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Abstract

In this article, the univalent Meijer’s G-functions are classified into three types. Certain
integral, differential or differintegral transformations preserving the univalence of the
Meijer’s G-functions, have been discussed. This classification and transformations are
based on Kiryakova’s studies in representing the generalized hypergeometric
functions as fractional differintegral operators of three basic elementary functions. In
fact, these transformations are the Erdélyi-Kober operators (m = 1) or their two-tuple
compositions (for m = 2) known also as hypergeometric fractional differintegrals. A
number of new univalent Meijer’s G-functions can be obtained by successive
applications of such transformations, being operators of the generalized fractional
calculus (GFC). Some new relations are then interpreted for the starlike, convex, and
positive real part functions in terms of Meijer’s G-functions.
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1 Introduction
One of the main topics in univalent functions theory is dealing with integral or differ-

ential operators that are used to obtain new subclasses of univalent functions and their

properties. The starting point in this theory is to perceive some transformations, or

operators, in which the property of univalence is preserved [1]. These well-known

transformations include rotation, dilation and others. To study their action, usually the

series representation of the functions in the class A is used. Recently, a very general

class of such operators have been defined by means of single integrals (or differinte-

grals) involving Meijer’s G-functions as kernels, the so-called operators of the general-

ized fractional calculus (GFC), [2]. In [3], Kiryakova et al. proposed sufficient

conditions that guarantee the mappings related to these operators to preserve the uni-

valency of the functions. In addition, in [4] they considered also some other mapping,

distortion, and characterization properties of the generalized fractional calculus opera-

tors involving Meijer’s G-functions.

In the recent decades, Meijer’s G-function has found various applications in different

areas close to applied mathematics such as mathematical physics (hydrodynamics, the-

ory of elasticity, potential theory, etc), theoretical physics, mathematical statistics,

queuing theory, optimization theory, sinusoidal signals, generalized birth and death
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processes and many others. Due to the elegant and general properties of the G-func-

tions, it has become possible to represent the solutions of many problems in these

fields in their terms. Stated in this way, the problems gain a much more general char-

acter, due to the great freedom of choice of the orders m; n; p; q and the parameters

of the G-functions, in comparison to the other special functions. Simultaneously, the

calculations become simpler and more unified. An evidence showing the importance of

the G-functions is given by the fact that the basic elementary functions and most of

the special functions of mathematical physics, including the generalized hypergeo-

metric functions, follow as its particular cases. Therefore, each result concerning a

G-function has become a key leading to numerous particular results for the Bessel

functions, confluent hypergeometric functions, classical orthogonal polynomials, etc,

see [2].

It is believed that Meijer’s G-functions could be a convenient tool to unify certain

works on univalent functions theory; in other words, the results on univalent functions

and also on the subclasses of the univalent functions can be represented in the lan-

guage of Meijer’s G-functions, denoted by Gm,n
p,q . To work with univalent Meijer’s

G-functions, we need to know some properties of the GFC operators, related to them,

and especially their mapping properties. Fortunately, Kiryakova et al. [2,3] provided all

the needs to achieve the goals set in the current study. However, the proposed

approach is a little bit different and thus, it will be interesting to see that difference.

The content of this article is divided into three main sections: In the first section, the

definition of the Meijer’s G-function, two important properties of Meijer’s G-functions

including a generalized (multiple, m-tuple) Erdélyi-Kober (E-K) operator of the integra-

tion of fractional multi-order and the corresponding multiple (m-tuple) fractional deri-

vatives of multi-order, are recalled. The second section is devoted to a main lemma

related to the transformations of univalent Meijer’s G-functions. In this section, the

authors work with differintegral operators to transform one univalent Meijer’s G func-

tion of the lower rank to another univalent Meijer’s G-function of the upper rank. In

fact, these operators originated from the generalized fractional calculus developed by

Kiryakova [2]. Fortunately, these transformations can be repeated many times and

finally, there will be a lot of univalent Meijer’s G-functions, and operators related to

them. Indeed, these are the most general transformations that preserve the property of

univalence, and this fact gives us a lot of univalent Meijer’s G-functions by the itera-

tion method. The third section classifies in tables the actions on the G-functions of the

operators of GFC for m = 1 and m = 2 and illustrates the same for many known

operators in the theory of univalent functions. The last section discusses some relation-

ships for the starlike functions, convex functions, and positive real part functions, in

the language of Meijers’s G-functions.

Definition 1.1. A definition of the Meijer’s G-function is given by the following path

integral in the complex plane, called Mellin-Barnes type integral [2,5-8]:

Gm,n
p,q

(
a1, ..., ap
b1, ..., bq

|z
)
=

1
2π i

∫
L

∏m
j=1 �(bj − s)

∏n
j=1 �(1 − aj + s)∏q

j=m+1 �(1 − bj + s)
∏p

j=n+1 �(aj − s)
zsds. (1:1)

Here, an empty product means unity and the integers m; n; p; q are called orders of

the G-function, or the components of the order (m; n; p; q); ap and bq are called
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“parameters” and in general, they are complex numbers. The definition holds under

the following assumptions: 0 ≤ m ≤ q and 0 ≤ n ≤ p, where m, n, p, and q are integer

numbers. aj - bk ≠ 1, 2, 3,... for k = 1,..., n and j = 1, 2,..., m imply that no pole of any

Γ(bj - s), j = 1,..., m coincides with any pole of any Γ(1 - ak + s), k = 1,..., n.

Based on the definition, the following basic properties are easily derived:

zαGm,n
p,q

(
ap
bq

|z
)
= Gm,n

p,q

(
ap + α

bq + α
|z

)
, (1:2)

where the multiplying term za changes the parameters of the G-function; and the

derivatives of arbitrary order k can change the G-function’s orders and parameters:

zk
dk

dzk
Gm,n
p,q

(
ap
bq

|z
)
= Gm,n+1

p+1,q+1

(
0, ap
bq,k

|z
)
. (1:3)

Definition 1.2. (see, Kiryakova [2,9]). Let m ≥ 1 be integer, b > 0, g1,...,gm and δ1 ≥

0,..., δm ≥ 0 be arbitrary real numbers. By a generalized (multiple, m-tuple) E-K opera-

tor of the integration of multi-order δ = (δ1,..., δm) we mean an integral operator

I(γk),(δk)β,m f (z) =

1∫
0

Gm,0
m,m

[
σ

∣∣∣∣ (γk + δk)m1
(δk)m1

]
f (zσ

1
β )dσ . (1:4)

Then, each operator of the form

Rf (z) = zβδ0I(γk),(δk)β,m f (z) (1:5)

with the arbitrary δ0 ≥ 0 is said to be a generalized (m-tuple) operator of the frac-

tional integration of the R-L type, or briefly, a generalized R-L fractional integral.

For m = 1, arbitrary b > 0,g and δ > 0, the generalized fractional integrals (1.4) coin-

cide with the well-known E-K operators (integrals) from Sneddon [10]; see also Samko

et al. [11], Kiryakova [2]:

Iγ ,δβ f (z) =

1∫
0

(1 − σ )δ−1σγ

�(δ)
f

⎛⎜⎝zσ

1
β

⎞⎟⎠ dσ = Iγ ,δβ,1f (z). (1:6)

Definition 1.3 (see, Kiryakova [2,9]). With the same parameters as in Definition 1.2

and integers hk = δk, if δk is integer and [δk] + 1, if δk is non-integer, k = 1,..., m, the

auxiliary differential operator is introduced:

Dη =
m∏
r=1

ηr∏
j=1

(
1
β
z
d
dz

+ γr + j
)
. (1:7)

Then, the multiple (m-tuple) E-K fractional derivatives of multi-order δ = (δ1 ≥ 0,...,

δm ≥ 0) are defined by means of the differintegral operators:

D(γk),(δk)
β,m = DηI

(γk+δk),(ηk−δk)
β,m =

⎡⎣ m∏
r=1

ηr∏
j=1

(
1
β
z
d
dz

+ γr + j
)⎤⎦ I(γk+δk),(ηk+δk)

β,m , (1:8)
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and the operators of the form

Df (z) = D(γk),(δk)
β,m z−δ0 f (z) = z−δ0D

(
γk−

(
δ0

β

))
,(δk)

β,m f (z),
(1:9)

with δ0 ≥ 0, are generally called the generalized (multiple, m-tuple) fractional deriva-

tives. The generalized fractional derivatives (1.7) and (1.8) are the counterparts of the

generalized fractional integrals (1.4) and (1.5).

Definition 1.4. Let A denotes the class of functions of the form [1]:

f (z) = z +
∞∑
n=2

anz
n, (1:10)

which are analytic in the unit disk, U = {Δ1 : |z| < 1}. By S, it is denoted the subclass

of the univalent functions in A and by S* and K–the subclasses of S whose members

are starlike (with respect to the origin) and convex in U, respectively.

In order to obtain our results, we need the following theorems due to Kiryakova [2].

Theorem 1.1 (see, Kiryakova [2]). Denote by Hμ(
), the class of functions having

the form f (z) = zμ̃f (z), with μ ≥ 0 and f̃ (z) analytic in a domain Ω starlike with

respect to z = 0. Let the conditions

γk > −μ

β
− 1, δk > 0, k = 1, ...,m (1:11)

be satisfied. Then, the multiple Erdélyi-Kober operator I(γk),(δk)(β),m defined by (1.4) maps

the class Hμ(
) into itself, preserving the power functions up to a constant multiplier:

I(γk),(δk)(β),m zp = cpz
p, p ≥ μ, (1:12)

with cp =
∏m

k=1

�

(
γk +

p
β
+ 1

)
�

(
γk + δk +

p
β
+ 1

) ..

Hence, the image of the power series f (z) = zμ
∑∞

n=0 anz
n ∈ Hμ(�R) is given by the

series

I(γk),(δk)(β),m f (z) = zμ
∞∑
n=0

an
m∏
k=1

�

(
γk +

n + μ

β
+ 1

)
�

(
γk + δk +

n + μ

β
1
) zn (1:13)

having the same radius of convergence R > 0 and the same signs of the coefficients.

In particular, let the following conditions:


 = U,R = 1, δk > 0,μ = 1, γk > −2,β = 1 for k = 1,...,m, H1 = A, (1:14)

then, the above general results have as consequences the properties of the multiple

Erdélyi-Kober operators in the class A. Namely, under these conditions the suitably

normed operator (see, [3])
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I(γk),(δk)1,m f (z) = z
∞∑
n=0

an
m∏
k=1

� (γk + n + 2)

� (γk + δk + n + 2)
zn (1:15)

maps the class A into itself.

Theorem 1.2 (see, Kiryakova [2], composition/decomposition theorem). Under the

conditions (1.14), the classical Erdélyi-Kober operators of the form (1.15),

Iγk,δk1 , k = 1, ...,m, commute in A and their product

Iγm,δm1 Iγm−1,δm−1
1 . . .

(
Iγ1,δ11 f (z)

)
= [

m∏
k=1

Iγk ,δk1 ]f (z)

=

1∫
0

· · ·︸︷︷︸
m

1∫
0

[
m∏
k=1

(1 − σk)
δk−1σ

γk
k

�(δk)
]f (zσ1 . . . σm)dσ1 . . . dσn

(1:16)

can be represented as an m-tuple E-K operator (1.4), i.e., by means of a single inte-

gral involving a G-function:

[
m∏
k=1

Iγk,δk1 ]f (z) = I(γk),(δk)1,m f (z) =

1∫
0

Gm,0
m,m[σ

∣∣∣∣ (γk + δk, 1)m1
(γk, 1)m1

]f (zσ )dσ , f ∈ A, (1:17)

and conversely, under the same conditions, each multiple E-K operator of form (1.4)

can be represented as a product (1.16).

2 Preliminaries
Proposition 2.1 (Kiryakova [9,12]). All the generalized hypergeometric functions pFq
can be considered as generalized (q-tuple) fractional differintegrals (1.4), (1.5), (1.8),

and (1.9) of one of the elementary functions:

cosq−p+1(x) (if p < q), xα ex(if p = q), xα(1 − x)β(if p = q + 1).

Lemma 2.1 [2,9,13]. Let |z| < ∞ (|z| < 1 for p = q + 1), then[
�(ap)/�(bq)

]
pFq(a1, ..., ap; b1, ..., bq; z) ={

I
ap−1,bq−ap
1,1

{
p−1Fq−1(a1, ..., ap−1; b1, ..., bq−1; z)

}
if bq > ap,

D
bq−1,ap−bq
1,1

{
p−1Fq−1(a1, ..., ap−1; b1, ...bq−1; z)

}
if bq < ap.

(2:1)

The generalized hypergeometric functions pFq(z) are special cases of the Meijer’s

G-functions (see, [2,9,14]):

pFq(a1, ..., ap; b1, ..., bq; z) =

∏q
j=1 �(bj)∏p
j=1 �(aj)

G1,p
p,q+1

[
1 − a1, ..., 1 − ap
0, 1 − b1, ..., 1 − bq

|−z
]
, (2:2)

and this plays an important role in obtaining our results in the current study. The

representation (2.2) can be written in the following form for the three cases: (a) p = 0,

q = 1; (b) p = 1, q = 1; (c) p = 1,q = 0:

(a) 0F1 = �(b1)G
1,0
0,2

[
−
0,1−b1

|z
]
; (b) 1F1 =

�(b1)
�(a1)

G1,1
1,2

[
1−a1
0,1−b1

|−z
]
; (c) 1F0 =

1
�(a1)

G1,1
1,1

[
1−a1
0 |−z

]
.
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Thus, it happens to be sufficient that we consider the three basic univalent Meijer’s

G-functions; G1,0
0,2;G

1,1
1,2;G

1,1
1,1 and then, a lot of univalent Meijer’s G-functions can be

obtained by using the following approach based on [9]:

Proposition 2.2. All of the univalent Meijer’s G-functions, G1,p
p,q+1, can be considered

as the generalized (q-tuple) fractional differintegrals (1.4), (1.5), (1.8), and (1.9) of one

of the three simplest univalent G-functions, namely, G1,0
0,2,G

1,1
1,2, and G1,1

1,1, depending on

whether p <q, p = q, p = q + 1.

Lemma 2.1 can also be easily rewritten in the context of the present study, in terms

of the G-functions:

Lemma 2.2. Let |z| < ∞ (|z| < 1 for p = q + 1), then

G1,p
p,q+1

(
1 − a1, ..., 1 − ap
0, 1 − b1, ..., 1 − bq

∣∣∣∣ − z
)

=

⎧⎪⎪⎨⎪⎪⎩
I
ap−1,bq−ap
1,1

{
G1,p−1
p−1,q

(
1 − a1, ..., 1 − ap−1

0, 1 − b1, ..., 1 − bq−1

∣∣∣∣ − z
)}

if bq > ap,

D
bq−1,ap−bq
1,1

{
G1,p−1
p−1,q

(
1 − a1, ..., 1 − ap−1

0, 1 − b1, ..., 1 − bq−1

∣∣∣∣ − z
)}

if bq < qp.

(2:3)

3 Classification tables for the actions of the single and double E-K operators
It is believed that Lemma 2.2 is the best inspiration for the current research here, to

provide some operators that can transform a Meijer’s G-function “Gm,n
p,q “ into another

such function “Gm′ ,n′
p′,q′ “. Such operators happen to be the generalized fractional calculus

operators by Kiryakova [2].

The univalent Meijer’s G-functions are classified into three types (depending on the

relationship between orders p and q, Proposition 2.2) and due to Lemma 2.2, a number

of transformations between two different G-functions can be summarized and classified

as in Tables 1, 2, 3, and 4.

In Table 1, a classification is made for the operators that transform the three basic

Meijer’s G-functions (G1,1
1,1,G

1,1
1,2,G

1,0
0,2) into other G-functions, depending on the three

cases p = q + 1, p = q and p <q. Here, we consider single (classical) simple Erdélyi-

Kober integrals (1.6) or the respective E-K derivatives.

Recently Kiryakova et al. [2,3] obtained ones of the most general fractional differinte-

gral operators, generalizing many well-known operators in the univalent function the-

ory. In Table 2, some of these known operators are shown to transform the three basic

classes of Meijer’s G-functions. An important point here is that instead of presenting

them in the form of E-K operators (1.6), we find it better to work in the terms used in

Table 2, then we could try to study these operators.

In Table 3, we show the action of compositions of two E-K operators (in sense of

Theorem 1.2), the so-called two-tuple E-K operators (they can be two-tuple “integral”

operators, two-tuple “differential” operators or the two-tuple mixed “differintegral”

operators) to transform G1,p
p,q+1-functions with p = q + 1. Let us note that these opera-

tors appear as special cases of Definitions 1.2 and 1.3 when m = 2, and are also called

“hypergeometric fractional integrals and derivatives”. The conditions on the parameters

ak+1 and bk, k = 1,2,3 in the column “conditions” determine the form and the kind of

the operators.
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Table 1 The effect of the Erdélyi-Kober operators on the Meijer’s G1,p
p,q+1-functions

Operators (p = q + 1 = 1) (p = q = 1) (p <q,p = 0,q = 1)

Ia2−1,b1−a2
1,1

G1,1
1,1 → G1,2

2,2

[
1−a1,1−a2
0,1−b1

|−z
]

(b1 > a2)
Db1−1,a2−b1

1,1 G1,1
1,1 → G1,2

2,2(b1 < a2)

Ia2−1,b2−a2
1,1 (b2 > a2) G1,1

1,2 → G1,2
2,3

[
1−a1,1−a2
0,1−b1,1−b2

|−z
]

Db2−1,a2−b2
1,1 (b2 < a2) G1,1

1,2 → G1,2
2,3

Ia1−1,b2−a1
1,1 (b2 > a1) G1,0

0,2 → G1,1
1,3

[
1−a1
0,1−b1,1−b2

|−z
]

Db2−1,a1−b2
1,1 (b2 < a1) G1,0

0,2 → G1,1
1,3
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In Table 4, the compositions of two classical E-K operators (again the case m = 2)

act on the Meijer’s G1,p
p,q+1-function with p = q = 1.

Finally, in Table 5, the third classified G1,p
p,q+1-function with p <q, p = 0, q = 1 is

shown has transformed by the action of these two-tuple E-K operators, so to obtain

new univalent Meijer’s G-functions.

Table 2 The effect of the well-known Erdélyi-Kober operators on Meijer’s G1,p
p,q+1-function

Operators Transformation

I−1,1
1,1 (Biernacki)

G1,1
1,1 → G1,2

2,2

[
1−a1,1
0,0 |−z

]
(b1 = 1, a2 = 0, b1 > a2; p = 1, q = 0)

2I0,11,1 (Libera)
G1,1
1,1 → 2G1,2

2,2

[
1−a1,0
0,−1 |−z

]
(b1 = 2, a2 = 1, b1 > a2; p = 1, q = 0)

1
�(α + 1)

D−1,α
1,1 (Ruscheweyh)

G1,1
1,1 → 1

�(α + 1)
G1,2
2,2

[
1−a1,1−α
0,1 |−z

]
(b1 = 0, a2 = α, ; p = 2, q = 1)

I−1,1
1,1

G1,1
1,2 → G1,2

2,3

[
1−a1,1
0,1−b1,0

|−z
]

(b2 = 1, a2 = 0, b2 > a2; p = q = 1)

2I0,11,1

G1,1
1,2 → 2G1,2

2,3

[
1−a1,0
0,1−b1,−1 |−z

]
(b2 = 2, a2 = 1, b2 > a2; p = q = 1)

1
�(α + 1)

D−1,α
1,1

G1,1
1,2 → 1

�(α + 1)
G1,2
2,3

[
1−a1,1−α

0,1−b1,1
|−z

]
(b2 = 0, a2 = α; p = q = 1)

I−1,1
1,1

G1,0
0,2 → G1,1

1,3

[1
0,1−b1,0

|−z
]

(b2 = 1, a1 = 0, b2 > a1; p = 0, q = 1)

2I0,11,1

G1,0
0,2 → 2G1,1

1,3

[0
0,1−b1,−1 |−z

]
(b2 − 2, a1 = 1, b2 > a1; p = 0, q = 1)

1
�(α + 1)

D−1,α
1,1

G1,0
0,2 → 1

�(α + 1)
G1,1
1,3

[
1−α
0,1−b1,1

|−z
]

(b2 = 0, a1 = α; p = 0, q = 1)

Table 3 The effect of the two-tuple Erdélyi-Kober operators on the Meijer’s

G1,p
p,q+1-function (p = q + 1 = 1)

Operators Conditions Transformation

Ia3−1,b2−a3
1,1 Ia2−1,b1−a2

1,1 b1 >a2 and b2 >a3 G1,1
1,1 → G1,3

3,3

[
1−a1,1−a2,1−a3
0,1−b1,1−b2

|−z
]

Db2−1,a3−b2
1,1 Ia2−1,b1−a2

1,1 b1 >a2 and b2 <a3 G1,1
1,1 → G1,3

3,3

Ia3−1,b2−a3
1,1 Db1−1,a2−b1

1,1 b1 <a2 and b2 >a3 G1,1
1,1 → G1,3

3,3

Db2−1,a3−b2
1,1 Db1−1,a2−b1

1,1 b1 <a2 and b2 <a3 G1,1
1,1 → G1,3

3,3

Pishkoo and Darus Journal of Inequalities and Applications 2012, 2012:36
http://www.journalofinequalitiesandapplications.com/content/2012/1/36

Page 8 of 10



4 The starlike, convex, and positive real part G-functions
There is an elementary and beautiful relationship between the convex and starlike

functions that was first noticed by Alexander [1,15]. The form of this relation can be

now rewritten in the language of the Meijer G-functions and the fractional differinte-

gral operators, as follows:

if G1,p−1
p−1,q is a convex function, then D−1,1

1 G1,p−1
p−1,q is a starlike function.

if G1,p′−1
p′−1,q′ is a starlike function, then I−1,1

1 G1,p′−1
p′−1,q′ is a convex function.

As a fact, the operators D−1,1
1 , and I−1,1

1,1 are the E-K operators from Table 1 (or Table 2).

If the Noshiro-Warschawski theorem [1] is used (if Re(f’(z)) > 0 for all z in a convex

domain D, and f(z) is univalent in D), a lot of inequality relations can then be obtained

for the Meijer G-functions. All the univalent Meijer’s G-functions in our Tables 1, 2, 3,

and 4 can be used and it is deduced that Re (G′1,1
1,1) > 0, Re (G′1,2

2,2) > 0, ..., etc. In

other words, all the functions G′1,1
1,1,G

′1,2
2,2, ..., etc. belong to the functions with a positive

real part.

5 Conclusions
After the classification results in Proposition 2.2 and Lemma 2.2 (as consequences of

Kiryakova’s works), in this article the univalent Meijer’s G-functions are studied under

the action of the classical E-K operators and their two-tuple compositions. It happens

that it is enough to use the differintegral operators of the GFC [2], for m = 1,2. By

means of such approach, based on these operators, and using some statements from

the theory of the GFC, some new relationships for the starlike and convex functions

and also the functions with positive real part can be interpreted in terms of the Mei-

jer’s G-functions.

Table 4 The effect of the two-tuple Erdélyi-Kober operators on the Meijer’s

G1,p
p,q+1-function (p = q = 1)

Operators Conditions Transformation

Ia3−1,b3−a3
1,1 Ia2−1,b2−a2

1,1 b2 >a2 and b3 >a3 G1,1
1,2 → G1,3

3,4

[
1−a1,1−a2,1−a3
0,1−b1,1−b2,1−b3

|−z
]

Db3−1,a3−b3
1,1 Ia2−1,b2−a2

1,1 b2 >a2 and b3 <a3 G1,1
1,2 → G1,3

3,4

Ia3−1,b3−a3
1,1 Db2−1,a2−b2

1,1 b2 <a2 and b3 >a3 G1,1
1,2 → G1,3

3,4

Db3−1,a3−b3
1,1 Db2−1,a2−b2

1,1 b2 <a2 and b3 <a3 G1,1
1,2 → G1,3

3,4

Table 5 The effect of the two-tuple Erdélyi-Kober operators on the Meijer’s

G1,p
p,q+1-function (p <q, p = 0, q = 1)

Operators Conditions Transformation

Ia2−1,b3−a2
1,1 Ia1−1,b2−a1

1,1 b2 >a1 and b3 >a2 G1,0
0,2 → G1,2

2,4

[
1−a1,1−a2
0,1−b1,1−b2,1−b3

|−z
]

Db3−1,a2−b3
1,1 Ia1−1,b2−a1

1,1 b2 >a1 and b3 <a2 G1,0
0,2 → G1,2

2,4

Ia2−1,b3−a2
1,1 Db1−1,a1−b2

1,1 b2 <a1 and b3 >a2 G1,0
0,2 → G1,2

2,4

Db3−1,a2−b3
1,1 Db1−1,a1−b2

1,1 b2 <a1 and b3 <a2 G1,0
0,2 → G1,2

2,4
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