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1 Introduction and preliminaries
The stability problem of functional equations originated from the question of Ulam []
concerning the stability of group homomorphisms. Hyers [] gave the first affirmative par-
tial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by
Aoki [] for additive mappings and by Rassias [] for linear mappings by considering an
unbounded Cauchy difference. The paper of Rassias [] has provided a lot of influence on
the development of what we callHyers-Ulam stability of functional equations. A general-
ization of the Rassias theorem was obtained by Găvruta [] by replacing the unbounded
Cauchy differencewith a general control function in the spirit of Rassias’ approach. Impor-
tant contributions toHyers-Ulam stabilitywere made by Forti []. For Jensen’s functional
equation stability, significant generalizations were given by Jung [] and successively, by
Lee and Jun [] by using the direct method (Hyers-Ulam method).
A Hyers-Ulam stability problem for the quadratic functional equation was proved by

Skof [] for mappings f : X → Y , where X is a normed space and Y is a Banach space.
Cholewa [] noticed that the theorem of Skof is still true if the relevant domain X is
replaced with an Abelian group. The stability problems of several functional equations
have been extensively investigated by a number of authors, and there are many interesting
results concerning this problem (see [–]).
In the sequel, we adopt the usual terminology, notations and conventions of the theory

of random normed spaces, as in [–]. Throughout this paper, �+ is the space of dis-
tribution functions, that is, the space of all mappings F : R ∪ {–∞,∞} → [, ] such that
F is left-continuous and non-decreasing on R, F() =  and F(+∞) = . D+ is a subset of
�+ consisting of all functions F ∈ �+ for which l–F(+∞) = , where l–f (x) denotes the left
limit of the function f at the point x, that is, l–f (x) = limt→x– f (t). The space �+ is partially
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ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F(t)≤ G(t)
for all t in R. The maximal element for �+ in this order is the distribution function ε

given by

ε(t) =

⎧⎨
⎩
, if t ≤ ,

, if t > .

Definition . ([]) Amapping T : [, ]× [, ]→ [, ] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, ) = a for all a ∈ [, ];
(d) T(a,b)≤ T(c,d) whenever a≤ c and b ≤ d for all a,b, c,d ∈ [, ].

Typical examples of continuous t-norms are TP(a,b) = ab, TM(a,b) = min(a,b) and
TL(a,b) =max(a + b – , ) (the Lukasiewicz t-norm).

Definition . ([]) A random normed space (briefly, RN-space) is a triple (X,μ,T),
where X is a vector space, T is a continuous t-norm and μ is a mapping from X into
D+ such that the following conditions hold:

(RN) μx(t) = ε(t) for all t >  if and only if x = ;
(RN) μαx(t) = μx( t

|α| ) for all x ∈ X , α �= ;
(RN) μx+y(t + s)≥ T(μx(t),μy(s)) for all x, y ∈ X and all t, s≥ .

Every normed space (X,‖ · ‖) defines a random normed space (X,μ,TM), where

μx(t) =
t

t + ‖x‖

for all t > , and TM is the minimum t-norm. This space is called the induced random
normed space.

Definition . A random normed algebra is a randomnormed space with algebraic struc-
ture such that (RN) μxy(ts)≥ μx(t)μy(s) for all x, y ∈ X and all t, s > .

Example . Every normed algebra (X,‖ ·‖) defines a randomnormed algebra (X,μ,TM),
where

μx(t) =
t

t + ‖x‖

for all t > . This space is called the induced random normed algebra.

Definition .
() Let (X,μ,TM) and (Y ,μ,TM) be random normed algebras. An R-linear mapping

f : X → Y is called a random homomorphism if f (xy) = f (x)f (y) for all x, y ∈ X .
() An R-linear mapping f : X → X is called a random derivation if f (xy) = f (x)y + xf (y)

for all x, y ∈ X .
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Definition . Let (X,μ,T) be an RN-space.
() A sequence {xn} in X is said to be convergent to x in X if, for every ε >  and λ > ,

there exists a positive integer N such that μxn–x(ε) >  – λ whenever n ≥ N .
() A sequence {xn} in X is called a Cauchy sequence if, for every ε >  and λ > , there

exists a positive integer N such that μxn–xm (ε) >  – λ whenever n≥ m ≥ N .
() An RN-space (X,μ,T) is said to be complete if and only if every Cauchy sequence in

X is convergent to a point in X .

Theorem . ([]) If (X,μ,T) is an RN-space and {xn} is a sequence such that xn → x,
then limn→∞ μxn (t) = μx(t) almost everywhere.

Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d
satisfies the following:
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

We recall a fundamental result in fixed point theory.

Theorem. ([–]) Let (X,d) be a complete generalizedmetric space and let J : X → X
be a strictly contractive mapping with the Lipschitz constant L < . Then for each given
element x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) < ∞};
() d(y, y*) ≤ 

–Ld(y, Jy) for all y ∈ Y .

In , Isac and Rassias [] were the first to provide applications of the stability the-
ory of functional equations for the proof of new fixed point theorems with applications.
Starting with , the fixed point alternative was applied to investigate the Hyers-Ulam
stability for Jensen’s functional equation in [, , ] as well as for the Cauchy functional
equation in [] (see also [] for quadratic functional equations, [] for monomial func-
tional equations and [] for operatorial equations etc.). By using fixed point methods, the
stability problems of several functional equations have been extensively investigated by a
number of authors (see [, , , –, –]).
Gilányi [] showed that if f satisfies the functional inequality

∥∥f (x) + f (y) – f (x – y)
∥∥ ≤ ∥∥f (x + y)

∥∥, (.)

then f satisfies the Jordan-von Neumann functional equation

f (x) + f (y) = f (x + y) + f (x – y).
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See also []. Fechner [] and Gilányi [] proved the Hyers-Ulam stability of the func-
tional inequality (.). Park, Cho andHan [] investigated the Cauchy additive functional
inequality

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥ (.)

and the Cauchy-Jensen additive functional inequality

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥ (.)

and proved theHyers-Ulam stability of the functional inequalities (.) and (.) in Banach
spaces.
Throughout this paper, assume that (X,μ,TM) is a random normed algebra and that

(Y ,μ,TM) is a complete random normed algebra.
TheHyers-Ulam stability of different functional equations in randomnormed and fuzzy

normed spaces has been recently studied in [, , , –]. They are completed with
the recent paper [], which contains some stability results for functional equations in
probabilistic metric and random normed spaces.
This paper is organized as follows. In Section , we prove the Hyers-Ulam stability

of random homomorphisms in complete random normed algebras associated with the
Cauchy additive functional inequality (.). In Section , we prove the Hyers-Ulam sta-
bility of random derivations in complete random normed algebras associated with the
Cauchy-Jensen additive functional inequality (.).

2 Stability of random homomorphisms in random normed algebras
In this section, using the fixed point method, we prove the Hyers-Ulam stability of ran-
dom homomorphisms in complete random normed algebras associated with the Cauchy
additive functional inequality (.).

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L < 
 with

ϕ(x, y, z) ≤ L

ϕ(x, y, z)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

μrf (x)+f (ry)+f (rz)(t) ≥ min

{
μf (rx+ry+rz)

(
t


)
,

t
t + ϕ(x, y, z)

}
, (.)

μf (xy)–f (x)f (y)(t) ≥ t
t + ϕ(x, y, )

(.)

for all r ∈ R, all x, y, z ∈ X and all t > . Then H(x) := limn→∞ nf ( x
n ) exists for each x ∈ X

and defines a random homomorphism H : X → Y such that

μf (x)–A(x)(t)≥ ( – L)t
( – L)t + Lϕ(x,x, –x)

(.)

for all x ∈ X and all t > .
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Proof Since f is odd, f () = . So μf ()( t ) = . Letting r =  and y = x and replacing z by
–x in (.), we get

μf (x)–f (x)(t) ≥ t
t + ϕ(x,x, –x)

(.)

for all x ∈ X.
Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g,h) = inf

{
ν ∈ R+ : μg(x)–h(x)(νt)≥ t

t + ϕ(x,x, –x)
,∀x ∈ X,∀t > 

}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see the proof of [,
Lemma .]).
Now we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

μg(x)–h(x)(εt) ≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . Hence

μJg(x)–Jh(x)(Lεt) = μg( x )–h(
x
 )(Lεt)

= μg( x )–h(
x
 )

(
L

εt

)

≥
Lt


Lt
 + ϕ( x ,

x
 , –x)

≥
Lt


Lt
 + L

ϕ(x,x, –x)

=
t

t + ϕ(x,x, –x)

for all x ∈ X and all t > . So d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S.
It follows from (.) that

μf (x)–f ( x )

(
L

t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . So d(f , Jf ) ≤ L
 .
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By Theorem ., there exists a mapping H : X → Y satisfying the following:
() H is a fixed point of J , i.e.,

H
(
x


)
=


H(x) (.)

for all x ∈ X. Since f : X → Y is odd, H : X → Y is an odd mapping. The mapping H is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that H is a unique mapping satisfying (.) such that there exists a ν ∈ (,∞)
satisfying

μf (x)–H(x)(νt)≥ t
t + ϕ(x,x, –x)

for all x ∈ X;
() d(Jnf ,H) →  as n→ ∞. This implies the equality

lim
n→∞nf

(
x
n

)
=H(x)

for all x ∈ X;
() d(f ,H) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,H) ≤ L
 – L

.

This implies that the inequality (.) holds.
Let r =  in (.). By (.),

μn(f ( x
n )+f (

y
n )+f (

–x–y
n ))

(
nt

)

≥ min

{
μnf ()

(
n–t

)
,

t
t + ϕ( x

n ,
y
n ,

–x–y
n )

}
=

t
t + ϕ( x

n ,
y
n ,

–x–y
n )

for all x, y ∈ X, all t >  and all n ∈N. So

μn(f ( x
n )+f (

y
n )+f (

–x–y
n ))(t)≥

t
n

t
n +

Ln
n ϕ(x, y, –x – y)

for all x, y ∈ X, all t >  and all n ∈ N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,y,–x–y)

=  for all x, y ∈ X and

all t > ,

μH(x)+H(y)+H(–x–y)(t)≥ 

for all x, y ∈ X and all t > . So the mapping H : X → Y is Cauchy additive.

http://www.journalofinequalitiesandapplications.com/content/2012/1/194
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Let y = –x and z =  in (.). By (.),

μnf ( rxn )–
nrf ( x

n )
(
nt

) ≥ t
t + ϕ( x

n ,
–x
n , )

for all r ∈ R, all x ∈ X, all t >  and all n ∈N. So

μnf ( rxn )–
nrf ( x

n )
(t)≥

t
n

t
n +

Ln
n ϕ(x, –x, )

for all r ∈ R, all x ∈ X, all t >  and all n ∈ N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,–x,)

=  for all x ∈ X

and all t > ,

μH(rx)–rH(x)(t) = 

for all r ∈ R, all x ∈ X and all t > . Thus the additive mapping H : X → Y is R-linear.
By (.),

μnf ( x
n · y

n )–
nf ( x

n )·nf (
y
n )

(
nt

) ≥ t
t + ϕ( x

n ,
y
n , )

for all x, y ∈ X, all t >  and all n ∈N. So

μnf ( x
n · y

n )–
nf ( x

n )·nf (
y
n )

(t)≥
t
n

t
n +

Ln
n ϕ(x, y, )

for all x, y ∈ X, all t >  and all n ∈ N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,y,)

=  for all x, y ∈ X and all
t > ,

μH(xy)–H(x)H(y)(t) = 

for all x, y ∈ X and all t > . Thus the mapping H : X → Y is multiplicative.
Therefore, there exists a unique random homomorphism H : X → Y satisfying (.).

�

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with

ϕ(x, y, z) ≤ Lϕ

(
x

,
y

,
z


)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.) and (.). Then H(x) :=
limn→∞ 

n f (
nx) exists for each x ∈ X and defines a random homomorphism H : X → Y

such that

μf (x)–H(x)(t) ≥ ( – L)t
( – L)t + ϕ(x,x, –x)

(.)

for all x ∈ X and all t > .
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Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

for all x ∈ X.
It follows from (.) that

μf (x)– 
 f (x)

(


t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ X and all t > . So d(f , Jf ) ≤ 
 .

By Theorem ., there exists a mapping H : X → Y satisfying the following:
() H is a fixed point of J , i.e.,

H(x) = H(x) (.)

for all x ∈ X. Since f : X → Y is odd, H : X → Y is an odd mapping. The mapping H is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that H is a unique mapping satisfying (.) such that there exists a ν ∈ (,∞)
satisfying

μf (x)–H(x)(νt)≥ t
t + ϕ(x,x, –x)

for all x ∈ X;
() d(Jnf ,H) →  as n→ ∞. This implies the equality

lim
n→∞


n

f
(
nx

)
=H(x)

for all x ∈ X;
() d(f ,H) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,H) ≤ 
 – L

.

This implies that the inequality (.) holds.
The rest of the proof is similar to the proof of Theorem .. �

3 Stability of random derivations on random normed algebras
In this section, using the fixed pointmethod, we prove theHyers-Ulam stability of random
derivations on complete random normed algebras associated with the Cauchy-Jensen ad-
ditive functional inequality (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/194
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Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an L < 
 with

ϕ(x, y, z) ≤ L

ϕ(x, y, z)

for all x, y, z ∈ Y . Let f : Y → Y be an odd mapping satisfying

μrf (x)+f (ry)+rf (z)(t)≥ min

{
μf ( rx+ry +rz)

(
t


)
,

t
t + ϕ(x, y, z)

}
, (.)

μf (xy)–f (x)y–xf (y)(t)≥ t
t + ϕ(x, y, )

(.)

for all r ∈ R, all x, y, z ∈ Y and all t > . Then D(x) := limn→∞ nf ( x
n ) exists for each x ∈ Y

and defines a random derivation D : Y → Y such that

μf (x)–D(x)(t) ≥ ( – L)t
( – L)t + Lϕ(x,x, –x)

(.)

for all x ∈ Y and all t > .

Note that μf ()( t ) = .

Proof Letting y = x = –z in (.), we get

μf (x)–f (x)(t) ≥ t
t + ϕ(x,x, –x)

(.)

for all x ∈ Y .
Consider the set

S := {g : Y → Y }

and introduce the generalized metric on S:

d(g,h) = inf

{
ν ∈ R+ : μg(x)–h(x)(νt)≥ t

t + ϕ(x,x, –x)
,∀x ∈ Y ,∀t > 

}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see the proof of [,
Lemma .]).
Now we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ Y .
It follows from (.) that

μf (x)–f ( x )

(
L

t
)

≥ t
t + ϕ(x,x, –x)

for all x ∈ Y and all t > . So d(f , Jf ) ≤ L
 .

http://www.journalofinequalitiesandapplications.com/content/2012/1/194
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By Theorem ., there exists a mapping D : Y → Y satisfying the following:
() D is a fixed point of J , i.e.,

D
(
x


)
=


D(x) (.)

for all x ∈ Y . Since f : Y → Y is odd, D : Y → Y is an odd mapping. The mapping D is a
unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that D is a unique mapping satisfying (.) such that there exists a ν ∈ (,∞)
satisfying

μf (x)–D(x)(νt)≥ t
t + ϕ(x,x, –x)

for all x ∈ Y ;
() d(Jnf ,D)→  as n→ ∞. This implies the equality

lim
n→∞nf

(
x
n

)
=D(x)

for all x ∈ Y ;
() d(f ,D) ≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,D)≤ L
 – L

.

This implies that the inequality (.) holds.
Let r =  in (.). By (.),

μn(f ( x
n )+f (

y
n )+f (

–x–y
n ))

(
nt

)

≥ min

{
μn+f ()

(
nt


)
,

t
t + ϕ( x

n ,
y
n ,

–x–y
n+ )

}
=

t
t + ϕ( x

n ,
y
n ,

–x–y
n+ )

for all x, y ∈ Y , all t >  and all n ∈ N. So

μn(f ( x
n )+f (

y
n )+f (

–x–y
n ))(t)≥

t
n

t
n +

Ln
n ϕ(x, y, –x–y )

for all x, y ∈ Y , all t >  and all n ∈ N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,y, –x–y )

=  for all x, y ∈ Y and

all t > ,

μD(x)+D(y)+D(–x–y)(t)≥ 

for all x, y ∈ Y and all t > . So the mapping D : Y → Y is Cauchy additive.

http://www.journalofinequalitiesandapplications.com/content/2012/1/194
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Let r = , z =  and y = –x in (.). By (.),

μnf ( rxn )–
nrf ( x

n )
(
nt

) ≥ t
t + ϕ( x

n ,
–x
n , )

for all r ∈ R, all x ∈ Y , all t >  and all n ∈N. So

μnf ( rxn )–
nrf ( x

n )
(t)≥

t
n

t
n +

Ln
n ϕ(x, –x, )

for all r ∈ R, all x ∈ Y , all t >  and all n ∈ N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,–x,)

=  for all x ∈ Y

and all t > ,

μD(rx)–rD(x)(t) = 

for all r ∈ R, all x ∈ Y and all t > . Thus the additive mapping D : Y → Y is R-linear.
By (.),

μnf ( x
n · y

n )–
nf ( x

n )·y–x·nf (
y
n )

(
nt

) ≥ t
t + ϕ( x

n ,
y
n , )

for all x, y ∈ Y , all t >  and all n ∈ N. So

μnf ( x
n · y

n )–
nf ( x

n )·y–x·nf (
y
n )

(t)≥
t
n

t
n +

Ln
n ϕ(x, y, )

for all x, y ∈ Y , all t >  and all n ∈ N. Since limn→∞
t
n

t
n +

Ln
n ϕ(x,y)

=  for all x, y ∈ Y and all
t > ,

μD(xy)–D(x)y–xD(y)(t) = 

for all x, y ∈ Y and all t > . Thus the mapping D : Y → Y satisfies D(xy) = D(x)y + xD(y)
for all x, y ∈ Y .
Therefore, there exists a unique random derivation D : Y → Y satisfying (.). �

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an L <  with

ϕ(x, y, z) ≤ Lϕ

(
x

,
y

,
z


)

for all x, y, z ∈ Y . Let f : Y → Y be an odd mapping satisfying (.) and (.). Then D(x) :=
limn→∞ 

n f (
nx) exists for each x ∈ Y and defines a random derivation D : Y → Y such

that

μf (x)–D(x)(t) ≥ ( – L)t
( – L)t + ϕ(x,x, –x)

(.)

for all x ∈ Y and all t > .
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Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Consider the linear mapping J : S → S such that

Jg(x) :=


g(x)

for all x ∈ Y .
The rest of the proof is similar to the proofs of Theorems . and .. �
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30. Miheţ, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math.
Anal. Appl. 343, 567-572 (2008)

31. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North-Holland, New York (1983)
32. Sherstnev, AN: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149, 280-283 (1963) (in Russian)
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