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1 Introduction
This paper is devoted to the existence of a positive solution of the following p-Laplace-like
problem with critical growth:

⎧⎨
⎩–div(a(∇u)) = f (x,u), x ∈ �,

u = , x ∈ ∂�,
(.)

where� is a smooth bounded domain in RN ,  < p <N , and the functions a, f satisfy some
proper conditions, the details of which are described later.
There were many papers about the existence of the solution of p-Laplacian problems

involving critical growth such as [–]. In them, a(ξ ) = |ξ |p–ξ and f are some concrete
functions with critical growth, which means that f (x,u)|u|–p* does not converge to zero
as u → ∞, where p* is the critical exponent, i.e., p* = Np/(N – p). The concentration-
compactness principle, whichwas built by Lions in [, ], plays an important role in achiev-
ing the existence of a nontrivial solution of the problems in them.
The authors proved the existence of a nonnegative and nontrivial solution for a Dirich-

let problem for p-mean curvature operate with critical growth in [], where a(ξ ) = ( +
|ξ |) p– ξ , p ≥ , and f is some concrete function involving a critical exponent. Since the
function a has an explicit form, the authors can use the concentration-compactness prin-
ciple to achieve their results, too. But if a is an abstract function in problem (.), then
the problem becomes more complicated and interesting, and Lions’ C-C principle cannot
be directly applied to it. Thanks to the generalization of the C-C principle in [], we can
establish the existence of a nonnegative and nontrivial solution of equation (.) if we im-
pose some proper conditions on the functions a and f and make more careful estimates.
Moreover, we achieve some regularity result of the solution and prove the solution is posi-
tive under some proper assumptions. The results can be easily extended to a more general
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p-Laplace-like equation with critical growth and singular weights by the Caffarelli-Kohn-
Nirenberg inequality and the method in [].
Recently, there have been some articles on stochastic partial differential equations

(SPDEs) involving p-Laplace operator; see [, ]. Some estimates and properties of the
solution of the corresponding elliptic equations are important to the research on SPDEs.
So, the results in this paper may be useful in the study of p-Laplace SPDEs with critical
growth.
In this paper, we suppose that the potential a : RN → RN satisfies the following assump-

tions.
Let A = A(ξ ) : RN → R be of continuous derivative with respect to ξ with a = ∇ξA and

satisfy the following conditions:
(A) A() = ,
(A) there are p >  and m ∈ [,p], three positive constants a, a and a such that

a|ξ |p ≤ ∣∣A(ξ )∣∣ ≤ a|ξ |p + a|ξ |m for all ξ ∈ RN ,

(A) A(ξ ) is strictly convex in ξ , that is, A(ξ + η) < A(ξ ) +A(η) for any ξ �= η ∈ RN ,
(A) there exists a positive number a such that lim|ξ |→+∞ a(ξ ) · ξ |ξ |–p = a.
We impose some assumptions on the critical nonlinear term f (x,u) :�×R→ R, which

is continuous, as follows:
(B) f (x, ) = ,
(B) there is a function b(x) ∈ L∞(�) such that

lim sup
u→

sup
x∈�

(
f (x,u)u

)|u|–p ≤ b(x),

(B) there are two positive numbers c and c such that

lim inf
u→∞ inf

x∈�

(
f (x,u)u

)|u|–p* ≥ c, lim sup
u→∞

sup
x∈�

(
f (x,u)u

)|u|–p* ≤ c,

(B) denote F(x,u) =
∫ u
 f (x, s)ds, which satisfies

lim inf
u→∞ inf

x∈�

(
f (x,u)u – p*F(x,u)

)|u|–p* ≥ .

Moreover, we suppose a and f satisfy the next correlation.
(C) there exists a β >  such that

∫
�

(
pA(∇υ) – b(x)|υ|p)dx ≥ β

∫
�

A(∇υ)dx for any υ ∈ X,

where X isW ,p
 (�), i.e., the completion of C∞

 (�) with the norm
‖u‖X = (

∫
�

|∇u|p dx)/p.
It is not difficult to see that both a(ξ ) = |ξ |p–ξ and a(ξ ) = ( + |ξ |) p– ξ with p ≥  sat-

isfy (A)-(A), and the problems in [] and [] are concrete examples of problem (.).
Moreover, we can consider some more generalized problem with a singular nonlinear
term f (x,u) with critical growth by the similar method in this paper and []. Then we
can achieve more generalized results than those in [] and [], which will be considered

http://www.journalofinequalitiesandapplications.com/content/2012/1/218


Yang et al. Journal of Inequalities and Applications 2012, 2012:218 Page 3 of 14
http://www.journalofinequalitiesandapplications.com/content/2012/1/218

in another paper. Since a(z) is not an explicit function, we need to use the generalization
of the C-C principle in [] and more subtle estimates to study problem (.).
It is clear that the solution of problem (.) is the critical point of the variational func-

tional

I(u) =
∫

�

A(∇u)dx –
∫

�

F(x,u)dx. (.)

Moreover, I(u) is continuous differentiable in X, and its Fréchet derivation is

〈
I ′(u),υ

〉
=

∫
�

a(∇u) · ∇υ dx –
∫

�

f (x,u)υ dx, ∀υ ∈ X. (.)

The first main result in this paper is

Theorem . Suppose problem (.) satisfies assumptions (A)-(A), (B)-(B) and (C).
Moreover, there exists a nontrivial υ ∈ X such that υ ≥  and

(C) supt≥ I(tυ) < ( p –

p* )(pS)

p*

p*–p c
p

p–p*
 , where S = infυ∈X\{} ‖A(∇υ)‖‖υ‖–pp* , with

‖υ‖qq =
∫
�

|υ|q dx (q ≥ ).
Then problem (.) has a nonnegative and nontrivial solution.

Since the condition (C) is difficult to check, we give another easily checked theorem.

Theorem . Assume conditions (A)-(A), (B)-(B) and (C) are satisfied and
(A) pA(ξ ) ≥ a|ξ |p for any ξ ∈ RN ,
(B) there exists a nonempty setW ⊂ � such that F(x,u) – c

p* |u|p* ≥  for any
x ∈W ,u ∈ R,

(C) limε→+(ε
(N–p)m
(p–)p –N +K(φ))(K(ψ))– = , where K(ψ) =

∫ 
ε
 �(r)dr,

K(φ) =
∫ 

ε
 �(r)dr with

�(r) = ψ

[(
ε–

 + rp/(p–)

)N–p
p

]
rN–, ψ(r) = min

u≥r,x∈W

(
F(x,u) –

c
p*

|u|p*
)
,

�(r) = φ

[(
ε–

 + rp/(p–)

)N
p
r/(p–)

]
rN–, φ(r) = max

≤|ξ |≤r

(
pA(ξ ) – a|ξ |p).

Then problem (.) has a nonnegative and nontrivial solution in X.

To establish the regularity of the solution u and prove u >  in �, we need to impose
stronger assumptions on the potential a and the nonlinear term f , which are as follows:
(D) A(ξ ) ∈ C(RN \ {}) with a() =  and there exist positive numbers c and C,

κ ∈ [, ] such that for any ξ ∈ RN \ {} and η ∈ RN ,

N∑
i,j=

∂A
∂ξi∂ξj

ηiηj ≥ c
(
κ + |ξ |)p–|η|,

N∑
i,j=

∣∣∣∣ ∂A
∂ξi∂ξj

∣∣∣∣ ≤ C
(
κ + |ξ |)p–,

(D) a admits the form a(ξ ) = g(|ξ |)ξ . Moreover, f (x,u) ≥  for any u ≥ .

http://www.journalofinequalitiesandapplications.com/content/2012/1/218
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Theorem . Assume the assumptions in Theorem . or those in Theorem . hold, then
there exists a constant α ∈ (, ) such that the solution u ∈ C,α(�) if assumption (D) holds.
Moreover, if assumption (D) is satisfied, then u >  in �.

In Section , we will prove the main results. Some corollaries and examples are shown
in Section .

2 The proof of themain results
First, we present the main tool in this paper - the generalized concentration-compactness
principle, which is easily deduced from Theorem . in [].

Lemma . Suppose assumptions (A), (A) and (A) hold, un weakly converges to u in
X and μn = A(∇un)dx, νn = |un|p* dx converge to μ, ν weakly in the sense of measures,
respectively.
Then there exist some at most countable set J, a family {xj; j ∈ J} of distinct points in �,

and two families {νj; j ∈ J}, {μj; j ∈ J} of positive numbers such that

ν = |u|p* dx +
∑
j∈J

νjδxj , μ ≥ A(∇u)dx +
∑
j∈J

μjδxj ,

μj ≥ S(νj)p/p
*

(∀j ∈ J),

(.)

where δxj denotes the Dirac measure at the point xj.

Second, we deduce some properties of a and f by the similar method as in [] or [].
According to assumptions (A)-(A) and (B)-(B), we conclude that for any σ > , p ≤
k ≤ p*, there exist some constants Ck,σ , Cσ , C such that for any ξ ∈ Rn, x ∈ �, u ∈ R,

∣∣pA(ξ ) – a|ξ |p∣∣ + ∣∣a(ξ ) · ξ – a|ξ |p∣∣ ≤ σ |ξ |p +Cσ , (.)

c
p*

|u|p* –C ≤ F(x,u) ≤ b(x) + σ

p
|u|p + c + σ

p*
|u|p* +Ck,σ |u|k , (.)

c


|u|p* –C|u| ≤ f (x,u)u≤ (
b(x) + σ

)|u|p + (c + σ )|u|p* +Ck,σ |u|k , (.)

f (x,u)u – p*F(x,u)≥ –σ |u|p* –Cσ ,(
 +

σ
c

)
f (x,u)u – p*F(x,u)≥ –Cσ .

(.)

To obtain a nonnegative solution, we first consider the following variational functional
and its Fréchet derivation:

Ĩ(u) =
∫

�

A(∇u)dx –
∫

�

F
(
x,u+

)
dx; (.)

〈̃
I ′(u),υ

〉
=

∫
�

a(∇u) · ∇υ dx –
∫

�

f
(
x,u+

)
υ dx, ∀υ ∈ X. (.)

It is clear that Ĩ(u) = I(u) if u ≥ . Next, we deduce Ĩ(u) satisfies the geometrical result
of the mountain pass theorem without the (PS) condition, i.e.,

http://www.journalofinequalitiesandapplications.com/content/2012/1/218
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Lemma . Ĩ() =  and there exist two constants α, ρ and a function u ∈ X such that

Ĩ(u)|∂Bρ () ≥ α > , ‖u‖X > ρ, Ĩ(u)≤ , (.)

where Bρ () = {u ∈ X,‖u‖X ≤ ρ}, ∂Bρ () denotes the boundary of Bρ ().

Proof Let u =  in (.), and we have Ĩ() = .
Choosing k = p*, σ = aβS/ in (.) (where S = infυ∈X\{} ‖υ‖pX‖υ‖–pp* is the best embed-

ding constant from X to Lp* (�)), and combining assumptions (C), (A), we have

Ĩ(u) ≥
∫

�

A(∇u)dx –
∫

�

b(x) + aβS
p

∣∣u+∣∣p +C
∣∣u+∣∣p* dx ≥ aβ

p
‖u‖pX –C‖u‖p*X .

Hence, Ĩ(u) >  if ‖u‖X is small enough. So, we have showed the existence of α and ρ in
(.).
Next, we construct u satisfying (.). In fact, fixing a nonnegative and nontrivial func-

tion u, recalling assumption (A) and (.), we deduce that there are positive constants
C, C, C such that

Ĩ(tu) ≤
∫

�

(
atp|∇u|p + atm|∇u|m

)
dx –

∫
�

(
ctp

*

p*
∣∣u+∣∣p* +C

)
dx

≤ Ctp –Ctp
*
+C.

Hence, if t is large enough, then we can set u = tu satisfying (.). �

According to the Ambrosetti-Rabinowitz mountain pass theoremwithout the (PS) con-
dition, there exists a function sequence {un}∞n= ⊂ X such that as n→ ∞,

Ĩ(un) –→ c and Ĩ ′(un) –→  in X*, where c = inf
γ∈�

max
u∈γ

Ĩ(u) ≥ α > , (.)

� denotes the class of continuous paths joining  to u in X, X* denotes the dual space
of X.

Lemma . The sequence {un}∞n= is bounded in X.

Proof Let υ = un in (.) and combine (.), (.). We see that as n→ ∞,

c + o() = Ĩ(un) – δ
〈̃
I ′(un),un

〉
= ( – pδ)

∫
�

A(∇un)dx

+ δ

∫
�

[
pA(∇un) – a(∇un) · ∇un

]
+

[
f
(
x,u+n

)
un –


δ
F
(
x,u+n

)]
dx

≥ (
a( – pδ) – δσ

)‖un‖pX –Cσ , where δ =

p*

(
 +

σ
c

)
.

In the last inequality, we have used (.) and (.). If we fix a small enough σ such that
a( – pδ) – δσ >  in the above inequality, then the conclusion in this lemma is obvious.

�

http://www.journalofinequalitiesandapplications.com/content/2012/1/218
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As a result of the above preparations, we can prove Theorem ..

Proof of Theorem . Since {un}∞n= is bounded in X, it is easy to see there are a u ∈ X and
a subsequence of {un}∞n=, still denoted by itself , such that

un ⇀ u weakly in X,

un → u a.e. in � and strongly in Lq(�)
(
 ≤ q < p*

)
,

(.)

f
(
x,u+n

)
⇀ f

(
x,u+

)
weakly in X*. (.)

By the Helly theorem, there exist a subsequence, still denoted by itself, and two nonneg-
ative measures μ and ν such that as n→ ∞,

A(∇un)dx
w–→ μ, |un|p* dx w–→ ν weakly in the sense of measures. (.)

Applying Lemma ., we have the corresponding conclusions of Lemma ..
Next, we establish the lower-bound of νj and μj

νj ≥ (pS)p
*/(p*–p)cp

*/(p–p)*
 > , μj ≥ pp/(p

*–p)Sp
*/(p*–p)cp/(p–p

*)
 . (.)

Denote ϕ as the cutoff function of the ball B() in RN , i.e., which satisfies

ϕ ∈ C∞


(
RN)

,  ≤ ϕ ≤ ,

ϕ(x) =  if x ∈ B(), ϕ(x) =  if x∈B().
(.)

Define ϕε,j = ϕ((x – xj)/ε) for every ε >  and xj ∈ RN for any j ∈ J . Recalling Lemma  in
[], we have the following estimate:

∫
�

|un∇ϕε,j|p dx ≤ S–
(∫

RN
|∇ϕ|

p*p
p*–p dx

) p*–p
p*

∫
B(xj ,ε)

|∇un|p dx

≤ C
∫
B(xj ,ε)

|∇un|p dx. (.)

Hence, {unϕε,j}∞n= is still bounded in X and the boundary is independent of ε, j.
Let u = un, υ = unϕε,j in (.) and combine (.), (.), (.), (.). Then we obtain as

n→ ∞,

o() =
〈̃
I ′(un),unϕε,j

〉
=

∫
�

a(∇un) · (∇unϕε,j + un∇ϕε,j) – f
(
x,u+n

)
ϕε,jun dx

≥ p
∫
Bε/(xj)

A(∇un)dx – σ‖un‖pX –Cσ mes
(
Bε()

)

–
∫
Bε (xj)

(
(c + σ )|un|p* +Cσ

)
dx

–
(∫

�

∣∣a(∇un)
∣∣ p
p– dx

) p–
p

(
C

∫
B(xj ,ε)

|∇un|p dx + o()
)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/218
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In the above inequality, first letting n→ ∞, then taking ε → +, and finally taking σ → +,
we deduce pμj ≤ cνj. So, (.) implies (.). Since ν is a bounded measure, J is at most
finite.
In the following, we prove that u ≥ , and it is the solution of problem (.). If J is empty,

then the proof is similar to that when J is nonempty, which we omit. Next, we suppose
J is nonempty and denote J = {, , . . . ,m}, �ε = {x ∈ �|dist(x,xj) > ε,∀j ∈ J}. Fix a large
enough R and a sufficiently small ε so that

�̄ ⊂ BR(), Bε (xi)∩ Bε (xj) =Ø while i �= j and
m⋃
j=

Bε (xj)⊂ BR().

Define ψε(x) = ϕ(x/R) –
∑m

j= ϕε,j(x) with x ∈ RN ,  < ε ≤ ε. It is not difficult to deduce
that {ψεun}∞n= is bounded in X and the bound is independent of ε from (.). According
to (.) and (.), it is clear that as n→ ∞,

o() =
〈̃
I ′(un) – Ĩ ′(u), (un – u)ψε

〉
=

∫
�

J(un,u)ψε + J(un,u) + J(un,u)dx, (.)

where J(un,u) = (a(∇un) – a(∇u)) · (∇un –∇u), J(un,u) = (a(∇un) – a(∇u)) · ∇ψε(un – u)
and J(un,u) = (f (x,u+) – f (x,u+n))ψε(u– un). Applying the method as in (.), we see that
| ∫

�
J(un,u)dx| converges to  as n → ∞. Moreover, the definition of ψε and (.) imply

lim
n→∞

∫
�

|unψε|p* dx =
∫

�

|ψε|p* dν =
∫

�

|uψε|p* dx.

Recalling (.), we see unψε → uψε in Lp* (�). In view of (.), we obtain

∣∣∣∣
∫

�

J(un,u)dx
∣∣∣∣

≤
(∫

�

(∣∣f (x,u+)∣∣ + ∣∣f (x,u+n)∣∣) p*

p*– dx
) p*–

p* ∥∥ψε(un – u)
∥∥
p* → . (.)

According to (.), (.), we deduce that J(un,u) converges to  a.e. in � as n → ∞,
maybe extracting a subsequence. Since A(ξ ) is strictly convex, by the same method as
[], we claim ∇un → ∇u a.e. in �, and there exists a subsequence, still denoted by itself,
such that a(∇un) weakly converges to a(∇u) in X*. Hence, (.), (.) and (.) imply that
Ĩ ′(un) weakly converges to Ĩ ′(u) in X* and Ĩ ′(u) = . So, it is not difficult to see that u ≥ 
and I ′(u) = Ĩ ′(u) = , which means that u is a weakly solution of equation (.).
Next, we prove u is nontrivial, i.e., u �=  if assumption (C) holds. According to the

definition of Ĩ(u) and the properties of {un}∞n=, we conclude that as n→ ∞,

(
o() + c – Ĩ(u)

)
–


p*

∑
j∈J

〈̃
I ′(un),unϕε,j

〉

=
∫

�

(
A(∇un) –A(∇u)

)
dx –

∫
�

(
F
(
x,u+n

)
– F

(
x,u+

))
dx

http://www.journalofinequalitiesandapplications.com/content/2012/1/218
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–

p*

∑
j∈J

∫
�

a(∇un) · ∇(unϕε,j) – f
(
x,u+n

)
ϕε,jun dx

= K +K +

p*

∑
j∈J

(
p*K,j +

(
p* – p

)∫
�

A(∇un)ϕε,j dx +K,j –K,j +K,j

)
, (.)

where K,j =
∫
�
(F(x,u+) –A(∇u))ϕε,j dx converges to  as ε → +, and it has been proved

in (.) that K,j =
∫
�
a(∇un) · ∇ϕε,jun dx converges to  as n→ ∞. Moreover, as n → ∞,

K =
∫

�

[
A(∇un) –A(∇u)

]
ψε dx

=
∫

�

ψε dμ –
∫

�

ψεA(∇u)dx + o() ≥ o()
(
by (.)

)
,

K =
∫

�

[
F
(
x,u+n

)
– F

(
x,u+

)]
ψε dx = o()

(
by the method similar to that in (.)

)
,

K,j =
∫

�

[
pA(∇un) – a(∇un) · ∇un

]
ϕε,j dx

≥ –σ‖un‖pX –Cσ mes
(
Bε()

) (
by (.)

)
,

K,j =
∫

�

[
f
(
x,u+n

)
un – p*F

(
x,u+n

)]
ϕε,j dx

≥ –σ‖un‖p
*

p* –Cσ mes
(
Bε()

) (
by ( .)

)
.

Combining (.), (.) and the above inequalities and equalities, firstly taking n → ∞,
then taking ε → +, and finally taking σ → + in (.), we have

c – I(u) = c – Ĩ(u) ≥ p* – p
p*

μj ≥
(

p
–


p*

)
(pS)

p*

p*–p c
p

p–p*
 .

According to the definition of c and assumption (C), we have I(u) < , which means
u �= . �

Before proving Theorem ., we need to introduce the function family {υε} which ap-
proximates the best embedding constant S from X to Lp* (�). Without loss of generaliza-
tion, we suppose B() ⊂ �,  < ε < . Denote

U =


( + |x|p/(p–))(N–p)/p , Uε = ε
p–N
p U

(
x
ε

)
, uε =Uεϕ, υε = uε‖uε‖–p* ,

where ϕ is defined in (.), and U is the extremal function reaching S. It is easy to check
that as ε → +,

∫
RN \B()

|Uε|p* dx =O
(
ε

N
p–

)
,

∫
RN \B()

|∇Uε|p dx =O
(
ε

N–p
p–

)
, (.)

∫
B()\B()

|Uε|m dx =
∫
B()\B()

|∇Uε|m dx =O
(
ε

(N–p)m
(p–)p

)
, (.)

‖υε‖p*p* = , ‖υε‖pp = o(), ‖υε‖pX = S +O
(
ε(N–p)/(p–)). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/218
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As a result of the preparations, we can prove Theorem . as follows.

Proof of Theorem . Without loss of generalization, we suppose B() ⊂ W . For conve-
nience, let A and B denote some positive constants which may be different in different
places.
Applying the method in the proof of Lemma ., we deduce that I(tυε) → –∞ as t →

+∞, which implies there exists a tε ≥  such that I(tευε) = supt≥ I(tυε) and

d
dt

I(tυε)|t=tε =
〈
I ′(tευε),υε

〉
=

∫
�

a(tε∇υε) · ∇υε dx –
∫

�

f (x, tευε)υε dx = . (.)

Let σ =  and k = p in (.), combining (.), (A), (A) and (A), we obtain

atpε‖υε‖pX ≤
∫

�

A(tε∇υε)dx≤ tε
∫

�

a(tε∇υε) · ∇υε dx

≤ C
(
tpε‖υε‖pp + tp

*
ε ‖υε‖p*p*

)
.

Recalling (.), we see that tε is positive and bounded away from zero as ε → +. More-
over, according to assumption (A) and (.), we infer

C
(
tpε‖υε‖pX + 

) ≥ tε
∫

�

a(tε∇υε) · ∇υε dx =
∫

�

f (x, tευε)tευε dx

≥ c

tp*ε ‖υε‖p*p* –C.

Hence, (.) implies tε is bounded, and the bound is independent of ε.
Set

h(t) =
a
p
tp‖υε‖pX –

c
p*
tp

*‖υε‖p*p* .

In view of (.), we have

max
t≥

h(t) =
(

p
–


p*

)(
a‖υε‖pX
‖υε‖pp*

) p*

p*–p
c

p
p–p*
 =

(

p
–


p*

)
(aS)

p*

p*–p c
p

p–p*
 +O

(
ε

N–p
p–

)
.

It is noted that φ(r) is increasing with φ() =  according to assumption (C). Hence, we
deduce

sup
t≥

I(tυε) = I(tευε) ≤ h(tε) +

p

∫
�

φ
(
tε|∇υε|

)
dx –

∫
�

ψ(tευε)dx

≤
(

p
–


p*

)
(aS)

p*

p*–p c
p

p–p*


+O
(
ε

N–p
p–

)
+

p

∫
�

φ
(
tε|∇υε|

)
dx –

∫
�

ψ(tευε)dx. (.)

Next, we handle the last two terms on the right-hand side of (.). Since φ(r) is nonneg-
ative and increasing, we can utilize the properties of υε and tε to calculate

 ≤
∫

�

φ
(
tε|∇υε|

)
dx ≤

∫
B()

φ
(
A|∇Uε|

)
dx +

∫
B()\B()

φ
(
A|∇uε|

)
dx, (.)
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∫
B()

φ
(
A|∇Uε|

)
dx ≤

∫
B/ε()

εNφ
(
Aε

–N
p |∇U|)dx

≤ BεN
(∫ ε–


+

∫ Aε–

ε–

)
�(r)dr, (.)

where �(r) is defined in assumption (C). Without loss of generalization, suppose A > 
and  < ε < . According to the definition of φ and assumption (A), it is clear that  ≤
φ(r) ≤ arp + arm, then we have

BεN
∫ Aε–

ε–
�(r)dr =

∫
B()\B()

φ
(
A|∇uε|

)
dx =O

(
ε

(N–p)m
(p–)p

)
. (.)

We have used (.) and (.) in the last equality. Furthermore, (.) and the definition
of ψ(u) imply that ψ(u) ≤ B(|u|p + |u|p* ). Repeating the above argument, we obtain

∫
�

ψ(tευε)dx ≥ BεN
∫ ε–


�(r)dr +O

(
ε

N–p
p–

)
. (.)

Remembering assumption (A), we see pS ≥ aS. Combining (.)-(.), we obtain

sup
t≥

I(tυε) ≤
(

p
–


p*

)
(pS)

p*

p*–p c
p

p–p*
 – εN

(
BK(ψ) – BK(φ)

)
+O

(
ε

(N–p)m
(p–)p

)
.

So, assumption (C) implies that assumption (C) holds if we choose ε small enough, and
the conclusion in Theorem . follows from Theorem .. �

Proof of Theorem . Wefirstly prove u ∈ L∞(�) by theMoser iteration. Since the problem
involves critical growth, we need some preparation beforemaking theMoser iteration. Set
η(t) ∈ C(R) and

η(t) =

⎧⎨
⎩sgn(t)|t|k if |t| ≤ M,

linear if |t| ≥ M,
where k > ,M > , ξ (t) =

∫ t



(
η′(s)

)p ds.

It is not difficult to check that η′(t) >  and ξ (u) ∈ X if u ∈ X, and for any t ∈ R,

∣∣ξ (t)∣∣ ≤ k
∣∣η(t)∣∣(η′(t)

)p–, η′(t) ≤ k
(
 +

∣∣η(t)∣∣),∣∣ξ (t)∣∣|t|p– ≤ kp
∣∣η(t)∣∣p. (.)

Let υ(x) = ξ (u(x))ψp(x) in (.), where ψ(x) = ϕ((x – x)/R) and ϕ is defined in (.),
x ⊂ �, R > . Denote D = BR (x)∩ �, E = BR (x)∩ �, then we compute

∫
�

a(∇u) · ∇uξ ′(u)ψp dx + p
∫

�

a(∇u) · ∇ψξ (u)ψp– dx

=
∫

�

f (x,u)ξ (u)ψp dx. (.)
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Denote the first term and the second term on the left-hand side and on the right-hand side
of (.) as J and J, J, respectively. Now, we estimate them as follows:

J ≥ a
∫

�

|∇u|pψpξ ′(u)dx = a
∫

�

∣∣∇η(u)
∣∣pψp dx

= a
∫
D

(∣∣∇(
η(u)ψ

)∣∣p–∣∣η(u)∇ψ
∣∣p)dx,

J ≥ –pC
∫

�

(|∇u|p– + |∇u|m–)∣∣ξ (u)∣∣|∇ψ |ψp– dx

≥ –pkC
∫
D

(∣∣η′(u)∇u
∣∣p– + ∣∣η′(u)

∣∣p–|∇u|m–)∣∣η(u)∣∣|∇ψ |ψp– dx
(
by (.)

)
≥ –σ

∫
D

∣∣∇η(u)
∣∣pψp dx – σ J –Cσ kp

∫
D

∣∣η(u)∣∣p|∇ψ |p dx,

where σ is a positive number defined later and

J =
∫
D

∣∣η′(u)
∣∣p|∇u|m–

p– pψp dx ≤ kp
∫
D

(
 +

∣∣η(u)∣∣)p( + |∇u|p)ψp dx
(
by ( .)

)
≤

∫
D

∣∣∇η(u)
∣∣pψp dx + kp

∫
D

∣∣η(u)∣∣pψp dx +Ckp,

J ≤ C
∫

�

(|u|p*– + 
)
ξ (u)ψp dx

≤ Ckp
∫

�

|u|p*–p∣∣η(u)∣∣pψp +
∣∣η(u)∣∣( + ∣∣η(u)∣∣)p–ψp dx

(
by (.)

)

≤ Ckp
(∫

D

∣∣η(u)ψ∣∣p* dx) p
p*

((∫
D

|u|p* dx
) p*–p

p*
+mes(D)

p*–p
p*

)
+Ckp.

Set k = k = p*/p in view of (.) and the above equalities. If we firstly fix a small enough
σ , then a small enough R, then we can obtain

(∫
E

∣∣η(u)∣∣p* dx)p/p*

≤ C
∫
E

∣∣∇η(u)
∣∣p dx ≤ C

∫
D

∣∣η(u)∣∣p dx +C,

where C is a constant independent of M. Taking M → +∞, then we deduce u ∈ Lkp* (E).
Applying a simple covering argument, we achieve that u ∈ Lkp* (�). Finally, repeating the
same argument, we derive that u ∈ Lp*+p(�). As a result of the preparations, we can use
the Moser iteration to prove u ∈ L∞(�). Let υ(x) = ξ (u(x)) in (.), and we calculate

a
∫

�

∣∣∇η(u)
∣∣p dx ≤

∫
�

a(∇u) · ∇uξ ′(u)dx =
∫

�

f (x,u)ξ (u)dx

≤ C
∫

�

(|u|p*– + 
)
ξ (u)dx

≤ Ckp
∫

�

(|u|p*–p + 
)∣∣η(u)∣∣p + dx

(
by (.)

)

≤ Ckp
(∫

�

∣∣η(u)∣∣(p*+p)/ dx) p
p*+p

((∫
�

|u|p*+p dx
) p*–p

p*+p
+ 

)
+Ckp,
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where C is a constant independent ofM and k. If we set λ = (p* + p)/(p*), then the above
inequality implies

‖u‖kp* ≤ C/kpk/k
(
 + ‖u‖kp

λkp*
)/(kp).

Thus, u ∈ L∞(�) follows from the standard Moser iteration method.
Applying Theorem  in [], we see that there exists a constant α ∈ (, ) such that

u ∈ C,α(�). If we rewrite f (x,u) as (f (x,u)/u)u, then f (x,u)/u ∈ L∞(�) with f (x,u)/u ≥ .
Employing Theorem  in [], it is obvious that u >  in �. �

3 Some corollaries and examples
In this section, we firstly consider when (C) is true through analyzing K(ψ) and K(φ),
then we give some concrete examples and corollaries.
Firstly, we analyze the effect of a(z) to K(φ):

Lemma . Suppose a(z) satisfies assumptions (A)-(A) and
(A) There exist positive numbers m,m, A, B such that φ(r) ≤ Brm for any  ≤ r ≤ A

and φ(r) ≤ Brm for any r ≥ A.
Then K(φ) =O(λ(ε) + λ(ε)) as ε → +, where K(φ) is defined in Theorem . and

λ(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
(N–p)m
(p–)p –N if m < N(p–)

N– ,

ε
–mN

p | ln ε| if m = N(p–)
N– ,

ε
N(–p)
(N–)p if m > N(p–)

N– ,

λ(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
N(–p)
(N–)p if m < N(p–)

N– ,

ε
–mN

p | ln ε| if m = N(p–)
N– ,

ε
–mN

p if m > N(p–)
N– .

Proof Repeating the argument similar to (.), we compute

 ≤ K(φ)≤ B
∫ Aε(p–)N/p


ε

–mN
p rN+ m

p– – dr + B
∫ ε–

Aε
–N(p–)
(N–)p

ε
–mN

p rN–N–
p– m– dr

+ B
∫ 

Aε(p–)N/p
ε

–mN
p rN+ m

p– – dr + B
∫ Aε

–N(p–)
(N–)p


ε

–mN
p rN–N–

p– m– dr

= λ(ε) + λ(ε). �

Secondly, we analyze how ψ(u) affects K(ψ). The proof is similar to the above, and we
omit it.

Lemma . Suppose ψ(u) defined in Theorem . satisfies
(B) There are positive numbers A, B and q ≥ p such that ψ(u) ≥ B|u|q when ≤ u ≤ A.

Then we have K(ψ)≥ λ(ε) as ε → +, where

λ(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Cε

(N–p)q
(p–)p –N if q < N(p–)

N–p ,

Cε
N(–p)

p | ln ε| if q = N(p–)
N–p ,

Cε
N(–p)

p if q > N(p–)
N–p ,

C is a positive constant.

Lemma . Suppose ψ(u) defined in Theorem . satisfies
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(B) There exist positive numbers A, B and q < p* such that ψ(u) ≥ B|u|q if u≥ A.
Then K(ψ)≥ λ(ε) as ε → +, where

λ(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Cε

N(–p)
p if q < N(p–)

N–p ,

Cε
N(–p)

p | ln ε| if q = N(p–)
N–p ,

Cε
(p–N)q

p if q > N(p–)
N–p ,

C is a positive constant.

In the following, we can utilize Theorem . and Lemmas .-. to prove the following
results about some concrete problems. The proof is trivial and we omit it.

Corollary . Assume a(ξ ) = ( + |ξ |) p– ξ , p ≥  in problem (.), and assumptions (B)-
(B), (C) hold, ψ(r) defined in assumption (B) satisfies

(B) lim
ε→+

K(ψ)
λ(ε)

= +∞, where λ(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
–N+ (N–p)

p(p–) if p >  – 
N ,

ε
–N+ (N–p)

p(p–) | ln ε| if p =  – 
N ,

ε
–N(p–)

(N–)p if p <  – 
N .

Then problem (.) possesses a nontrivial solution.

Proof Takem =  andm = p –  in Lemma ., and we can deduce the conclusion. �

Example . Next, we consider the following equation:

⎧⎨
⎩–div(( + |∇u|) p– ∇u) = c|u|p*–u + k(x)|u|q–u + g(x,u), x ∈ �,

u = , x ∈ ∂�.
(.)

Corollary . Suppose the parameters  ≤ p < q < p* and c > , the functions k(x) ∈ C(�)
with k(x)≥ k* > , and g(x,u) ∈ C(� ×R) with g(x, ) = , g(x,u)u≥ .Moreover,

q >

⎧⎨
⎩p* – N

N– if  ≤ p≤  – 
N ,

p* – 
p– if p ≥  – 

N ,
lim
u→∞ sup

x∈�

|g(x,u)|
|u|p*– = ,

lim sup
u→

sup
x∈�

g(x,u)
|u|p–u < S.

Then problem (.) possesses a positive solution in C,α(�) (α ∈ (, )).

Example . Next, we consider the following equation:

⎧⎨
⎩–div(|∇u|p–∇u + |∇u|α+p–

+|∇u|p ∇u) = c|u|p*–u + k(x)|u|q–u + g(x,u), x ∈ �,

u = , x ∈ ∂�.
(.)
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Corollary . Suppose the parameters  ≤ α < p and q < p*, c > , the functions k(x) ∈
C(�) with k(x)≥ k* > , and g(x,u) ∈ C(� ×R) with g(x, ) = , g(x,u)u≥ .Moreover,

q >

⎧⎨
⎩p* – N

N– if α ≤ N(p–)
(N–) ,

Nα
N–p if α ≥ N(p–)

(N–) ,
lim
u→∞ sup

x∈�

|g(x,u)|
|u|p*– = , lim sup

u→
sup
x∈�

g(x,u)
|u|p–u < S.

Then problem (.) possesses a positive solution in C,α(�) (α ∈ (, )).

Proof Letting m =  and m = α in Lemma ., and combining Lemma ., Lemma .
and Theorem ., we can derive the conclusion. �
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