0 0

R12
11 0 0 R21

12 R22
12 0

0 R21
11 0 R21

12 0 R22
21

0 0 R22
11 0 R22

12 R22
21

⎤

⎥
⎥
⎥
⎦

,

Φ4 = diag
{

R12
11, R21

11, R22
11, R21

12, R22
12, R22

21
}

,

Σ̃ =
2∑

i,j=1

2∑

k,l=1

(τij – τkl)2Rkl
ij (10i + j < 10k + l),

Φ21 = 2
(
R12

11 + R21
11 + R22

11
)
, Φ22 = 2

(
R12

11 + R21
12 + R22

12
)
,

Φ23 = 2
(
R21

11 + R21
12 + R22

21
)
, Φ24 = 2

(
R22

11 + R22
12 + R22

21
)
.

Proof Let us define the following novel augmented L-K functional:

Ṽ (t) = V1(t) + V2(t) + V3(t), (12)

where

V1(t) = z̄T
2 (t)P2z̄2(t) +

2∑

i,j=1

∫ t

t–τij

zT (s)Qijz(s) ds

+
2∑

i,j=1

τij

∫ t

t–τij

∫ t

θ

żT (s)Rijż(s) ds dθ ,

V2(t) =
2∑

i,j=1

2∑

k,l=1

(τij – τkl)
∫ t–τkl

t–τij

zT (s)Qkl
ij z(s) ds (10i + j < 10k + l),

V3(t) =
2∑

i,j=1

2∑

k,l=1

(τij – τkl)
∫ –τkl

–τij

∫ t

t+θ

żT (s)Rkl
ij ż(s) ds dθ

(10i + j < 10k + l),

with

z̃2(t) =
[

z̄T
1 (t),

∫ t–τ12

t–τ11

zT (s) ds,
∫ t–τ21

t–τ11

zT (s) ds,
∫ t–τ22

t–τ11

zT (s) ds,

∫ t–τ21

t–τ12

zT (s) ds,
∫ t–τ22

t–τ12

zT (s) ds,
∫ t–τ22

t–τ21

zT (s) ds
]T

.
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Letting

ξ2(t) =
[

ξT
1 (t),

1
τ11 – τ12

∫ t–τ12

t–τ11

zT (s) ds,
1

τ11 – τ21

∫ t–τ21

t–τ11

zT (s) ds,

1
τ11 – τ22

∫ t–τ22

t–τ11

zT (s) ds,
1

τ12 – τ21

∫ t–τ21

t–τ12

zT (s) ds,

1
τ12 – τ22

,
∫ t–τ22

t–τ12

zT (s) ds,
1

τ21 – τ22

∫ t–τ22

t–τ21

zT (s) ds
]T

,

it is seen that z̃2(t) = F̃1ξ2(t), ˙̃z2(t) = F̃0ξ2(t). Computing the derivative of (12) along the
solution of system (5), it follows that

V̇1(t) = ξT
2 (t)He

(
F̃T

0 P2F̃1
)
ξ2(t) + zT (t)

( 2∑

i,j=1

Qij

)

z(t)

–
2∑

i,j=1

zT (t – τij)Qijz(t – τij) + żT (t)

( 2∑

i,j=1

τ 2
ij Rij

)

ż(t)

–
2∑

i,j=1

τij

∫ t

t–τij

żT (s)Rijż(s) ds, (13)

V̇2(t) =
2∑

i,j=1

2∑

k,l=1

(τij – τkl)
[
zT (t – τkl)Qkl

ij z(t – τkl)

– zT (t – τij)Qkl
ij z(t – τij)

]
(10i + j < 10k + l), (14)

V̇3(t) =
2∑

i,j=1

2∑

k,l=1

(τij – τkl)
[

(τij – τkl)żT (t)Rkl
ij ż(t)

–
∫ t–τkl

t–τij

żT (s)Rkl
ij ż(s) ds

]

(10i + j < 10k + l). (15)

Applying Lemma 1 to V̇3(t), it follows that

V̇3(t) ≤
2∑

i,j=1

2∑

k,l=1

{

(τij – τkl)2żT (t)Rkl
ij ż(t)

–
[
z(t – τkl) – z(t – τij)

]T Rkl
ij
[
z(t – τkl) – z(t – τij)

]

– 3
[

z(t – τkl) + z(t – τij) –
2

(τij – τkl)

∫ t–τkl

t–τij

z(s) ds
]T

Rkl
ij

×
[

z(t – τkl) + z(t – τij) –
2

(τij – τkl)

∫ t–τkl

t–τij

z(s) ds
]}

(10i + j < 10k + l). (16)

Based on V̇1(t), V̇2(t), V̇3(t), and inequality (16), we can eventually obtain

˙̃V (t) = V̇1(t) + V̇2(t) + V̇3(t) ≤ ξT
2 (t)ψ2ξ2(t). (17)
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This implies that the positive equilibrium z∗ of the L-V system (1) is locally asymptoti-
cally stable if LMI (11) is satisfied. The proof of Theorem 2 is complete. �

Remark 3 Compared with the L-K functional (8) used in the proof of Theorem 1, some
interconnected terms related to four time delays have been further incorporated in func-
tional (12). By using such interconnected terms, the relationships between four time delays
can be specifically reflected in the L-K functional (12). Then, a less conservative condition
involving more slack variables is obtained for the case with different delays, which will be
illustrated by a numerical example.

Next, we will address the L-V system (1) with time-varying delays.

Theorem 3 The positive equilibrium z∗ of the L-V system (1) with time-varying delays
is locally asymptotically stable if there exist 10 × 10-dimensional matrix P1 > 0, 2 × 2-
dimensional matrices Qij ≥ 0, Rij > 0, Sij > 0, Tij > 0, i, j = 1, 2, such that the following LMI
holds:

ψ3 =

[
ψ̃1 018×8

08×18 Υ3

]

+ Γ3 + He
(
F̂T

1 P1F̂0
)

+

⎡

⎢
⎢
⎢
⎣

–
∑2

i,j=1 Tij 02×8 02×8 Π1

∗ 08×8 08×8 08×8

∗ ∗ –Π2 Π2

∗ ∗ ∗ –2Π2

⎤

⎥
⎥
⎥
⎦

< 0, (18)

where

Γ3 = diag

{ 2∑

i,j=1

Sij, 016×16, –(1 – d11)S11, –(1 – d12)S12,

– (1 – d21)S21, –(1 – d22)S22

}

,

F̂0 =

[
02×2 02×8 02×8 F̂02

F̂01 08×8 F̂03 08×8

]

, F̂1 =
[

F1 010×8

]
,

ψ̃1 = ψ1 – He
(
FT

1 P1F0
)

–

[
010×10 010×8

08×10 Π4

]

,

Υ3 =

⎡

⎢
⎢
⎢
⎣

AT
11Σ̂A11 AT

11Σ̂A12 AT
11Σ̂A21 AT

11Σ̂A22

∗ AT
12Σ̂A12 AT

12Σ̂A21 AT
12Σ̂A22

∗ ∗ AT
21Σ̂A21 AT

21Σ̂A22

∗ ∗ ∗ AT
22Σ̂A22

⎤

⎥
⎥
⎥
⎦

,

Π1 =
[
T11 T12 T21 T22

]
, Π2 = diag{T11, T12, T21, T22}

with

F̂01 =
[

I I I I
]T

, F̂02 =
[
–A11 –A12 –A21 –A11

]
,
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F̂03 = – diag{I, I, I, I}, Σ̂ =
2∑

i,j=1

[
τ 2

ij (Tij + Rij)
]
,

Π4 =

⎡

⎢
⎢
⎢
⎣

AT
11ΣA11 AT

11ΣA12 AT
11ΣA21 AT

11ΣA22

∗ AT
12ΣA12 AT

12ΣA21 AT
12ΣA22

∗ ∗ AT
21ΣA21 AT

21ΣA22

∗ ∗ AT
22ΣA22

⎤

⎥
⎥
⎥
⎦

.

Proof Consider the following augmented L-K functional:

V̂ (t) = V (t) +
2∑

i,j=1

∫ t

t–τij(t)
zT (s)Sijz(s) ds

+
2∑

i,j=1

τij

∫ t

t–τij

∫ t

θ

żT (s)Tijż(s) ds dθ , (19)

where V (t) is denoted in (8). Considering the derivative of V̂ (t) and denoting ξ3(t) =
[ξT

1 (t), zT (t – τ11(t)), zT (t – τ12(t)), zT (t – τ21(t)), zT (t – τ22(t))]T , we have

˙̂V (t) ≤ ξT
3 (t)He

(
F̂T

1 P1F̂0
)
ξ3(t) + zT (t)

2∑

i,j=1

(Qij + Sij)z(t)

+ żT (t)
2∑

i,j=1

τ 2
ij (Rij + Tij)ż(t) –

2∑

i,j=1

zT (t – τij)Qijz(t – τij)

–
2∑

i,j=1

(1 – dij)zT(t – τij(t)
)
Sijz

(
t – τij(t)

)

–
2∑

i,j=1

τij

∫ t

t–τij

żT (s)(Rij + Tij)ż(s) ds. (20)

For the term –
∑2

i,j=1 τij
∫ t

t–τij
żT (s)Rijż(s) ds, we use Lemma 1. While for the term

–
∑2

i,j=1 τij
∫ t

t–τij
żT (s)Tijż(s) ds, by using Jensen’s inequality, it is seen that

–
2∑

i,j=1

τij

∫ t

t–τij

żT (s)Tijż(s) ds

≤ –
2∑

i,j=1

(∫ t

t–τij(t)
ż(s) ds

)T

Tij

(∫ t

t–τij(t)
ż(s) ds

)

–
2∑

i,j=1

(∫ t–τij(t)

t–τij

ż(s) ds
)T

Tij

(∫ t–τij(t)

t–τij

ż(s) ds
)

≤ –
2∑

i,j=1

[
z(t) – z

(
t – τij(t)

)]T Tij
[
z(t) – z

(
t – τij(t)

)]

–
2∑

i,j=1

[
z
(
t – τij(t)

)
– z(t – τij)

]T Tij
[
z
(
t – τij(t)

)
– z(t – τij)

]
. (21)
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Noting (20)–(21) and ψ3 defined in (18), it is easy to verify that if LMI (18) is satisfied, the
inequality ˙̂V (t) ≤ ξT

3 (t)ψ3ξ3(t) < 0 can be ensured, and this completes the proof. �

Corresponding to Theorem 2, the following improved condition is readily obtained.

Theorem 4 The positive equilibrium z∗ of the L-V system (1) with time-varying delays
is locally asymptotically stable if there exist 22 × 22-dimensional matrix P2 > 0, 2 × 2-
dimensional matrices Qij ≥ 0, Rij > 0, Sij > 0, Tij > 0, i, j = 1, 2, such that the following LMI
holds:

ψ4 =

[
ψ̃2 030×8

08×30 Υ4

]

+ Γ4 + He
(�FT

1 P2 �F0
)

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

02×2 02×8 02×8 02×12 Υ5

∗ 08×8 08×8 08×12 08×8

∗ ∗ –Υ6 08×12 Υ6

∗ ∗ ∗ 012×12 012×8

∗ ∗ ∗ ∗ –2Υ6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (22)

where

Γ4 = diag

{ 2∑

i,j=1

(Sij – Tij), 028×28, –(1 – d11)S11,

– (1 – d12)S12, –(1 – d21)S21, –(1 – d22)S22

}

,

�F0 =

⎡

⎢
⎣

02×2 02×8 02×8 02×12 F̂02

F̂01 08×8 F̂03 08×12 08×8

012×2 012×8 F̂04 Ξ 012×8

⎤

⎥
⎦ , �F1 =

[
F̃1 022×8

]
,

ψ̃2 = ψ2 – He
(
F̃T

1 P2F̃0
)

–

⎡

⎢
⎣

010×10 010×8 010×12

08×10 Υ7 08×12

012×10 012×8 012×12

⎤

⎥
⎦ ,

Υ4 =

⎡

⎢
⎢
⎢
⎣

AT
11 �Σ1A11 AT

11 �Σ1A12 AT
11 �Σ1A21 AT

11 �Σ1A22

∗ AT
12 �Σ1A12 AT

12 �Σ1A21 AT
12 �Σ1A22

∗ ∗ AT
21 �Σ1A21 AT

21 �Σ1A22

∗ ∗ ∗ AT
22 �Σ1A22

⎤

⎥
⎥
⎥
⎦

,

Υ5 =
[

T11 T12 T21 T22

]
, Υ6 = diag{T11, T12, T21, T22}

with

F̂04 =

⎡

⎢
⎢
⎢
⎣

–I –I –I 0 0 0
I 0 0 –I –I 0
0 I 0 I 0 –I
0 0 I 0 I I

⎤

⎥
⎥
⎥
⎦

T

,
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Υ7 =

⎡

⎢
⎢
⎢
⎣

AT
11 �Σ2A11 AT

11 �Σ2A12 AT
11 �Σ2A21 AT

11 �Σ2A22

∗ AT
12 �Σ2A12 AT

12 �Σ2A21 AT
12 �Σ2A22

∗ ∗ AT
21 �Σ2A21 AT

21 �Σ2A22

∗ ∗ ∗ AT
22 �Σ2A22

⎤

⎥
⎥
⎥
⎦

,

�Σ1 =
2∑

i,j=1

τ 2
ij (Tij + Rij) +

2∑

i,j=1

2∑

k,l=1

(τij – τkl)2Rkl
ij (10i + j < 10k + l),

�Σ2 =
2∑

i,j=1

τ 2
ij Rij +

2∑

i,j=1

2∑

k,l=1

(τij – τkl)2Rkl
ij (10i + j < 10k + l).

Proof Let us define the following novel augmented L-K functional:

�V (t) = Ṽ (t) +
2∑

i,j=1

∫ t

t–τij(t)
zT (s)Sijz(s) ds

+
2∑

i,j=1

τij

∫ t

t–τij

∫ t

θ

żT (s)Tijż(s) ds dθ , (23)

where Ṽ (t) is defined in functional (12). The subsequent arguments are similar to the
proofs of Theorems 2–3 and thus are omitted here. �

4 Numerical example
In this section, let us consider the numerical example given in Zhen and Ma [21] and Park
[22] to illustrate the effectiveness and the sharpness of our results.

Example Consider the following system:

⎧
⎨

⎩

dx(t)
dt = x(t)[1 – x(t – τ11(t)) – 0.5y(t – τ12(t))],

dy(t)
dt = y(t)[1 – 0.5x(t – τ21(t)) – y(t – τ22(t))].

(24)

For the case that τij(t) ≡ τij, according to the result of [21], the equilibrium (2/3, 2/3) of
system (24) is asymptotically stable if the following conditions hold:

28τ11 + 8τ22 + 5τ12 + 13τ21 < 18,

8τ11 + 28τ22 + 13τ12 + 5τ21 < 18.
(25)

When τij = τ , the upper bounds τ for local asymptotic stability obtained by the existing
results and the theorems in this paper are listed in Table 1. For the case that τ11 = τ12 = τ21,
we can easily obtain the maximum upper bounds of τ22 for various τ , which are listed
in Table 2. For the case of time-varying delay with τij(t) = τ (t) ≤ τ and τ̇ (t) ≤ d, by solv-
ing LMIs (18) and (22), the maximum admissible ranges of τ are obtained for different d,

Table 1 Maximum admissible ranges of the time delay τ

[21] [22] [24] Theorem 1 Theorem 2

0 < τ < 0.34 0 < τ < 0.88 0 < τ ≤ 1.4307 0 < τ ≤ 1.5674 0 < τ ≤ 1.5674
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Table 2 Maximum admissible upper bounds of τ22 for different τ

τ11 = τ12 = τ21 = τ

0.5 0.7 0.9 1.0 1.1 1.2 1.3 1.4 1.5

[22] 1.28 1.11 0.79 0.50 0.02 – – – –
[24] 1.86 1.74 1.60 1.53 1.47 1.40 1.31 1.21 1.04
Theorem 1 2.71 2.80 2.87 2.87 2.83 2.74 2.59 2.28 1.80
Theorem 2 2.72 2.84 2.95 3.01 3.06 3.12 3.18 3.23 3.27

Table 3 Maximum admissible ranges of τ for different d

d11 = d12 = d21 = d22 = d

0 0.1 0.3 0.5 0.7 0.9 ≥ 1

[24] 1.43 1.37 1.25 1.06 0.90 0.87 0.87
Theorem 3 1.56 1.52 1.42 1.30 1.13 0.95 0.94
Theorem 4 1.56 1.52 1.43 1.32 1.21 1.20 1.20

Figure 1 State responses of system (24) (τij = 1.5)

Figure 2 State responses of system (24)
(τ11 = τ12 = τ21 = 1.5, τ22 = 1.8)

which are shown in Table 3. From Tables 1–3, it is seen that our proposed results can pro-
vide the larger delay bounds than those in [21, 22] and [24]. On the other hand, it is clear
from Table 2 and Table 3 that Theorem 2 and Theorem 4 can provide larger delay bounds
than Theorem 1 and Theorem 3, which means that the idea of using the relationships be-
tween four time delays is really effective in reducing the potential conservatism for the
case with different delays. In the simulation, the state responses are plotted in Figs. 1–3.
From Figs. 1–3, it is clear that the equilibrium (x∗, y∗) = (2/3, 2/3) of system (24) is asymp-
totically stable for the estimated ranges of time delays.
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Figure 3 State responses of system (24)
(τ11 = τ12 = τ21 = 1.5, τ22 = 3.2)

5 Conclusions
In this paper, we have addressed the local stability problem for a class of competitive L-V
systems with time delays. By constructing some new quadratic L-K functionals and using
the advanced Wirtinger integral inequality, four less conservative stability conditions have
been obtained by means of LMIs. Different from most existing L-K functionals, some aug-
mented terms have been introduced in our proposed L-K functionals. Moreover, the inter-
connected terms related to different time delays have been incorporated in the proposed
L-K functional. Finally, a numerical example has been given to show the effectiveness and
benefits of our obtained stability conditions. On the other hand, it is worth pointing out
that the approach dealing with time-varying delays in this paper is standard. If some very
recently developed techniques are employed [27–33], more effective conditions can be
established.
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