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1 Introduction
In , Yosida [] proved the following mean ergodic theorem for linear operators: Let E
be a real Banach space and Tj (j = , , . . .) be linear operators of E into itself such that there
exists a constant C with ‖(Tn

 , . . . ,Tn
j )‖ ≤ C for n = , , , . . . , and Tj is weakly completely

continuous, i.e., Tj maps the closed unite ball of E into a weakly compact subset of E. Then
the Cesaro means

Sn,jx =

n

n∑
k=

Tk
j x

converges strongly as n → +∞ to a fixed point of Tj for each x ∈ E.
On the other hand, in , Baillon [] proved the following nonlinear ergodic theorem.

Let X be a Banach space and C be a closed convex subset of X. The mappings Tj : C → C
(j = , , . . .) are called nonexpansive on C if

‖Tjx – Tjy‖ ≤ ‖x – y‖ ∀x, y ∈ C.

Let F(Tj) be the set of fixed points of Tj. If X is strictly convex, F(Tj) is closed and convex.
In [], Baillon proved the first nonlinear ergodic theorem such that if X is a real Hilbert
space and F(Tj) �= ∅, then for each x ∈ C, the sequence {Sn,jx} defined by

Sn,jx =
(

n

)(
x + Tjx + · · · + Tn–

j x
)

converges weakly to a fixed point of Tj. It was also shown by Pazy [] that if X is a real
Hilbert space and Sn,jx converges weakly to y ∈ C, then y ∈ F(Tj).
Recently, Rodé [] and Takahashi [] tried to extend this nonlinear ergodic theorem to

semigroup, generalizing the Cesaro means on N = {, , . . .}, such that the corresponding
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sequence of mappings converges to a projection onto the set of common fixed points. In
this paper, by using Rodé’s method, we extend Yosida’s theorem to semigroups of linear
operators in multi-Banach spaces. The proofs employ the methods of Yosida [], Rodé [],
Greenleaf [] and Takahashi [, ]. Our paper is motivated from ideas in [].

2 Multi-Banach spaces
The notion of multi-normed space was introduced by Dales and Polyakov in []. This
concept is somewhat similar to operator sequence space and has some connections with
operator spaces and Banach lattices. Motivations for the study of multi-normed spaces
and many examples are given in [–].
Let (E,‖ · ‖) be a complex normed space, and let k ∈N. We denote by Ek the linear space

E ⊕ · · · ⊕ E consisting of k-tuples (x, . . . ,xk), where x, . . . ,xk ∈ E. The linear operations
on Ek are defined coordinate-wise. The zero element of either E or Ek is denoted by .We
denote by Nk the set {, , . . . ,k} and by �k the group of permutations on k symbols.

Definition . Let E be a linear space, and take k ∈N. For σ ∈ �k , define

Aσ (x) = (xσ (), . . . ,xσ (k)), x = (x, . . . ,xk) ∈ Ek .

For α = (αi) ∈Ck , define

Mα(x) = (αixi), x = (x, . . . ,xk) ∈ Ek .

Definition . Let (E,‖ · ‖) be complex (respectively, real) normed space, and take n ∈N.
A multi-norm of level n on {Ek : k ∈ Nn} is a sequence (‖ · ‖k : k ∈ Nn) such that ‖ · ‖ is a
norm on Ek for each k ∈Nn, such that ‖x‖ = ‖x‖ for each x ∈ E (so that ‖ · ‖ is the initial
norm), and such that the following axioms (A)-(A) are satisfied for each k ∈ Nn with
k ≥ :
(A) for each σ ∈ �k and x ∈ Ek , we have

∥∥Aσ (x)
∥∥
k = ‖x‖k ;

(A) for each α, . . . ,αk ∈C (respectively, each α, . . . ,αk ∈ R) and x ∈ Ek , we have

∥∥Mα(x)
∥∥
k ≤

(
max
i∈Nk

|αi|
)
‖x‖k ;

(A) for each x, . . . ,xk–, we have

∥∥(x, . . . ,xk–, )∥∥k =
∥∥(x, . . . ,xk–)∥∥k–;

(A) for each x, . . . ,xk– ∈ E

∥∥(x, . . . ,xk–,xk–,xk–)∥∥k =
∥∥(x, . . . ,xk–,xk–)∥∥k–.

In this case, ((Ek ,‖ · ‖k) : k ∈Nn) is a multi-normed space of level n.
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A multi-norm on {Ek : k ∈N} is a sequence
(‖ · ‖k

)
=

(‖ · ‖k : k ∈N
)

such that (‖ · ‖k : k ∈Nn) is a multi-norm of level n for each n ∈N. In this case, ((En,‖ · ‖n) :
n ∈N) is a multi-normed space.

Lemma . [] Suppose that ((Ek ,‖ · ‖k) : k ∈ N) is a multi-normed space, and take k ∈
Nn. Then
(a) ‖(x, . . . ,x)‖k = ‖x‖ (x ∈ E);
(b) maxi∈Nk ‖xi‖ ≤ ‖(x, . . . ,xk)‖k ≤ ∑k

i= ‖xi‖ ≤ kmaxi∈Nk ‖xi‖ (x, . . . ,xk ∈ E).

It follows from (b) that, if (E,‖ · ‖) is a Banach space, then (Ek ,‖ · ‖k) is a Banach space
for each k ∈N; in this case ((Ek ,‖ · ‖k) : k ∈N) is a multi-Banach space.
Now we state two important examples of multi-norms for an arbitrary normed space E;

cf. [].

Example . The sequence (‖ · ‖k : k ∈N) on {Ek : k ∈N} defined by

∥∥(x, . . . ,xk)∥∥k :=max
i∈Nk

‖xi‖ (x, . . . ,xk ∈ E)

is a multi-norm called the minimummulti-norm. The terminology ‘minimum’ is justified
by property (b).

Example . Let {(‖ · ‖α
k : k ∈N) : α ∈ A} be the (non-empty) family of all multi-norms on

{Ek : k ∈N}. For k ∈ N, set

∥∥(x, . . . ,xk)∥∥k := sup
α∈A

∥∥(x, . . . ,xk)∥∥α

k (x, . . . ,xk ∈ E).

Then (‖ · ‖k : k ∈N) is a multi-norm on {Ek : k ∈ N}, called the maximum multi-norm.

We need the following observation, which can easily be deduced from the triangle in-
equality for the norm ‖ · ‖k and the property (b) of multi-norms.

Lemma . Suppose that k ∈ N and (x, . . . ,xk) ∈ Ek . For each j ∈ {, . . . ,k}, let (xjn)n=,,...
be a sequence in E such that limn→∞ xjn = xj. Then for each (y, . . . , yk) ∈ Ek we have

lim
n→∞

(
xn – y, . . . ,xkn – yk

)
= (x – y, . . . ,xk – yk).

Definition . Let ((Ek ,‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence (xn) in E is
amulti-null sequence if, for each ε > , there exists n ∈N such that

sup
k∈N

∥∥(xn, . . . ,xn+k–)∥∥k < ε (n≥ n).

Let x ∈ E . We say that the sequence (xn) ismulti-convergent to x ∈ E and write

lim
n→∞xn = x

if (xn – x) is a multi-null sequence.
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3 Preliminaries and lemmas
Let E a real Banach space and let E∗ be the conjugate space of E, that is, the space of all
continuous linear functionals on E. The value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x,x∗〉.
We denote by coD the convex hull of D, coD the closure of coD.
Let U be a linear continuous operator of E into itself. Then we denote by U∗ the conju-

gate operator of U .

Assumption (A) Let (Ej,‖ · ‖j) be a multi-Banach space and {Tj,t : t ∈G} (j = , , . . .) be a
family of linear continuous operators of a real Banach space Ej into itself such that there
exists a real number C with ‖(T,t , . . . ,Tj,t)‖j ≤ C for all t ∈ G and the weak closure of
{Tj,tx : t ∈G} is weakly compact, for each x ∈ E. The index setG is a topological semigroup
such that Tj,st = Tj,s · Tj,t for all s, t ∈ G and Tj is continuous with respect to the weak
operator topology: 〈Tj,sx,x∗〉 → 〈Tj,tx,x∗〉 for all x ∈ E and x∗ ∈ E∗ if s → t in G.

We denote by mj(G) the Banach space of all bounded continuous real valued functions
on the topological semigroup G with the supremum norm. For each s ∈ G and fj ∈mj(G),
we define elements lsfj and rsfj inmj(G) given by lsfj(t) = fj(st) and rsfj(t) = fj(ts) for all t ∈G.
An element μj ∈ mj(G)∗ (the conjugate space of mj(G)) is called a mean on G if ‖μj‖ =
μj() =  moreover, we have ‖(μ, . . . ,μj)‖j =

∑j
i= μi()

j = . A mean μj on G is called left
(right) invariant if μj(lsfj) = μj(fj) (μj(rsfj) = μj(fj)) for all fj ∈mj(G) and s ∈G. An invariant
mean is a left and right invariant mean. We know that μj ∈ mj(G)∗ is a mean on G if and
only if

inf
{
fj(t) : t ∈G

} ≤ μj(fj)≤ sup
{
fj(t) : t ∈G

}
for every fj ∈ mj(G); see [, –].
Let {Tj,t : t ∈ G} be a family of linear continuous operators of E into itself satisfying

Assumption (A) and μj be a mean on G. Fix x ∈ E. Then, for x∗ ∈ E∗, the real valued
function t → 〈Tj,tx,x∗〉 is inmj(G). Denote by μj,t〈Tj,tx,x∗〉 the value of μj at this function.
By linearity of μj and of 〈·, ·〉, this is linear in x∗; moreover, since

∣∣(μ,t
〈
T,tx,x∗〉, . . . ,μj,t

〈
Tj,tx,x∗〉)∣∣

≤ ∥∥(μ, . . . ,μj)
∥∥
j · supt

∣∣(〈T,tx,x∗〉, . . . ,μj,t
〈
Tj,tx,x∗〉)∣∣

≤ sup
t

∥∥(Tx, . . . ,Tjx)
∥∥
j ·

∥∥x∗∥∥
j

≤ C · ‖x‖j ·
∥∥x∗∥∥

j

it is continuous in x∗. Hence we find that μj,t〈Tj,tx, ·〉 is an element of E∗∗. So, from weak
compactness of co{Tj,tx : t ∈G} such that μj,t〈Tj,tx,x∗〉 = 〈Tj,μj x,x∗〉 for every x∗ ∈ E∗.
Put K = co{Tj,tx : t ∈G} and suppose that the element μj,t〈Tj,tx, ·〉 is not contained in the

n(K ), where n is the natural embedding of the Banach space E into its second conjugate
space E∗∗. Then, since the convex set n(K ) is compact in the weak∗ topology of E∗∗, there
exists an element y∗ ∈ E∗ such that

μj,t
〈
Tj,tx, y∗〉 < inf

{〈
y∗, z∗∗〉 : z∗∗ ∈ n(k)

}
.
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Hence, we have

μj,t
〈
Tj,tx, y∗〉 < inf

{〈
y∗, z∗∗〉 : z∗∗ ∈ n(k)

}
≤ inf

{〈
Tj,tx, y∗〉 : t ∈ G

}
≤ μj,t

〈
Tj,tx, y∗〉.

This is a contradiction. Thus, for a mean μj on G, we can define a linear continuous op-
erator Tj,μj of E into itself such that ‖(T,μ , . . . ,Tj,μj )‖j ≤ C, Tj,μj x ∈ co{Tj,tx : t ∈ G} for all
x ∈ E, and μj,t〈Tj,tx,x∗〉 = 〈Tj,μj x,x∗〉 for all x ∈ E and x∗ ∈ E∗. We denote by Fj(G) the set
all common fixed points of the mappings Tj,t , t ∈ G.

Lemma . Assume that a left invariant mean μj exists on G, then Tj,μj (E)⊂ Fj(G). Espe-
cially, Fj(G) is then not empty.

Proof Let x ∈ E and μ be a left invariant mean on G. Then since, for s ∈ G and x∗,

〈
Tj,sTj,μJ x,x

∗〉 = 〈
Tj,μj x,T

∗
j,sx

∗〉
= μj,t

〈
Tj,tx,T∗

j,sx
∗〉 = μj,t

〈
Tj,sTj,tx,x∗〉

= μj,t
〈
Tj,stx,x∗〉 = μj,t

〈
Tj,tx,x∗〉

=
〈
Tj,μj x,x

∗〉,
we have Tj,sTj,μj x = Tj,μj x. Hence, Tj,μj (E)⊂ Fj(G). �

Lemma . Let λj be an invariant mean on G. Then Tj,λjTj,s = Tj,sTj,λj = Tj,λj for each s ∈ G
and Tj,λjTj,μj = Tj,μjTj,λj = Tj,λj for each mean μj on G. Especially, Tj,λj is a projection of E
onto F(G).

Proof Let s ∈ G. Then, since

〈
Tj,λjTj,sx,x∗〉 = λj,t

〈
Tj,tTj,sx,x∗〉 = λj,t

〈
Tj,tsx,x∗〉

= λj,t
〈
Tj,tx,x∗〉 = 〈

Tj,λj x,x
∗〉

for x ∈ E and x∗ ∈ E∗, we have Tj,λjTj,s = Tj,λj . It is obvious from Lemma . that Tj,sTj,λj =
Tj,λj for each s ∈G. Let μj be a mean on G. Then, since

〈
Tj,μjTj,λj x,x

∗〉 = μj,t
〈
Tj,tTj,λj x,x

∗〉 = 〈
μj,tTj,λj x,x

∗〉
=

〈
Tj,λj x,x

∗〉
and

〈
Tj,λjTj,μj x,x

∗〉 = 〈
Tj,μj x,T

∗
j,λj x

∗〉 = μj,t
〈
Tj,tx,T∗

j,λj x
∗〉

= μj,t
〈
Tj,λjTj,tx,x∗〉 = μj,t

〈
Tj,λj x,x

∗〉
=

〈
Tj,λj x,x

∗〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/402
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for x ∈ E and x∗ ∈ E∗, we have Tj,μjTj,λj = Tj,λjTj,μj = Tj,λj . Putting μj = λj, we have T
λj
= Tλj

and hence Tλj is a projection of E onto Fj(G). �

As direct consequence of Lemma ., we have the following.

Lemma . Let μj and λj be invariant means on G. Then Tj,μj = Tj,λj .

Lemma . Assume that an invariant mean exists on G. Then, for each x ∈ E, the set
co{Tj,tx : t ∈G} ∩ Fj(G) consists of a single point.

Proof Let x ∈ E and μj be an invariant mean on G. Then we know that Tj,μj x ∈ Fj(G)
and Tj,μj x ∈ co{Tj,tx : t ∈ G}. So, we show that co{Tj,tx : t ∈ G} ∩ Fj(G) = {Tj,μj x}. Let
x ∈ co{Tj,tx : t ∈ G} ∩ Fj(G) and ε > . Then, for x∗ ∈ E∗, there exists an element∑n

i= αiTj,tix in the set co{Tj,tx : t ∈G} such that ε > C · ‖x∗‖j · ‖∑n
i= αiTj,tix– x‖j. Hence,

we have

ε > C · ∥∥x∗∥∥
j ·

∥∥∥∥∥
n∑
i=

αiTj,tix – x

∥∥∥∥∥
j

≥ sup
t

‖Tj,t‖j ·
∥∥∥∥∥

n∑
i=

αiTj,tix – x

∥∥∥∥∥
j

· ∥∥x∗∥∥
j

≥ sup
t

∥∥∥∥∥
n∑
i=

αiTj,tTj,tix – x

∥∥∥∥∥
j

· ∥∥x∗∥∥
j

≥
∣∣∣∣∣
〈 n∑

i=

αiTj,tTj,tix – x,x∗
〉∣∣∣∣∣

=

∣∣∣∣∣
n∑
i=

αiμj,t
〈
Tj,ttix – x,x∗〉∣∣∣∣∣

=
∣∣μj,t

〈
Tj,tx – x,x∗〉∣∣

=
∣∣〈Tj,μj x – x,x∗〉∣∣.

Since ε is arbitrary, we have 〈Tj,μj x,x∗〉 = 〈x,x∗〉 for every x∗ ∈ E∗ and hence Tj,μj x = x.
�

4 Ergodic theorems
Now, we can prove mean ergodic theorems for semigroups of linear continuous operators
in multi-Banach space.

Theorem . Let {Tj,t : t ∈G} be a family of linear continuous operators in a real Banach
space E satisfying Assumption (A). If a net {μα

j : α ∈ I} of means on G is asymptotically
invariant, i.e.,

μα
j – r∗s μ

α
j and μα

j – l∗s μ
α
j

converge to  in the weak∗ topology of mj(G)∗ for each s ∈G, then there exists a projection Qj

of E on to Fj(G) such that ‖(Q, . . . ,Qj)‖j ≤ C, Tj,μα
j
x converges weakly to Qjx for each x ∈ E,

http://www.journalofinequalitiesandapplications.com/content/2014/1/402
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QjTj,t = Tj,tQj = Qj for each t ∈ G, and Qjx ∈ co{Tj,tx : t ∈ G} for each x ∈ E. Furthermore,
the projection Qj onto Fj(G) is the same for all asymptotically invariant nets.

Proof Let μj be a cluster point of net {μα
j : α ∈ I} in the weak∗ topology of mj(G)∗.

Then μj is an invariant mean on G. Hence, by Lemma ., Tj,μj is a projection of E
onto Fj(G) such that ‖(T,μ , . . . ,Tj,μj )‖j ≤ C, Tj,μjTj,t = Tj,tTj,μj = Tj,μj for each t ∈ G and
Tj,μj x ∈ co{Tj,tx : t ∈ G} for each x ∈ E. Setting Qj = Tj,μj , we show that Tj,μα

j
x converges

weakly toQjx for each x ∈ E. SinceTj,μα
j
x ∈ co{Tj,tx : t ∈ G} for all α ∈ I and co{Tj,tx : t ∈G}

is weakly compact, there exists a subnet {Tj,μβ
j
x : β ∈ J} of {Tj,μα

j
x : α ∈ I} such that Tj,μβ

j
x

convergesweakly to an element x ∈ co{Tj,tx : t ∈G}. To show thatTj,μα
j
x convergesweakly

toQjx, it is sufficient to show x =Qjx. Let x∗ ∈ E∗ and s ∈G. Since Tj,μβ
j
x→ x weakly, we

have μ
β

j,t〈Tj,tx,x∗〉 → 〈x,x∗〉 and μ
β

j,t〈Tj,tx,T∗
j,sx∗〉 → 〈x,T∗

j,sx∗〉 = 〈Tj,sx,x∗〉. On the other
hand, since μ

β

j – l∗s μ
β

j →  in the weak∗ topology, we have

μ
β

j,t
〈
Tj,tx,x∗〉 – l∗s μ

β

j,t
〈
Tj,tx,x∗〉

= μ
β

j,t
〈
Tj,tx,x∗〉 –μ

β

j,t
〈
Tj,stx,x∗〉

= μ
β

j,t
〈
Tj,tx,x∗〉 –μ

β

j,t
〈
Tj,tx,T∗

j,sx
∗〉

→ .

Hence, we have 〈x,x∗〉 = 〈Tj,sx,x∗〉 and hence x ∈ Fj(G). So, we obtain Qjx = Tj,μj x = x
from Lemma .. That the projection Qj is the same for all asymptotically invariant nets
is obvious from Lemma .. �

As direct consequence of Theorem ., we have the following.

Corollary . Let {Tj,t : t ∈ G} be as in Theorem . and assume that an invariant mean
exists on G. Then there exists a projection Qj of E onto Fj such that ‖(Q, . . . ,Qj)‖j ≤ C,
QjTj,t = Tj,tQj =Qj for each t ∈G and Qjx ∈ co{Tj,tx : t ∈G} for each x ∈ E.

Theorem . Let {Tj,t : t ∈ G} be as in Theorem .. If a net {μα
j : α ∈ I} of means on G

is asymptotically invariant and further μα
j – r∗s μα

j converges to  in the strong topology
of mj(G)∗, then there exists a projection Qj of E onto Fj(G) such that ‖(Q, . . . ,Qj)‖j ≤ C,
Tj,μα

j
x converges strongly to Qjx for each x ∈ E,QjTj,t = Tj,tQj =Qj for each t ∈G, and Qjx ∈

co{Tj,tx : t ∈G} for each x ∈ E.

Proof As in the proof of Theorem ., let Qj = Tj,μj , where μj is a cluster point of the net
{μα

j : α ∈ I} in the weak∗ topology of mj(G)∗. We show that Tj,μα
j
x converges strongly to

Qjx for each x ∈ E.
Let E = co{y – Tj,ty : y ∈ E, t ∈ G}. Then, for any z ∈ E, Tj,μα

j
z converges strongly to .

In fact, if z = y – Tj,sy, then since, for any y∗ ∈ E∗,

∣∣〈Tj,μα
j
z, y∗〉∣∣ = ∣∣μα

j,t
〈
Tj,t(y – Tj,sy), y∗〉∣∣

=
∣∣μα

j,t
〈
Tj,ty, y∗〉 –μα

j,t
〈
Tj,tsy, y∗〉∣∣

=
∣∣(μα

j,t – r∗s μ
α
j,t
)〈
Tj,ty, y∗〉∣∣

http://www.journalofinequalitiesandapplications.com/content/2014/1/402
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≤ ∥∥(
μα
 – r∗s μ

α
 , . . . ,μ

α
j – r∗s μ

α
j
)∥∥

j · supt
∣∣〈Tj,ty, y∗〉∣∣

≤ ∥∥(
μα
 – r∗s μ

α
 , . . . ,μ

α
j – r∗s μ

α
j
)∥∥

j ·C · ‖y‖j ·
∥∥y∗∥∥

j,

we have ‖(T,μα

z, . . . ,Tj,μα

j
z)‖j ≤ C · ‖(μα

 – r∗s μα
 , . . . ,μα

j – r∗s μα
j )‖j · ‖y‖j. Using this inequal-

ity, we show that Tj,μα
j
z converges strongly to  for any z ∈ E. Let z be any element of E

and ε be any positive number. By the definition of E, there exists an element
∑n

i= ai(yi –
Tj,si yi)ε in the set co{y–Tj,sy : y ∈ E, s ∈G} such that ε > C ·‖(z–∑n

i= ai(yi–T,si yi), . . . , z–∑n
i= ai(yi – Tj,si yi))‖j. On the other hand, from ‖(μα

 – r∗s μα
 , . . . ,μα

j – r∗s μα
j )‖j →  for all

s ∈G, there exists a ∈ I such that, for all α ≥ α and i = , , . . . ,n,

ε >
∥∥(

μα
 – r∗siμ

α
 , . . . ,μ

α
j – r∗siμ

α
j
)∥∥

j · C‖yi‖j.

This yields
∥∥(T,μα


z, . . . ,Tj,μα

j
z)

∥∥
j

≤
∥∥∥∥∥
(
T,μα


z – T,μα



( n∑
i=

ai(yi – T,si yi)

)
,

. . . ,Tj,μα
j
z – Tj,μα

j

( n∑
i=

ai(yi – Tj,si yi)

))∥∥∥∥∥
j

+

∥∥∥∥∥
(
T,μα



( n∑
i=

ai(yi – T,si yi)

)
, . . . ,Tj,μα

j

( n∑
i=

ai(yi – Tj,si yi)

))∥∥∥∥∥
j

≤ ∥∥(T,μα

, . . . ,Tj,μα

j
)
∥∥
j

·
∥∥∥∥∥
(
z –

n∑
i=

ai(yi – T,si yi), . . . , z –
n∑
i=

ai(yi – Tj,si yi)

)∥∥∥∥∥
j

+
n∑
i=

∥∥(
T,μα

j
(yi – T,si yi), . . . ,Tj,μα

j
(yi – Tj,si yi)

)∥∥
j

≤ C ·
∥∥∥∥∥
(
z –

n∑
i=

ai(yi – T,si yi), . . . , z –
n∑
i=

ai(yi – Tj,si yi)

)∥∥∥∥∥
j

+ sup
i

∥∥(
μα
 – r∗siμ

α
 , . . . ,μ

α
j – r∗siμ

α
j
)∥∥

j ·C · ‖yi‖j

<
ε


+

ε


= ε.

Hence, Tj,μα
j
Z converges strongly to  for each z ∈ E.

Next, assume that x – Tj,μj x for some x ∈ E is not contained in the set E. Then, by
the Hahn-Banach theorem, there exists a linear continuous functional y∗ such that 〈x –
Tj,μj x, y∗〉 =  and 〈z, y∗〉 =  for all z ∈ E. So since x – Tj,tx ∈ E for all t ∈G, we have

〈
x – Tj,μj x, y

∗〉 = μj,t
〈
x – Tj,tx, y∗〉 = .

This is a contradiction. Hence, x–Tj,μj for all x ∈ E are contained in E. Therefore we find
that Tj,μα

j
x – Tj,μj x = Tj,μα

j
(x – Tj,μj ) converges strongly to  for all x ∈ E. This completes

the proof. �
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By using Theorem ., we can obtain the following corollary.

Corollary . Let E be a real Banach space and Tj be a linear operator of E into itself
such that exists a constant C with ‖(Tn

 , . . . ,Tn
j )‖j ≤ C for n = , , . . . , and Tj is weakly

completely continuous, i.e., Tj maps the closed unit ball of E into a weakly compact subset
of E. Then there exists a projection Qj of E onto the set Fj(T) of all fixed point of Tj such that
‖(Q, . . . ,Qj)‖j ≤ C, the Cesaro means Sj,n = 

n
∑n

k=T
k
j x converges strongly to Qjx for each

x ∈ E, and TjQj =QjTj =Qj.

Proof Let x ∈ E. Then, since {Tn
j x : n = , , . . .} = Tj({Tn–x : n = , , . . .}) ⊂ Tj(B(,‖x‖ ·

(c + ))), where B(x, r) means the closed ball with center x and radius r, the weak closure
of {Tn

j x : n = , , . . .} is weakly compact. On the other hand, let G = {, , , . . .} with the
discrete topology andμn

j be amean onG such thatμn
j (fj) =

∑n
i=(


n )fj(i) for each fj ∈mj(G).

Then it is obvious that ‖(μn
 – r∗kμ

n
 , . . . ,μn

j – r∗kμ
n
j )‖j ≤ k

n →  for all k ∈ G. So, it follows
from Theorem . that Corollary . is true. �

If G = [,∞) with the natural topology, then we obtain the corresponding result.

Corollary . Let E be a real Banach space and {Tj,t : t ∈ [,∞)} be a family of linear
operators of E into itself satisfying Assumption (A). Then there exists a projection Qj of E
onto Fj(G) such that ‖(Q, . . . ,Qj)‖j ≤ C, 

T
∫ T
 T

∫
j,t x dt converges strongly to Qjx for each

x ∈ E, and Tj,tQj =QjTj,t =Qj for each t ∈ [,∞).

Remark . 
T

∫ T
 T

∫
j,t x dt are weak vector valued integrals with respect to means on

G = [,∞). As in Section IV of Rodé [], we can also obtain the strong convergence of the
sequences

( – r)
∞∑
k=

rkTk
j x, r → –

and

λ

∫ ∞


e–λtTj,tx dt, λ →  + .
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