Mean ergodic theorem for semigroups of linear operators in multi-Banach spaces

Hassan Morghi Kenari ${ }^{1}$, Reza Saadati ${ }^{2}$, Mahdi Azhini ${ }^{1}$ and Yeol Je Cho ${ }^{3^{*}}$

"Correspondence: yjcho@gnu.ac.kr
${ }^{3}$ Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju, 660-701, Korea Full list of author information is available at the end of the article

Abstract

In this paper, by using Rodé's method, we extend Yosida's theorem to semigroups of linear operators in multi-Banach spaces. MSC: Primary 39A10; 39B72; secondary 47H10; 46B03

Keywords: ergodic theorem; semigroups; multi-Banach space

1 Introduction

In 1938, Yosida [1] proved the following mean ergodic theorem for linear operators: Let E be a real Banach space and $T_{j}(j=1,2, \ldots)$ be linear operators of E into itself such that there exists a constant C with $\left\|\left(T_{1}^{n}, \ldots, T_{j}^{n}\right)\right\| \leq C$ for $n=1,2,3, \ldots$, and T_{j} is weakly completely continuous, i.e., T_{j} maps the closed unite ball of E into a weakly compact subset of E. Then the Cesaro means

$$
S_{n, j} x=\frac{1}{n} \sum_{k=1}^{n} T_{j}^{k} x
$$

converges strongly as $n \rightarrow+\infty$ to a fixed point of T_{j} for each $x \in E$.
On the other hand, in 1975, Baillon [2] proved the following nonlinear ergodic theorem. Let X be a Banach space and C be a closed convex subset of X. The mappings $T_{j}: C \rightarrow C$ $(j=1,2, \ldots)$ are called nonexpansive on C if

$$
\left\|T_{j} x-T_{j} y\right\| \leq\|x-y\| \quad \forall x, y \in C .
$$

Let $F\left(T_{j}\right)$ be the set of fixed points of T_{j}. If X is strictly convex, $F\left(T_{j}\right)$ is closed and convex. In [2], Baillon proved the first nonlinear ergodic theorem such that if X is a real Hilbert space and $F\left(T_{j}\right) \neq \emptyset$, then for each $x \in C$, the sequence $\left\{S_{n, j} x\right\}$ defined by

$$
S_{n, j} x=\left(\frac{1}{n}\right)\left(x+T_{j} x+\cdots+T_{j}^{n-1} x\right)
$$

converges weakly to a fixed point of T_{j}. It was also shown by Pazy [3] that if X is a real Hilbert space and $S_{n, j} x$ converges weakly to $y \in C$, then $y \in F\left(T_{j}\right)$.
Recently, Rodé [4] and Takahashi [5] tried to extend this nonlinear ergodic theorem to semigroup, generalizing the Cesaro means on $\mathbf{N}=\{1,2, \ldots\}$, such that the corresponding
sequence of mappings converges to a projection onto the set of common fixed points. In this paper, by using Rodé's method, we extend Yosida's theorem to semigroups of linear operators in multi-Banach spaces. The proofs employ the methods of Yosida [1], Rodé [4], Greenleaf [6] and Takahashi [7, 8]. Our paper is motivated from ideas in [9].

2 Multi-Banach spaces

The notion of multi-normed space was introduced by Dales and Polyakov in [10]. This concept is somewhat similar to operator sequence space and has some connections with operator spaces and Banach lattices. Motivations for the study of multi-normed spaces and many examples are given in [10-16].
Let $(E,\|\cdot\|)$ be a complex normed space, and let $k \in \mathbf{N}$. We denote by E^{k} the linear space $E \oplus \cdots \oplus E$ consisting of k-tuples $\left(x_{1}, \ldots, x_{k}\right)$, where $x_{1}, \ldots, x_{k} \in E$. The linear operations on E^{k} are defined coordinate-wise. The zero element of either E or E^{k} is denoted by 0 . We denote by \mathbf{N}_{k} the set $\{1,2, \ldots, k\}$ and by Σ_{k} the group of permutations on k symbols.

Definition 2.1 Let E be a linear space, and take $k \in \mathbf{N}$. For $\sigma \in \Sigma_{k}$, define

$$
A_{\sigma}(x)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right), \quad x=\left(x_{1}, \ldots, x_{k}\right) \in E^{k} .
$$

For $\alpha=\left(\alpha_{i}\right) \in \mathbf{C}^{k}$, define

$$
M_{\alpha}(x)=\left(\alpha_{i} x_{i}\right), \quad x=\left(x_{1}, \ldots, x_{k}\right) \in E^{k} .
$$

Definition 2.2 Let $(E,\|\cdot\|)$ be complex (respectively, real) normed space, and take $n \in \mathbf{N}$. A multi-norm of level n on $\left\{E^{k}: k \in \mathbf{N}_{n}\right\}$ is a sequence $\left(\|\cdot\|_{k}: k \in \mathbf{N}_{n}\right)$ such that $\|\cdot\|$ is a norm on E^{k} for each $k \in \mathbf{N}_{n}$, such that $\|x\|_{1}=\|x\|$ for each $x \in E$ (so that $\|\cdot\|_{1}$ is the initial norm), and such that the following axioms (A1)-(A4) are satisfied for each $k \in \mathbf{N}_{n}$ with $k \geq 2$:
(A1) for each $\sigma \in \Sigma_{k}$ and $x \in E^{k}$, we have

$$
\left\|A_{\sigma}(x)\right\|_{k}=\|x\|_{k} ;
$$

(A2) for each $\alpha_{1}, \ldots, \alpha_{k} \in \mathbf{C}$ (respectively, each $\alpha_{1}, \ldots, \alpha_{k} \in \mathbf{R}$) and $x \in E^{k}$, we have

$$
\left\|M_{\alpha}(x)\right\|_{k} \leq\left(\max _{i \in \mathbf{N}_{k}}\left|\alpha_{i}\right|\right)\|x\|_{k}
$$

(A3) for each x_{1}, \ldots, x_{k-1}, we have

$$
\left\|\left(x_{1}, \ldots, x_{k-1}, 0\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right)\right\|_{k-1} ;
$$

(A4) for each $x_{1}, \ldots, x_{k-1} \in E$

$$
\left\|\left(x_{1}, \ldots, x_{k-2}, x_{k-1}, x_{k-1}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right)\right\|_{k-1} .
$$

In this case, $\left(\left(E^{k},\|\cdot\|_{k}\right): k \in \mathbf{N}_{n}\right)$ is a multi-normed space of level n.

A multi-norm on $\left\{E^{k}: k \in \mathbf{N}\right\}$ is a sequence

$$
\left(\|\cdot\|_{k}\right)=\left(\|\cdot\|_{k}: k \in \mathbf{N}\right)
$$

such that $\left(\|\cdot\|_{k}: k \in \mathbf{N}_{n}\right)$ is a multi-norm of level n for each $n \in \mathbf{N}$. In this case, $\left(\left(E^{n},\|\cdot\|_{n}\right)\right.$: $n \in \mathbf{N}$) is a multi-normed space.

Lemma 2.3 [12] Suppose that $\left(\left(E^{k},\|\cdot\|_{k}\right): k \in \mathbf{N}\right)$ is a multi-normed space, and take $k \in$ \mathbf{N}_{n}. Then
(a) $\|(x, \ldots, x)\|_{k}=\|x\|(x \in E)$;
(b) $\max _{i \in \mathbf{N}_{k}}\left\|x_{i}\right\| \leq\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k} \leq \sum_{i=1}^{k}\left\|x_{i}\right\| \leq k \max _{i \in \mathbf{N}_{k}}\left\|x_{i}\right\|\left(x_{1}, \ldots, x_{k} \in E\right)$.

It follows from (b) that, if $(E,\|\cdot\|)$ is a Banach space, then $\left(E^{k},\|\cdot\|_{k}\right)$ is a Banach space for each $k \in \mathbf{N}$; in this case $\left(\left(E^{k},\|\cdot\|_{k}\right): k \in \mathbf{N}\right)$ is a multi-Banach space.

Now we state two important examples of multi-norms for an arbitrary normed space E; cf. [10].

Example 2.4 The sequence $\left(\|\cdot\|_{k}: k \in \mathbf{N}\right)$ on $\left\{E^{k}: k \in \mathbf{N}\right\}$ defined by

$$
\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k}:=\max _{i \in \mathbf{N}_{k}}\left\|x_{i}\right\| \quad\left(x_{1}, \ldots, x_{k} \in E\right)
$$

is a multi-norm called the minimum multi-norm. The terminology 'minimum' is justified by property (b).

Example 2.5 Let $\left\{\left(\|\cdot\|_{k}^{\alpha}: k \in \mathbf{N}\right): \alpha \in A\right\}$ be the (non-empty) family of all multi-norms on $\left\{E^{k}: k \in \mathbf{N}\right\}$. For $k \in \mathbf{N}$, set

$$
\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k}:=\sup _{\alpha \in A}\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k}^{\alpha} \quad\left(x_{1}, \ldots, x_{k} \in E\right) .
$$

Then $\left(\|\cdot\|_{k}: k \in \mathbf{N}\right)$ is a multi-norm on $\left\{E^{k}: k \in \mathbf{N}\right\}$, called the maximum multi-norm.
We need the following observation, which can easily be deduced from the triangle inequality for the norm $\|\cdot\|_{k}$ and the property (b) of multi-norms.

Lemma 2.6 Suppose that $k \in \mathbf{N}$ and $\left(x_{1}, \ldots, x_{k}\right) \in E^{k}$. For each $j \in\{1, \ldots, k\}$, let $\left(x_{n}^{j}\right)_{n=1,2, \ldots}$ be a sequence in E such that $\lim _{n \rightarrow \infty} x_{n}^{j}=x_{j}$. Then for each $\left(y_{1}, \ldots, y_{k}\right) \in E^{k}$ we have

$$
\lim _{n \rightarrow \infty}\left(x_{n}^{1}-y_{1}, \ldots, x_{n}^{k}-y_{k}\right)=\left(x_{1}-y_{1}, \ldots, x_{k}-y_{k}\right)
$$

Definition 2.7 Let $\left(\left(E^{k},\|\cdot\|_{k}\right): k \in \mathbf{N}\right)$ be a multi-normed space. A sequence $\left(x_{n}\right)$ in E is a multi-null sequence if, for each $\varepsilon>0$, there exists $n_{0} \in \mathbf{N}$ such that

$$
\sup _{k \in \mathbf{N}}\left\|\left(x_{n}, \ldots, x_{n+k-1}\right)\right\|_{k}<\varepsilon \quad\left(n \geq n_{0}\right) .
$$

Let $x \in \mathcal{E}$. We say that the sequence $\left(x_{n}\right)$ is multi-convergent to $x \in E$ and write

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

if $\left(x_{n}-x\right)$ is a multi-null sequence.

3 Preliminaries and lemmas

Let E a real Banach space and let E^{*} be the conjugate space of E, that is, the space of all continuous linear functionals on E. The value of $x^{*} \in E^{*}$ at $x \in E$ will be denoted by $\left\langle x, x^{*}\right\rangle$. We denote by co D the convex hull of $D, \overline{\operatorname{co}} D$ the closure of co D.

Let U be a linear continuous operator of E into itself. Then we denote by U^{*} the conjugate operator of U.

Assumption (A) Let $\left(E^{j},\|\cdot\|_{j}\right)$ be a multi-Banach space and $\left\{T_{j, t}: t \in G\right\}(j=1,2, \ldots)$ be a family of linear continuous operators of a real Banach space E_{j} into itself such that there exists a real number C with $\left\|\left(T_{1, t}, \ldots, T_{j, t}\right)\right\|_{j} \leq C$ for all $t \in G$ and the weak closure of $\left\{T_{j, t} x: t \in G\right\}$ is weakly compact, for each $x \in E$. The index set G is a topological semigroup such that $T_{j, s t}=T_{j, s} \cdot T_{j, t}$ for all $s, t \in G$ and T_{j} is continuous with respect to the weak operator topology: $\left\langle T_{j, s} x, x^{*}\right\rangle \rightarrow\left\langle T_{j, t} x, x^{*}\right\rangle$ for all $x \in E$ and $x^{*} \in E^{*}$ if $s \rightarrow t$ in G.

We denote by $m_{j}(G)$ the Banach space of all bounded continuous real valued functions on the topological semigroup G with the supremum norm. For each $s \in G$ and $f_{j} \in m_{j}(G)$, we define elements $l_{s} f_{j}$ and $r_{s} f_{j}$ in $m_{j}(G)$ given by $l_{s} f_{j}(t)=f_{j}(s t)$ and $r_{s} f_{j}(t)=f_{j}(t s)$ for all $t \in G$. An element $\mu_{j} \in m_{j}(G)^{*}$ (the conjugate space of $\left.m_{j}(G)\right)$ is called a mean on G if $\left\|\mu_{j}\right\|=$ $\mu_{j}(1)=1$ moreover, we have $\left\|\left(\mu_{1}, \ldots, \mu_{j}\right)\right\|_{j}=\frac{\sum_{i=1}^{j} \mu_{i}(1)}{j}=1$. A mean μ_{j} on G is called left (right) invariant if $\mu_{j}\left(l_{s} f_{j}\right)=\mu_{j}\left(f_{j}\right)\left(\mu_{j}\left(r_{s} f_{j}\right)=\mu_{j}\left(f_{j}\right)\right)$ for all $f_{j} \in m_{j}(G)$ and $s \in G$. An invariant mean is a left and right invariant mean. We know that $\mu_{j} \in m_{j}(G)^{*}$ is a mean on G if and only if

$$
\inf \left\{f_{j}(t): t \in G\right\} \leq \mu_{j}\left(f_{j}\right) \leq \sup \left\{f_{j}(t): t \in G\right\}
$$

for every $f_{j} \in m_{j}(G)$; see $[6,17-20]$.
Let $\left\{T_{j, t}: t \in G\right\}$ be a family of linear continuous operators of E into itself satisfying Assumption (A) and μ_{j} be a mean on G. Fix $x \in E$. Then, for $x^{*} \in E^{*}$, the real valued function $t \rightarrow\left\langle T_{j, t} x, x^{*}\right\rangle$ is in $m_{j}(G)$. Denote by $\mu_{j, t}\left\langle T_{j, t} x, x^{*}\right\rangle$ the value of μ_{j} at this function. By linearity of μ_{j} and of $\langle\cdot, \cdot\rangle$, this is linear in x^{*}; moreover, since

$$
\begin{aligned}
& \left|\left(\mu_{1, t}\left|T_{1, t} x, x^{*}\right\rangle, \ldots, \mu_{j, t}\left|T_{j, t} x, x^{*}\right\rangle\right)\right| \\
& \quad \leq\left\|\left(\mu_{1}, \ldots, \mu_{j}\right)\right\|_{j} \cdot \sup _{t}\left|\left(\left\langle T_{1, t} x, x^{*}\right\rangle, \ldots, \mu_{j, t}\left\langle T_{j, t} x, x^{*}\right\rangle\right)\right| \\
& \quad \leq \sup _{t}\left\|\left(T_{1} x, \ldots, T_{j} x\right)\right\|_{j} \cdot\left\|x^{*}\right\|_{j} \\
& \quad \leq C \cdot\|x\|_{j} \cdot\left\|x^{*}\right\|_{j}
\end{aligned}
$$

it is continuous in x^{*}. Hence we find that $\mu_{j, t}\left\langle T_{j, t} x, \cdot\right\rangle$ is an element of $E^{* *}$. So, from weak compactness of $\overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ such that $\mu_{j, t}\left\langle T_{j, t} x, x^{*}\right\rangle=\left\langle T_{j, \mu_{j} x,} x^{*}\right\rangle$ for every $x^{*} \in E^{*}$.
Put $K=\overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ and suppose that the element $\mu_{j, t}\left\langle T_{j, t} x, \cdot\right\rangle$ is not contained in the $n(K)$, where n is the natural embedding of the Banach space E into its second conjugate space $E^{* *}$. Then, since the convex set $n(K)$ is compact in the weak* topology of $E^{* *}$, there exists an element $y^{*} \in E^{*}$ such that

$$
\mu_{j, t}\left|T_{j, t} x, y^{*}\right\rangle<\inf \left\{\left\langle y^{*}, z^{* *}\right\rangle: z^{* *} \in n(k)\right\} .
$$

Hence, we have

$$
\begin{aligned}
\mu_{j, t}\left|T_{j, t} x, y^{*}\right\rangle & <\inf \left\{\left\langle y^{*}, z^{* *}\right\rangle: z^{* *} \in n(k)\right\} \\
& \leq \inf \left\{\left\langle T_{j, t} x, y^{*}\right\rangle: t \in G\right\} \\
& \leq \mu_{j, t}\left\langle T_{j, t} x, y^{*}\right\rangle .
\end{aligned}
$$

This is a contradiction. Thus, for a mean μ_{j} on G, we can define a linear continuous operator $T_{j, \mu_{j}}$ of E into itself such that $\left\|\left(T_{1, \mu_{1}}, \ldots, T_{j, \mu_{j}}\right)\right\|_{j} \leq C, T_{j, \mu_{j}} x \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ for all $x \in E$, and $\mu_{j, t}\left\langle T_{j, t} x, x^{*}\right\rangle=\left\langle T_{j, \mu_{j}} x, x^{*}\right\rangle$ for all $x \in E$ and $x^{*} \in E^{*}$. We denote by $F_{j}(G)$ the set all common fixed points of the mappings $T_{j, t}, t \in G$.

Lemma 3.1 Assume that a left invariant mean μ_{j} exists on G, then $T_{j, \mu_{j}}(E) \subset F_{j}(G)$. Especially, $F_{j}(G)$ is then not empty.

Proof Let $x \in E$ and μ be a left invariant mean on G. Then since, for $s \in G$ and x^{*},

$$
\begin{aligned}
\left\langle T_{j, s} T_{j, \mu_{j}} x, x^{*}\right\rangle & =\left\langle T_{j, \mu_{j}} x, T_{j, s}^{*} x^{*}\right\rangle \\
& =\mu_{j, t}\left\langle T_{j, t} x, T_{j, s}^{*} x^{*}\right\rangle=\mu_{j, t}\left\langle T_{j, s} T_{j, t} x, x^{*}\right\rangle \\
& =\mu_{j, t}\left\langle T_{j, s t} x, x^{*}\right\rangle=\mu_{j, t}\left\langle T_{j, t} x, x^{*}\right\rangle \\
& =\left\langle T_{j, \mu_{j}} x, x^{*}\right\rangle,
\end{aligned}
$$

we have $T_{j, s} T_{j, \mu_{j}} x=T_{j, \mu_{j}} x$. Hence, $T_{j, \mu_{j}}(E) \subset F_{j}(G)$.

Lemma 3.2 Let λ_{j} be an invariant mean on G. Then $T_{j, \lambda_{j}} T_{j, s}=T_{j, s} T_{j, \lambda_{j}}=T_{j, \lambda_{j}}$ for each $s \in G$ and $T_{j, \lambda_{j}} T_{j, \mu_{j}}=T_{j, \mu_{j}} T_{j, \lambda_{j}}=T_{j, \lambda_{j}}$ for each mean μ_{j} on G. Especially, $T_{j, \lambda_{j}}$ is a projection of E onto $F(G)$.

Proof Let $s \in G$. Then, since

$$
\begin{aligned}
\left\langle T_{j, \lambda_{j}} T_{j, s} x, x^{*}\right\rangle & =\lambda_{j, t}\left\langle T_{j, t} T_{j, s} x, x^{*}\right\rangle=\lambda_{j, t}\left\langle T_{j, t s} x, x^{*}\right\rangle \\
& =\lambda_{j, t}\left\langle T_{j, t} x, x^{*}\right\rangle=\left\langle T_{j, \lambda_{j}} x, x^{*}\right\rangle
\end{aligned}
$$

for $x \in E$ and $x^{*} \in E^{*}$, we have $T_{j, \lambda_{j}} T_{j, s}=T_{j, \lambda_{j}}$. It is obvious from Lemma 3.1 that $T_{j, s} T_{j, \lambda_{j}}=$ $T_{j, \lambda_{j}}$ for each $s \in G$. Let μ_{j} be a mean on G. Then, since

$$
\begin{aligned}
\left\langle T_{j, \mu_{j}} T_{j, \lambda_{j}} x, x^{*}\right\rangle & =\mu_{j, t}\left\langle T_{j, t} T_{j, \lambda_{j}} x, x^{*}\right\rangle=\left\langle\mu_{j, t} T_{j, \lambda_{j}} x, x^{*}\right\rangle \\
& =\left\langle T_{j, \lambda_{j}} x, x^{*}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle T_{j, \lambda_{j}} T_{j, \mu_{j}} x, x^{*}\right\rangle & =\left\langle T_{j, \mu_{j}} x, T_{j, \lambda_{j}}^{*} x^{*}\right\rangle=\mu_{j, t}\left\langle T_{j, t} x, T_{j, \lambda_{j}}^{*} x^{*}\right\rangle \\
& =\mu_{j, t}\left\langle T_{j, \lambda_{j}} T_{j, t} x, x^{*}\right\rangle=\mu_{j, t}\left\langle T_{j, \lambda_{j}} x, x^{*}\right\rangle \\
& =\left\langle T_{j, \lambda_{j}} x, x^{*}\right\rangle
\end{aligned}
$$

for $x \in E$ and $x^{*} \in E^{*}$, we have $T_{j, \mu_{j}} T_{j, \lambda_{j}}=T_{j, \lambda_{j}} T_{j, \mu_{j}}=T_{j, \lambda_{j}}$. Putting $\mu_{j}=\lambda_{j}$, we have $T_{\lambda_{j}}^{2}=T_{\lambda_{j}}$ and hence $T_{\lambda_{j}}$ is a projection of E onto $F_{j}(G)$.

As direct consequence of Lemma 3.2, we have the following.

Lemma 3.3 Let μ_{j} and λ_{j} be invariant means on G. Then $T_{j, \mu_{j}}=T_{j, \lambda_{j}}$.
Lemma 3.4 Assume that an invariant mean exists on G. Then, for each $x \in E$, the set $\overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\} \cap F_{j}(G)$ consists of a single point.

Proof Let $x \in E$ and μ_{j} be an invariant mean on G. Then we know that $T_{j, \mu_{j}} x \in F_{j}(G)$ and $T_{j, \mu_{j}} x \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$. So, we show that $\overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\} \cap F_{j}(G)=\left\{T_{j, \mu_{j}} x\right\}$. Let $x_{0} \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\} \cap F_{j}(G)$ and $\epsilon>0$. Then, for $x^{*} \in E^{*}$, there exists an element $\sum_{i=1}^{n} \alpha_{i} T_{j, t_{i}} x$ in the set $\operatorname{co}\left\{T_{j, t} x: t \in G\right\}$ such that $\epsilon>C \cdot\left\|x^{*}\right\|_{j} \cdot\left\|\sum_{i=1}^{n} \alpha_{i} T_{j, t_{i}} x-x_{0}\right\|_{j}$. Hence, we have

$$
\begin{aligned}
\epsilon & >C \cdot\left\|x^{*}\right\|_{j} \cdot\left\|\sum_{i=1}^{n} \alpha_{i} T_{j, t_{i}} x-x_{0}\right\|_{j} \\
& \geq \sup _{t}\left\|T_{j, t}\right\|_{j} \cdot\left\|\sum_{i=1}^{n} \alpha_{i} T_{j, t_{i}} x-x_{0}\right\|_{j} \cdot\left\|x^{*}\right\|_{j} \\
& \geq \sup _{t}\left\|\sum_{i=1}^{n} \alpha_{i} T_{j, t} T_{j, t_{i}} x-x_{0}\right\|_{j} \cdot\left\|x^{*}\right\|_{j} \\
& \geq\left|\left\langle\sum_{i=1}^{n} \alpha_{i} T_{j, t} T_{j, t_{i}} x-x_{0}, x^{*}\right\rangle\right| \\
& =\left|\sum_{i=1}^{n} \alpha_{i} \mu_{j, t}\left\langle T_{j, t t_{i}} x-x_{0}, x^{*}\right\rangle\right| \\
& \left.=\left|\mu_{j, t}\right| T_{j, t} x-x_{0}, x^{*}\right\rangle \mid \\
& =\left|\left\langle T_{j, \mu_{j}} x-x_{0}, x^{*}\right\rangle\right| .
\end{aligned}
$$

Since ϵ is arbitrary, we have $\left\langle T_{j, \mu_{j}} x, x^{*}\right\rangle=\left\langle x_{0}, x^{*}\right\rangle$ for every $x^{*} \in E^{*}$ and hence $T_{j, \mu_{j}} x=x_{0}$.

4 Ergodic theorems

Now, we can prove mean ergodic theorems for semigroups of linear continuous operators in multi-Banach space.

Theorem 4.1 Let $\left\{T_{j, t}: t \in G\right\}$ be a family of linear continuous operators in a real Banach space E satisfying Assumption (A). If a net $\left\{\mu_{j}^{\alpha}: \alpha \in I\right\}$ of means on G is asymptotically invariant, i.e.,

$$
\mu_{j}^{\alpha}-r_{s}^{*} \mu_{j}^{\alpha} \quad \text { and } \quad \mu_{j}^{\alpha}-l_{s}^{*} \mu_{j}^{\alpha}
$$

converge to 0 in the weak ${ }^{*}$ topology of $m_{j}(G)^{*}$ for each $s \in G$, then there exists a projection Q_{j} of E on to $F_{j}(G)$ such that $\left\|\left(Q_{1}, \ldots, Q_{j}\right)\right\|_{j} \leq C, T_{j, \mu_{j}^{\alpha}} x$ converges weakly to $Q_{j} x$ for each $x \in E$,
$Q_{j} T_{j, t}=T_{j, t} Q_{j}=Q_{j}$ for each $t \in G$, and $Q_{j} x \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ for each $x \in E$. Furthermore, the projection Q_{j} onto $F_{j}(G)$ is the same for all asymptotically invariant nets.

Proof Let μ_{j} be a cluster point of net $\left\{\mu_{j}^{\alpha}: \alpha \in I\right\}$ in the weak* topology of $m_{j}(G)^{*}$. Then μ_{j} is an invariant mean on G. Hence, by Lemma 3.2, $T_{j, \mu_{j}}$ is a projection of E onto $F_{j}(G)$ such that $\left\|\left(T_{1, \mu_{1}}, \ldots, T_{j, \mu_{j}}\right)\right\|_{j} \leq C, T_{j, \mu_{j}} T_{j, t}=T_{j, t} T_{j, \mu_{j}}=T_{j, \mu_{j}}$ for each $t \in G$ and $T_{j, \mu_{j}} x \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ for each $x \in E$. Setting $Q_{j}=T_{j, \mu_{j}}$, we show that $T_{j, \mu_{j}^{\alpha}} x$ converges weakly to $Q_{j} x$ for each $x \in E$. Since $T_{j, \mu_{j}^{\alpha}} x \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ for all $\alpha \in I$ and $\overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ is weakly compact, there exists a subnet $\left\{T_{j, \mu_{j}^{\beta}}: \beta \in J\right\}$ of $\left\{T_{j, \mu_{j}^{\alpha}} x: \alpha \in I\right\}$ such that $T_{j, \mu_{j}^{\beta} x}$ converges weakly to an element $x_{0} \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$. To show that $T_{j, \mu_{j}^{\alpha}} x$ converges weakly to $Q_{j} x$, it is sufficient to show $x_{0}=Q_{j} x$. Let $x^{*} \in E^{*}$ and $s \in G$. Since $T_{j, \mu_{j}^{\beta}} x \rightarrow x_{0}$ weakly, we have $\mu_{j, t}^{\beta}\left\langle T_{j, t} x, x^{*}\right\rangle \rightarrow\left\langle x_{0}, x^{*}\right\rangle$ and $\mu_{j, t}^{\beta}\left\langle T_{j, t} x, T_{j, s}^{*} x^{*}\right\rangle \rightarrow\left\langle x_{0}, T_{j, s}^{*} x^{*}\right\rangle=\left\langle T_{j, s} x_{0}, x^{*}\right\rangle$. On the other hand, since $\mu_{j}^{\beta}-l_{s}^{*} \mu_{j}^{\beta} \rightarrow 0$ in the weak* topology, we have

$$
\begin{aligned}
& \mu_{j, t}^{\beta}\left\langle T_{j, t} x, x^{*}\right\rangle-l_{s}^{*} \mu_{j, t}^{\beta}\left\langle T_{j, t} x, x^{*}\right\rangle \\
& \quad=\mu_{j, t}^{\beta}\left\langle T_{j, t} x, x^{*}\right\rangle-\mu_{j, t}^{\beta}\left\langle T_{j, s t} x, x^{*}\right\rangle \\
& \quad=\mu_{j, t}^{\beta}\left\langle T_{j, t} x, x^{*}\right\rangle-\mu_{j, t}^{\beta}\left\langle T_{j, t} x, T_{j, s}^{*} x^{*}\right\rangle \\
& \quad \rightarrow 0 .
\end{aligned}
$$

Hence, we have $\left\langle x_{0}, x^{*}\right\rangle=\left\langle T_{j, s} x_{0}, x^{*}\right\rangle$ and hence $x_{0} \in F_{j}(G)$. So, we obtain $Q_{j} x=T_{j, \mu_{j}} x=x_{0}$ from Lemma 3.4. That the projection Q_{j} is the same for all asymptotically invariant nets is obvious from Lemma 3.3.

As direct consequence of Theorem 4.1, we have the following.

Corollary 4.2 Let $\left\{T_{j, t}: t \in G\right\}$ be as in Theorem 4.1 and assume that an invariant mean exists on G. Then there exists a projection Q_{j} of E onto F_{j} such that $\left\|\left(Q_{1}, \ldots, Q_{j}\right)\right\|_{j} \leq C$, $Q_{j} T_{j, t}=T_{j, t} Q_{j}=Q_{j}$ for each $t \in G$ and $Q_{j} x \in \overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ for each $x \in E$.

Theorem 4.3 Let $\left\{T_{j, t}: t \in G\right\}$ be as in Theorem 4.1. If a net $\left\{\mu_{j}^{\alpha}: \alpha \in I\right\}$ of means on G is asymptotically invariant and further $\mu_{j}^{\alpha}-r_{s}^{*} \mu_{j}^{\alpha}$ converges to 0 in the strong topology of $m_{j}(G)^{*}$, then there exists a projection Q_{j} of E onto $F_{j}(G)$ such that $\left\|\left(Q_{1}, \ldots, Q_{j}\right)\right\|_{j} \leq C$, $T_{j, \mu_{j}^{\alpha}} x$ converges strongly to $Q_{j} x$ for each $x \in E, Q_{j} T_{j, t}=T_{j, t} Q_{j}=Q_{j}$ for each $t \in G$, and $Q_{j} x \in$ $\overline{\operatorname{co}}\left\{T_{j, t} x: t \in G\right\}$ for each $x \in E$.

Proof As in the proof of Theorem 4.1, let $Q_{j}=T_{j, \mu_{j}}$, where μ_{j} is a cluster point of the net $\left\{\mu_{j}^{\alpha}: \alpha \in I\right\}$ in the weak ${ }^{*}$ topology of $m_{j}(G)^{*}$. We show that $T_{j, \mu_{j}^{\alpha}} x$ converges strongly to $Q_{j} x$ for each $x \in E$.
Let $E_{0}=\overline{\operatorname{co}}\left\{y-T_{j, t} y: y \in E, t \in G\right\}$. Then, for any $z \in E_{0}, T_{j, \mu_{j}^{\alpha}} z$ converges strongly to 0 . In fact, if $z=y-T_{j, s} y$, then since, for any $y^{*} \in E^{*}$,

$$
\begin{aligned}
\left|\left\langle T_{j, \mu_{j}^{\alpha}} z, y^{*}\right\rangle\right| & =\left|\mu_{j, t}^{\alpha}\left\langle T_{j, t}\left(y-T_{j, s} y\right), y^{*}\right\rangle\right| \\
& \left.=\left|\mu_{j, t}^{\alpha}\left\langle T_{j, t} y, y^{*}\right\rangle-\mu_{j, t}^{\alpha}\right| T_{j, t s} y, y^{*}\right\rangle \mid \\
& =\left|\left(\mu_{j, t}^{\alpha}-r_{s}^{*} \mu_{j, t}^{\alpha}\right)\left\langle T_{j, t} y, y^{*}\right\rangle\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|\left(\mu_{1}^{\alpha}-r_{s}^{*} \mu_{1}^{\alpha}, \ldots, \mu_{j}^{\alpha}-r_{s}^{*} \mu_{j}^{\alpha}\right)\right\|_{j} \cdot \sup _{t} \mid\left\langle T_{j, t} y, y^{*} \|\right. \\
& \leq\left\|\left(\mu_{1}^{\alpha}-r_{s}^{*} \mu_{1}^{\alpha}, \ldots, \mu_{j}^{\alpha}-r_{s}^{*} \mu_{j}^{\alpha}\right)\right\|_{j} \cdot C \cdot\|y\|_{j} \cdot\left\|y^{*}\right\|_{j^{\prime}}
\end{aligned}
$$

we have $\left\|\left(T_{1, \mu_{1}^{\alpha}} z, \ldots, T_{j, \mu_{j}^{\alpha}} z\right)\right\|_{j} \leq C \cdot\left\|\left(\mu_{1}^{\alpha}-r_{s}^{*} \mu_{1}^{\alpha}, \ldots, \mu_{j}^{\alpha}-r_{s}^{*} \mu_{j}^{\alpha}\right)\right\|_{j} \cdot\|y\|_{j}$. Using this inequality, we show that $T_{j, \mu_{j}^{\alpha}} z$ converges strongly to 0 for any $z \in E_{0}$. Let z be any element of E_{0} and ϵ be any positive number. By the definition of E_{0}, there exists an element $\sum_{i=1}^{n} a_{i}\left(y_{i}-\right.$ $\left.T_{j, s i} y_{i}\right) \in$ in the set $\operatorname{co}\left\{y-T_{j, s} y: y \in E, s \in G\right\}$ such that $\epsilon>2 C \cdot \|\left(z-\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{1, s,} y_{i}\right), \ldots, z-\right.$ $\left.\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{j, s_{i}} y_{i}\right)\right) \|_{j}$. On the other hand, from $\left\|\left(\mu_{1}^{\alpha}-r_{s}^{*} \mu_{1}^{\alpha}, \ldots, \mu_{j}^{\alpha}-r_{s}^{*} \mu_{j}^{\alpha}\right)\right\|_{j} \rightarrow 0$ for all $s \in G$, there exists $a_{0} \in I$ such that, for all $\alpha \geq \alpha_{0}$ and $i=1,2, \ldots, n$,

$$
\epsilon>\left\|\left(\mu_{1}^{\alpha}-r_{s_{i}}^{*} \alpha_{1}^{\alpha}, \ldots, \mu_{j}^{\alpha}-r_{s_{i}}^{*} \mu_{j}^{\alpha}\right)\right\|_{j} \cdot 2 C\left\|y_{i}\right\|_{j} .
$$

This yields

$$
\begin{aligned}
& \left\|\left(T_{1, \mu_{1}^{\alpha}} z, \ldots, T_{j, \mu_{j}^{\alpha}} z\right)\right\|_{j} \\
& \leq \|\left(T_{1, \mu_{1}^{\alpha}} z-T_{1, \mu_{1}^{\alpha}}\left(\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{1, s_{i}} y_{i}\right)\right),\right. \\
& \left.\ldots, T_{j, \mu_{j}^{\alpha}} z-T_{j, \mu_{j}^{\alpha}}\left(\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{j, s_{i}} y_{i}\right)\right)\right) \|_{j} \\
& +\left\|\left(T_{1, \mu_{1}^{\alpha}}\left(\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{1, s_{i}} y_{i}\right)\right), \ldots, T_{j, \mu_{j}^{\alpha}}\left(\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{j, s_{i}} y_{i}\right)\right)\right)\right\|_{j} \\
& \leq\left\|\left(T_{1, \mu_{1}^{\alpha}}, \ldots, T_{j, \mu_{j}^{\alpha}}\right)\right\|_{j} \\
& \cdot\left\|\left(z-\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{1, s_{i}} y_{i}\right), \ldots, z-\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{j, s_{i}} y_{i}\right)\right)\right\|_{j} \\
& +\sum_{i=1}^{n}\left\|\left(T_{1, \mu_{j}^{\alpha}}\left(y_{i}-T_{1, s_{i}} y_{i}\right), \ldots, T_{j, \mu_{j}^{\alpha}}\left(y_{i}-T_{j, s_{i}} y_{i}\right)\right)\right\|_{j} \\
& \leq C \cdot\left\|\left(z-\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{1, s_{i}} y_{i}\right), \ldots, z-\sum_{i=1}^{n} a_{i}\left(y_{i}-T_{i, s_{i}} y_{i}\right)\right)\right\|_{j} \\
& +\sup _{i}\left\|\left(\mu_{1}^{\alpha}-r_{s_{i}}^{*} \mu_{1}^{\alpha}, \ldots, \mu_{j}^{\alpha}-r_{s_{i}}^{*} \mu_{j}^{\alpha}\right)\right\|_{j} \cdot C \cdot\left\|y_{i}\right\|_{j} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \text {. }
\end{aligned}
$$

Hence, $T_{j, \mu_{j}^{\alpha}} Z$ converges strongly to 0 for each $z \in E_{0}$.
Next, assume that $x-T_{j, \mu_{j}} x$ for some $x \in E$ is not contained in the set E_{0}. Then, by the Hahn-Banach theorem, there exists a linear continuous functional y^{*} such that $\langle x-$ $\left.T_{j, \mu_{j}} x, y^{*}\right\rangle=1$ and $\left\langle z, y^{*}\right\rangle=0$ for all $z \in E_{0}$. So since $x-T_{j, t} x \in E_{0}$ for all $t \in G$, we have

$$
\left\langle x-T_{j, \mu_{j}} x, y^{*}\right\rangle=\mu_{j, t}\left\langle x-T_{j, t} x, y^{*}\right\rangle=0 .
$$

This is a contradiction. Hence, $x-T_{j, \mu_{j}}$ for all $x \in E$ are contained in E_{0}. Therefore we find that $T_{j, \mu_{j}^{\alpha}} x-T_{j, \mu_{j}} x=T_{j, \mu_{j}^{\alpha}}\left(x-T_{j, \mu_{j}}\right)$ converges strongly to 0 for all $x \in E$. This completes the proof.

By using Theorem 4.3, we can obtain the following corollary.

Corollary 4.4 Let E be a real Banach space and T_{j} be a linear operator of E into itself such that exists a constant C with $\left\|\left(T_{1}^{n}, \ldots, T_{j}^{n}\right)\right\|_{j} \leq C$ for $n=1,2, \ldots$, and T_{j} is weakly completely continuous, i.e., T_{j} maps the closed unit ball of E into a weakly compact subset of E. Then there exists a projection Q_{j} of E onto the set $F_{j}(T)$ of all fixed point of T_{j} such that $\left\|\left(Q_{1}, \ldots, Q_{j}\right)\right\|_{j} \leq C$, the Cesaro means $S_{j, n}=\frac{1}{n} \sum_{k=1}^{n} T_{j}^{k} x$ converges strongly to $Q_{j} x$ for each $x \in E$, and $T_{j} Q_{j}=Q_{j} T_{j}=Q_{j}$.

Proof Let $x \in E$. Then, since $\left\{T_{j}^{n} x: n=1,2, \ldots\right\}=T_{j}\left(\left\{T^{n-1} x: n=1,2, \ldots\right\}\right) \subset T_{j}(B(0,\|x\|$. $(c+1))$), where $B(x, r)$ means the closed ball with center x and radius r, the weak closure of $\left\{T_{j}^{n} x: n=1,2, \ldots\right\}$ is weakly compact. On the other hand, let $G=\{1,2,3, \ldots\}$ with the discrete topology and μ_{j}^{n} be a mean on G such that $\mu_{j}^{n}\left(f_{j}\right)=\sum_{i=1}^{n}\left(\frac{1}{n}\right) f_{j}(i)$ for each $f_{j} \in m_{j}(G)$. Then it is obvious that $\left\|\left(\mu_{1}^{n}-r_{k}^{*} \mu_{1}^{n}, \ldots, \mu_{j}^{n}-r_{k}^{*} \mu_{j}^{n}\right)\right\|_{j} \leq \frac{2 k}{n} \rightarrow 0$ for all $k \in G$. So, it follows from Theorem 4.3 that Corollary 4.4 is true.

If $G=[0, \infty)$ with the natural topology, then we obtain the corresponding result.

Corollary 4.5 Let E be a real Banach space and $\left\{T_{j, t}: t \in[0, \infty)\right\}$ be a family of linear operators of E into itself satisfying Assumption (A). Then there exists a projection Q_{j} of E onto $F_{j}(G)$ such that $\left\|\left(Q_{1}, \ldots, Q_{j}\right)\right\|_{j} \leq C, \frac{1}{T} \int_{0}^{T} T \int_{j, t} x d t$ converges strongly to $Q_{j} x$ for each $x \in E$, and $T_{j, t} Q_{j}=Q_{j} T_{j, t}=Q_{j}$ for each $t \in[0, \infty)$.

Remark 4.6 $\frac{1}{T} \int_{0}^{T} T \int_{j, t} x d t$ are weak vector valued integrals with respect to means on $G=[0, \infty)$. As in Section IV of Rodé [4], we can also obtain the strong convergence of the sequences

$$
(1-r) \sum_{k=1}^{\infty} r^{k} T_{j}^{k} x, \quad r \rightarrow 1-
$$

and

$$
\lambda \int_{0}^{\infty} e^{-\lambda t} T_{j, t} x d t, \quad \lambda \rightarrow 0+.
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Ashrafi Esfahani Ave., Tehran, 14778, Iran. ${ }^{2}$ Department of Mathematics and Computer Science, Iran University of Science and Technology, Tehran, Iran.
${ }^{3}$ Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju, 660-701, Korea

Acknowledgements

Yeol Je Cho was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2013053358).

References

1. Yosida, K: Mean ergodic theorem in Banach spaces. Proc. Imp. Acad. (Tokyo) 14(8), 292-294 (1938)
2. Baillon, J-B: Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C. R. Acad. Sci. Paris, Sér. A-B 280, A1511-A1514 (1975) (French)
3. Pazy, A: On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space. Isr. J. Math. 26(2), 197-204 (1977)
4. Rodé, G: An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space. J. Math. Anal. Appl. 85(1), 172-178 (1982)
5. Takahashi, W: A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space. Proc. Am. Math. Soc. 81(2), 253-256 (1981)
6. Greenleaf, FP: Invariant Means on Topological Groups and Their Applications. Van Nostrand Mathematical Studies, vol. 16. Van Nostrand-Reinhold, New York (1969)
7. Takahashi, W: Invariant functions for amenable semigroups of positive contractions on L1 . Kodai Math. Semin. Rep. 23, 131-143 (1971)
8. Hirano, N, Takahashi, W: Nonlinear ergodic theorems for an amenable semigroup of nonexpansive mappings in a Banach space. Pac. J. Math. 112(2), 333-346 (1984)
9. Kido, K, Takahashi, W: Mean ergodic theorems for semigroups of linear operators. J. Math. Anal. Appl. 103(2), 387-394 (1984)
10. Dales, HG, Polyakov, ME: Multi-normed spaces. Diss. Math. 488, 1-165 (2012)
11. Dales, HG, Moslehian, MS: Stability of mappings on multi-normed spaces. Glasg. Math. J. 49(2), 321-332 (2007)
12. Moslehian, MS, Nikodem, K, Popa, D: Asymptotic aspect of the quadratic functional equation in multi-normed spaces. J. Math. Anal. Appl. 355(2), 717-724 (2009)
13. Park, C, Saadati, R: Approximation of a generalized additive mapping in multi-Banach modules and isomorphisms in multi-C*-algebras: a fixed-point approach. Adv. Differ. Equ. 2012, 162 (2012)
14. O'Regan, D, Rassias, JM, Saadati, R: Approximations of ternary Jordan homomorphisms and derivations in multi-C* ternary algebras. Acta Math. Hung. 134(1-2), 99-114 (2012)
15. Agarwal, RP, Cho, YJ, Park, C, Saadati, R: Approximate homomorphisms and derivation in multi-Banach algebras. Comment. Math. 51(1), 23-38 (2011)
16. Kenari, HM, Saadati, R, Cho, YJ: The mean ergodic theorem for nonexpansive mappings in multi-Banach spaces. J. Inequal. Appl. 2014, 259 (2014)
17. Day, MM: Amenable semigroups. III. J. Math. 1, 509-544 (1957)
18. Saluja, GS: Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces. J. Nonlinear Sci. Appl. 7(2), 138-149 (2014)
19. Thianwan, T: Convergence criteria of modified Noor iterations with errors for three asymptotically nonexpansive nonself-mappings. J. Nonlinear Sci. Appl. 6(3), 181-197 (2013)
20. Purtas, Y, Kiziltunc, H: Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces. J. Nonlinear Sci. Appl. 5(5), special issue, 403-411 (2012)

10.1186/1029-242X-2014-402

Cite this article as: Kenari et al.: Mean ergodic theorem for semigroups of linear operators in multi-Banach spaces. Journal of Inequalities and Applications 2014, 2014:402

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

