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By using coincidence degree theory and Lyapunov functions, we study the existence and global
exponential stability of antiperiodic solutions for a class of generalized neural networks with
impulses and arbitrary delays on time scales. Some completely new sufficient conditions are
established. Finally, an example is given to illustrate our results. These results are of great
significance in designs and applications of globally stable anti-periodic Cohen-Grossberg neural
networks with delays and impulses .

1. Introduction

In this paper, we consider the following generalized neural networks with impulses and
arbitrary delays on time scales:

xΔ(t) = A(t, x(t))[B(t, x(t)) + F(t, xt)], t ∈ T, t /= tk,

Δx(tk) = x
(
t+k
) − x
(
t−k
)
= Ik(x(tk)), t = tk, k ∈ N,

(1.1)

where T is an ω/2-periodic time scale and if t ∈ T, θ ∈ E, then t + θ ∈ T, E is a subset
of R− = (−∞, 0], A(t, x(t)) = diag(a1(t, x1(t)), a2(t, x2(t)), . . . , an(t, xn(t))), B(t, x(t)) =
(b1(t, x1(t)), b2(t, x2(t)), . . . , bn(t, xn(t)))

T , F(t, xt) = (f1(t, xt), . . . , fn(t, xt))
T , fi(t, xt) =

fi(t, x1t, x2t, . . . , xnt), xit(θ) = xi(t + θ), t ∈ T, θ ∈ E, i = 1, 2, . . . , n, and x(t+
k
), x(t−

k
)

represent the right and left limits of x(tk) in the sense of time scales, {tl} is a sequence of real
numbers such that 0 < t1 < t2 < · · · < tn → ∞ as l → ∞. There exists a positive integer q such
that tl+q = tl + ω/2, Ik+q(u) = −Ik(−u), l ∈ Z, u ∈ R. Without loss of generality, we also
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assume that [0, ω/2)
T
∩ {tl : l ∈ N} = {t1, t2, . . . , tq}. For each interval I of R, we denote that

IT = I ∩ T, especially, we denote that T+ = T ∩ [0,+∞).
System (1.1) includes many neural continuous and discrete time networks [1–9]. For

examples, the high-order Hopfield neural networks with impulses and delays (see [8]):

x′
i(t) = −ai(xi(t))

⎡

⎣bi(xi(t)) −
n∑

j=1

aij(t)gj
(
xj(t)
) −

n∑

j=1

bij(t)gj
(
xj

(
t − τj(t)

))

−
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t − τj(t)

))
gl(xl(t − τl(t))) + Ii(t)

⎤

⎦, t /= tk,

(1.2)

Δxi(tk) = xi

(
t+k
) − xi

(
t−k
)
= eik(xi(tk)), i = 1, 2, . . . , n, k = 1, 2, . . . , (1.3)

the Cohen-Grossberg neural networks with bounded and unbounded delays (see [9]):

x′
i(t) = −ai(xi(t))

⎡

⎣bi(xi(t)) −
n∑

j=1

cij(t)fj
(
xj(t)
) −

n∑

j=1

cij(t)gj
(
xj

(
t − τij(t)

))

−
n∑

j=1

dij(t)hj

(∫∞

0
Kij(u)xj(t − u) du

)
+ Ii(t)

⎤

⎦, t /= tk,

(1.4)

Δxi(tk) = xi

(
t+k
) − xi

(
t−k
)
= lik(xi(tk)), i = 1, 2, . . . , n, k = 1, 2, . . . , (1.5)

and so on.
Arising from problems in applied sciences, it is well known that anti-periodic

problems of nonlinear differential equations have been extensively studied by many authors
during the past twenty years; see [10–21] and references cited therein. For example, anti-
periodic trigonometric polynomials are important in the study of interpolation problems
[22, 23], and anti-periodic wavelets are discussed in [24].

Recently, several authors [25–30] have investigated the anti-periodic problems of
neural networks without impulse by similar analytic skills. However, to the best of our
knowledge, there are few papers published on the existence of anti-periodic solutions to
neural networks with impulse.

The main purpose of this paper is to study the existence and global exponential
stability of anti-periodic solutions of system (1.1) by using the method of coincidence degree
theory and Lyapunov functions.

The initial conditions associated with system (1.1) are of the form

x0 = φ, that is, xi(θ) = φi(θ), θ ∈ E, i = 1, 2, . . . , n. (1.6)

Throughout this paper, we assume that

(H1) ai(t, u) ∈ C(T × R,R+), ai(t + ω/2,−u) = ai(t, u), and there exist positive constants
am
i , a

M
i such that 0 < am

i < ai(t, u) < aM
i for all t ∈ T, u ∈ R, i = 1, 2, . . . , n;
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(H2) bi(t, u) ∈ C(T × R,R), bi(t + ω/2,−u) = −bi(t, u). There exist positive constants μi

and Lb
i such that

∂bi(t, u)
∂u

≥ μi, |bi(t, u) − bi(t, v)| ≤ Lb
i |u − v|, bi(t, 0) = 0, (1.7)

for all t ∈ T, u, v ∈ R, i = 1, 2, . . . , n;

(H3) fi ∈ C(T × R
n,R), fi(t + ω/2,−u) = −fi(t, u), for i = 1, 2, . . . , n. There exist positive

constants ci such that

∣∣fi(t, x1t, . . . , xnt) − fi
(
t, y1t, . . . , ynt

)∣∣ ≤ ci
n∑

j=1

∣∣xjt − yjt

∣∣, (1.8)

for all (t, x1t, . . . , xnt), (t, y1t, . . . , ynt) ∈ T × R
n and fi(t, 0, . . . , 0) = 0, i = 1, 2, . . . , n;

(H4) Iik ∈ C(R,R) and there exist positive constants LI
ik
such that

|Iik(u) − Iik(v)| ≤ LI
ik|u − v|, (1.9)

for all u, v ∈ R, k ∈ N, i = 1, 2, . . . , n.
For convenience, we introduce the following notation:

hM = max
t∈[0,ω]

T

|h(t)|, hm = min
t∈[0,ω]

T

|h(t)|, ‖h‖2 =
(∫ω

0
|h(t)|2Δt

)1/2

, (1.10)

where h is an ω-periodic function.
The organization of this paper is as follows. In Section 2, we introduce some definitions

and lemmas. In Section 3, by using the method of coincidence degree theory, we obtain the
existence of the anti-periodic solutions of system (1.1). In Section 4, we give the criteria of
global exponential stability of the anti-periodic solutions of system (1.1). In Section 5, an
example is also provided to illustrate the effectiveness of the main results in Sections 3 and 4.
The conclusions are drawn in Section 6.

2. Preliminaries

In this section, we will first recall some basic definitions and lemmas which can be found in
books [31, 32].

Definition 2.1 (see [31]). A time scaleT is an arbitrary nonempty closed subset of real numbers
R. The forward and backward jump operators σ, ρ : T → T and the graininess μ : T → R

+

are defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)
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Definition 2.2 (see [31]). A function f : T → R is called right-dense continuous provided it
is continuous at right-dense point of T and left-side limit exists (finite) at left-dense point of
T. The set of all right-dense continuous functions on T will be denoted by Crd = Crd(T) =
Crd(T,R). If f is continuous at each right-dense and left-dense point, then f is said to be a
continuous function on T, the set of continuous function will be denoted by C(T).

Definition 2.3 (see [31]). For x : T → R, one defines the delta derivative of x(t), xΔ(t) to be
the number (if it exists) with the property that for a given ε > 0, there exists a neighborhood
U of t such that

∣
∣
∣[x(σ(t)) − x(t)] − xΔ(t)[σ(t) − s]

∣
∣
∣ ≤ ε|σ(t) − s|, (2.2)

for all s ∈ U.

Definition 2.4 (see [31]). If FΔ(t) = f(t), then one defines the delta integral by

∫ t

a

f(s)Δs = F(t) − F(a). (2.3)

Definition 2.5 (see [33]). For each t ∈ T, let N be a neighborhood of t. Then, one defines the
generalized derivative (or dini derivative), D+uΔ(t) to mean that, given ε > 0, there exists a
right neighborhood N(ε) ⊂ N of t such that

u(σ(t)) − u(s)
μ(t, s)

< D+uΔ(t) + ε, (2.4)

for each s ∈ N(ε), s > t, where μ(t, s) = σ(t) − s.
In case t is right-scattered and u(t) is continuous at t, this reduces to

D+uΔ(t) =
u(σ(t)) − u(t)

σ(t) − t
. (2.5)

Similar to [34], we will give the definition of anti-periodic function on a time scale as
following.

Definition 2.6. Let T/=R be a periodic time scale with period p. One says that the function
f : T → R is ω/2-anti-periodic if there exists a natural number n such that ω/2 = np,
f(t +ω/2) = −f(t) for all t ∈ T and ω is the smallest number such that f(t +ω/2) = −f(t).

If T = R, one says that f is ω/2-anti-periodic if ω/2 is the smallest positive number
such that f(t +ω/2) = −f(t) for all t ∈ T.

Definition 2.7 (see [31]). A function p : T → R is called regressive if 1 + μ(t)p(t)/= 0 for all
t ∈ T

k, where μ(t) = σ(t) − t is the graininess function. If p is regressive and right-dense
continuous function, then the generalized exponential function ep is defined by

ep(t, s) = exp

{∫ t

s

ξμ(τ)
(
p(τ)
)
Δτ

}

, (2.6)
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for s, t ∈ T, with the cylinder transformation

ξh(z) =

⎧
⎪⎨

⎪⎩

Log(1 + hz)
h

, if h/= 0,

z, if h = 0.
(2.7)

Let p, q : T → R be two regressive functions, we define

p ⊕ q := p + q + μpq, �p := − p

1 + μp
, p � q = p ⊕ (�q). (2.8)

Then the generalized exponential function has the following properties.

Lemma 2.8 (see [31, 32]). Assume that p, q : T → R are two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) ep(t, σ(s)) = ep(t, s)/(1 + μ(s)p(s));

(iv) 1/ep(t, s) = e�p(t, s);

(v) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(vi) ep(t, s)ep(s, r) = ep(t, r);

(vii) eΔp (·, s) = pep(·, s).

Lemma 2.9 (see [31]). Assume that f , g : T → R are delta differentiable at t ∈ T
k. Then

(
fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t)). (2.9)

The following lemmas can be found in [35, 36], respectively.

Lemma 2.10. Let t1, t2 ∈ [0, w]
T
. If x : T → R is ω-periodic, then

x(t) ≤ x(t1) +
∫ω

0

∣∣∣xΔ(s)
∣∣∣Δs, x(t) ≥ x(t2) −

∫ω

0

∣∣∣xΔ(s)
∣∣∣Δs. (2.10)

Lemma 2.11. Let a, b ∈ T. For rd-continuous functions f, g : [a, b] → R, one has

∫b

a

∣∣f(t)g(t)
∣∣Δt ≤

(∫b

a

∣∣f(t)
∣∣2Δt

)1/2(∫b

a

∣∣g(t)
∣∣2Δt

)1/2

. (2.11)

Definition 2.12. The anti-periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

T of system (1.1) is
said to be globally exponentially stable if there exist positive constants ε and M = M(ε) ≥ 1,
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for any solution x(t) = (x1(t), x2(t), . . . , xn(t))
T of system (1.1) with the initial value φ(t) =

(φ1(t), φ2(t), . . . , φn(t))
T ∈ C(ET,R

n), such that

n∑

i=1

∣
∣xi(t) − x∗

i (t)
∣
∣ ≤ M(ε)e�ε(t, α)

∥
∥φ − x∗∥∥, (2.12)

where

∥
∥φ − x∗∥∥ =

n∑

i=1

sup
s∈ET

∣
∣φi(s) − x∗

i (s)
∣
∣, α ∈ ET. (2.13)

The following continuation theorem of coincidence degree theory is crucial in the
arguments of our main results.

Lemma 2.13 (see [37]). Let X, X be two Banach spaces, Ω ⊂ X be open bounded and symmetric
with 0 ∈ Ω. Suppose that L : D(L) ⊂ X → Y is a linear Fredholm operator of index zero with
D(L) ∩ Ω/= ∅ and N : Ω → Y is L-compact. Further, one also assumes that

(H) Lx −Nx/=λ(−Lx −N(−x)) for all x ∈ D(L) ∩ ∂Ω, λ ∈ (0, 1].

Then the equation Lx = Nx has at least one solution on D(L) ∩Ω.

3. Existence of Antiperiodic Solutions

In this section, by using Lemma 2.13, we will study the existence of at least one anti-periodic
solution of (1.1).

Theorem 3.1. Assume that (H1)–(H4) hold. Suppose further that

(H5) E = (eij)n×n is a nonsingular M matrix, where, for i, j = 1, 2, . . . , n,

eij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωam
i −ω2am

i a
M
i Lb

i −ωam
i

2q∑

k=1

LI
ik −

1
μi

2q∑

k=1

LI
ik −
(

1
μi

+ωam
i

)
aM
i ωci, i = j,

−
(

1
μi

+ωam
i

)
aM
i ωci, i /= j.

(3.1)

Then system (1.1) has at least one ω/2-anti-periodic solution.

Proof. Let Ck[0, ω; t1, . . . , tq, tq+1, . . . , t2q]T = {x : [0, ω]
T

→ R
n+m|xk(t) is a piecewise

continuousmapwith first-class discontinuity points in [0, ω]
T
∩{tk}, and at each discontinuity

point it is continuous on the left}. Take

X =
{
x ∈ C

[
0, ω; t1, . . . , tq, tq+1, . . . , t2q

]
T
: x
(
t +

ω

2

)
= −x(t), ∀t ∈

[
0,

ω

2

]

T

}
,

Y = X × R
n×q

(3.2)
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are two Banach spaces with the norms

‖x‖X =
n∑

i=1

|xi|0, ‖z‖Y = ‖x‖X +
∥
∥y
∥
∥, (3.3)

respectively, where |xi|0 = maxt∈[0,ω]
T
|xi(t)|, i = 1, . . . , n, ‖ · ‖ is any norm of Rn×q.

Set

L : Dom L ∩ X −→ Y, x −→
(
xΔ,Δx(t1), . . . ,Δx

(
tq
))

, (3.4)

where

DomL =
{
x ∈ C1[0, ω; t1, . . . , t2q

]
T
: x
(
t +

ω

2

)
= −x(t), ∀t ∈

[
0,

ω

2

]

T

}
,

N : X −→ Y,

Nx =

⎛

⎜⎜⎜
⎝

⎛

⎜⎜⎜
⎝

A1(t)

...

An(t)

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎝

I11(x1(t1))

...

In1(xn(t1))

⎞

⎟⎟⎟
⎠

, . . . ,

⎛

⎜⎜⎜
⎝

I1q
(
x1
(
tq
))

...

Inq
(
xn

(
tq
))

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

,

(3.5)

where

Ai(t) =ai(t, xi(t))
[
bi(t, xi(t)) + fi(t, xt)

]
, i = 1, 2, . . . , n.

(3.6)

It is easy to see that

KerL = {0}, ImL =
{
z =
(
f, C1, . . . , Cq

) ∈ Y :
∫ω

0
f(s)Δs = 0

}
= Y. (3.7)

Thus, dim KerL = 0 = codim ImL, and L is a linear Fredholm mapping of index zero.
Define the projectors P : X → KerL and Q : Y → Y by

Px =
∫ω

0
x(s)Δs = 0, (3.8)

Qz = Q
(
f, C1, . . . , Cq

)
=
(

1
ω

∫ω

0
f(s)Δs, 0, . . . , 0

)
, (3.9)
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respectively. It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL = KerQ = Im(I −Q). (3.10)

Further, let L−1
P = L|DomL∩KerP and the generalized inverse KP = L−1

P is given by

KPz =
∫ t

0
f(s)Δs +

∑

t>tk

Ck − 1
2

∫ω/2

0
f(s)Δs − 1

2

q∑

k=1

Ck, (3.11)

in which Cq+i = −Ci for all 1 ≤ i ≤ q.
Similar to the proof of Theorem 3.1 in [38], it is not difficult to show that QN(Ω),

KP (I − Q)N(Ω) are relatively compact for any open bounded set Ω ⊂ X. Therefore, N is
L-compact on Ω for any open bounded set Ω ⊂ X.

Corresponding to the operator equation Lx − Nx = λ(−Lx − N(−x)), λ ∈ (0, 1], we
have

xΔ(t) =
1

1 + λ
G(t, x) − λ

1 + λ
G(t,−x), t ∈ T

+, t /= tk,

Δx(tk) =
1

1 + λ
Ik(x(tk)) − λ

1 + λ
Ik(−x(tk)), t = tk, k ∈ N,

(3.12)

or

xΔ
i (t) =

1
1 + λ

Gi(t, x) − λ

1 + λ
Gi(t,−x), t ∈ T

+, t /= tk,

Δxi(tk) =
1

1 + λ
Iik(xi(tk)) − λ

1 + λ
Iik(−xi(tk)), t = tk, i = 1, 2, . . . , n, k ∈ N,

(3.13)

where

Gi(t, x) = ai(t, xi(t))
[
bi(t, xi(t)) + fi(t, xt)

]
,

Gi(t,−x) = ai(t,−xi(t))
[
bi(t,−xi(t)) + fi(t,−xt)

]
, i = 1, 2, . . . , n.

(3.14)
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Set t0 = t+0 = 0, t2q+1 = ω, in view of (3.13), (H1)–(H4) and Lemma 2.11, we obtain that

∫ω

0

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt =

2q+1∑

k=1

∫ tk

t+
k−1

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt +

2q∑

k=1

|Δxi(tk)|

≤
∫ω

0

∣
∣
∣
∣

1
1 + λ

Gi(t, x) − λ

1 + λ
Gi(t,−x)

∣
∣
∣
∣Δt

+
2q∑

k=1

∣
∣
∣
∣

1
1 + λ

Iik(xi(tk)) − λ

1 + λ
Iik(−xi(tk))

∣
∣
∣
∣

≤
[

1
1 + λ

+
λ

1 + λ

] ∫ω

0
max{|Gi(t, x)|, |Gi(t,−x)|}Δt

+
[

1
1 + λ

+
λ

1 + λ

] 2q∑

k=1

max{|Iik(xi(tk))|, |Iik(−xi(tk))|}

≤
∫ω

0
max
{∣∣ai(t, xi(t))

[
bi(t, xi(t)) + fi(t, xt)

]∣∣,

∣∣ai(t,−xi(t))
[
bi(t,−xi(t)) + fi(t,−xt)

]∣∣}Δt

+
2q∑

k=1

max{|Iik(xi(tk))|, |Iik(−xi(tk))|}

≤ aM
i

[∫ω

0
max{|bi(t, xi(t)) − bi(t, 0)|, |bi(t,−xi(t)) − bi(t, 0)|}Δt

+
∫ω

0
max
{∣∣fi(t, x1t, . . . , xnt) − fi(t, 0, . . . , 0)

∣∣,

∣∣fi(t,−x1t, . . . ,−xnt) − fi(t, 0, . . . , 0)
∣∣}Δt

]

+
2q∑

k=1

max{|Iik(xi(tk)) − Iik(0)|, |Iik(−xi(tk)) − Iik(0)|} +
2q∑

k=1

|Iik(0)|

≤ aM
i

⎡

⎣Lb
i

∫ω

0
|xi(t)|Δt +

∫ω

0
ci

n∑

j=1

∣∣xjt

∣∣Δt

⎤

⎦ +
2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|

≤ aM
i Lb

i

√
ω‖xi‖2 + aM

i ci
n∑

j=1

∥∥xj

∥∥
2

√
ω +

2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|,

(3.15)

where i = 1, 2, . . . , n. Integrating (3.13) from 0 to ω, we have from (H1)–(H4) that

∣∣∣∣

∫ω

0

[
ai(t, xi(t))bi(t, xi(t))

1 + λ
− λai(t,−xi(t))bi(t,−xi(t))

1 + λ

]
Δt

∣∣∣∣
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=
∣
∣
∣
∣

∫ω

0

[
ai(t, xi(t))bi(t, xi(t))

1 + λ
+
λai(t, xi(t))bi(t, xi(t))

1 + λ

]
Δt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ω

0
ai(t, xi(t))bi(t, xi(t))Δt

∣
∣
∣
∣

=
∣
∣
∣
∣

1
1 + λ

∫ω

0
ai(t, xi(t))fi(t, xt)Δt − λ

1 + λ

∫ω

0
ai(t,−xi(t))fi(t,−xt)Δt

+
1

1 + λ

2q∑

k=1

Iik(xi(tk)) − λ

1 + λ

2q∑

k=1

Iik(−xi(tk))

∣
∣
∣
∣
∣

≤ aM
i

∫ω

0
max
{∣∣fi(t, x1t, . . . , xnt) −

∣
∣fi(t, 0, . . . , 0)

∣
∣,

∣
∣fi(t,−x1t, . . . ,−xnt)−

∣
∣fi(t, 0, . . . , 0)

∣
∣}Δt

+
2q∑

k=1

max{|Iik(xi(tk)) − Iik(0)|, |Iik(−xi(tk)) − Iik(0)|} +
2q∑

k=1

|Iik(0)|

≤ aM
i ci

n∑

j=1

∥∥xj

∥∥
2

√
ω +

2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|, i = 1, 2, . . . , n,

(3.16)

by (H2), we obtain that

∣∣∣∣

∫ω

0
ai(t, xi(t))xi(t)Δt

∣∣∣∣ ≤
1
μi
aM
i ci

n∑

j=1

∥∥xj

∥∥
2

√
ω +

1
μi

2q∑

k=1

LI
ik|xi|0 +

1
μi

2q∑

k=1

|Iik(0)|, (3.17)

where i = 1, 2, . . . , n. From Lemma 2.10, for any ti1, t
i
2 ∈ [0, ω]

T
, i = 1, 2, . . . , n, we have

∫ω

0
ai(t, xi(t))xi(t)Δt ≤

∫ω

0
ai(t, xi(t))xi

(
ti1

)
Δt +

∫ω

0
ai(t, xi(t))

(∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

)
Δt,

(3.18)
∫ω

0
ai(t, xi(t))xi(t)Δt ≥

∫ω

0
ai(t, xi(t))xi

(
ti2

)
Δt −

∫ω

0
ai(t, xi(t))

(∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

)
Δt.

(3.19)

Dividing by
∫ω
0 ai(t, xi(t))Δt on the both sides of (3.18) and (3.19), respectively, we obtain that

xi

(
ti1

)
≥ 1
∫ω
0 ai(t, xi(t))Δt

∫ω

0
ai(t, xi(t))xi(t)Δt −

∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt, i = 1, 2, . . . , n,

xi

(
ti2

)
≤ 1
∫ω
0 ai(t, xi(t))Δt

∫ω

0
ai(t, xi(t))xi(t)Δt +

∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt, i = 1, 2, . . . , n.

(3.20)
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Let ti, ti ∈ [0, ω]
T
, such that xi(ti) = max

t∈[0,ω]
T

xi(t), xi(ti) = mint∈[0,ω]
T
xi(t), by the arbitrariness

of ti1, t
i
2 in view of (3.15), (3.17), (3.20), we have

xi

(
ti1

)
≥ 1
∫ω
0 ai(t, xi(t))Δt

∫ω

0
ai(t, xi(t))xi(t)Δt −

∫ω

0

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt

≥ − 1
∫ω
0 ai(t, xi(t))Δt

∣
∣
∣
∣

∫ω

0
ai(t, xi(t))xi(t)Δt

∣
∣
∣
∣ −
∫ω

0

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt

≥ − 1
ωam

i

⎡

⎣ 1
μi
aM
i

n∑

j=1

ci
∥
∥xj

∥
∥
2

√
ω +

1
μi

2q∑

k=1

LI
ik|xi|0 +

1
μi

2q∑

k=1

|Iik(0)|
⎤

⎦

−
⎡

⎣aM
i Lb

i

√
ω
∥∥xj

∥∥
2 + aM

i ci
n∑

j=1

∥∥xj

∥∥
2

√
ω +

2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|
⎤

⎦,

xi

(
ti2

)
≤ 1
∫ω
0 ai(t, xi(t))Δt

∫ω

0
ai(t, xi(t))xi(t)Δt +

∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

≤ 1
∫ω
0 ai(t, xi(t))Δt

∣∣∣∣

∫ω

0
ai(t, xi(t))xi(t)Δt

∣∣∣∣ +
∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

≤ 1
ωam

i

⎡

⎣ 1
μi
aM
i ci

n∑

j=1

∥∥xj

∥∥
2

√
ω +

1
μi

2q∑

k=1

LI
ik|xi|0 +

1
μi

2q∑

k=1

|Iik(0)|
⎤

⎦

+

⎡

⎣aM
i Lb

i

√
ω
∥∥xj

∥∥
2 + aM

i ci
n∑

j=1

∥∥xj

∥∥
2

√
ω +

2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|
⎤

⎦

(3.21)

where i = 1, 2, . . . , n. Thus, we have from (3.21) that

|xi|0 = max
t∈[0,ω]

T

|xi(t)|

≤ 1
ωam

i

⎡

⎣ 1
μi
aM
i ci

n∑

j=1

∥∥xj

∥∥
2

√
ω +

1
μi

2q∑

k=1

LI
ik|xi|0 +

1
μi

2q∑

k=1

|Iik(0)|
⎤

⎦

+

⎡

⎣aM
i Lb

i

√
ω ‖xi‖2 + aM

i ci
n∑

j=1

∥∥xj

∥∥
2

√
ω +

2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|
⎤

⎦,

(3.22)

where i = 1, 2, . . . , n. In addition, we have that

‖xi‖2 =
(∫ω

0
|xi(s)|Δs

)1/2

≤ √
ω max

t∈[0,ω]
T

|xi(t)| =
√
ω|xi|0, i = 1, 2, . . . , n. (3.23)
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By (3.22), we obtain that,

ωam
i |xi|0 ≤

⎡

⎣ 1
μi
aM
i ci

n∑

j=1

∥
∥xj

∥
∥
2

√
ω +

1
μi

2q∑

k=1

LI
ik|xi|0 +

1
μi

2q∑

k=1

|Iik(0)|
⎤

⎦

+ωam
i

⎡

⎣aM
i Lb

i

√
ω ‖xi‖2 + aM

i ci
n∑

j=1

∥
∥xj

∥
∥
2

√
ω +

2q∑

k=1

LI
ik |xi|0 +

2q∑

k=1

|Iik(0)|
⎤

⎦

≤
⎡

⎣ 1
μi
aM
i ωci

n∑

j=1

∣
∣xj

∣
∣
0 +

1
μi

2q∑

k=1

LI
ik|xi|0 +

1
μi

2q∑

k=1

|Iik(0)|
⎤

⎦

+ωam
i

⎡

⎣aM
i Lb

i ω|xi|0 + aM
i ωci

n∑

j=1

∣
∣xj

∣
∣
0 +

2q∑

k=1

LI
ik|xi|0 +

2q∑

k=1

|Iik(0)|
⎤

⎦,

(3.24)

where i = 1, 2, . . . , n. That is,

[

ωam
i −ω2am

i a
M
i Lb

i −ωam
i

2q∑

k=1

LI
ik −

1
μi

2q∑

k=1

LI
ik

]

|xi|0 −
[(

1
μi

+ωam
i

)
aM
i ωci

]∣∣xj

∣∣
0

≤ 1
μi

2q∑

k=1

|Iik(0)| +ωam
i

2q∑

k=1

|Iik(0)| = Di, i = 1, 2, . . . , n.

(3.25)

Denote that,

|x|0 = (|x1|0, |x2|0, . . . , |xn|0)T , D = (D1, D2, . . . , Dn)
T . (3.26)

Then (3.25) can be rewritten in the matrix form

E|x|0 ≤ D. (3.27)

From the conditions of Theorem 3.1, E is a nonsingular M matrix, therefore,

|x|0 ≤ E−1D � (M1,M2, . . . ,Mn)
T . (3.28)

Let

M =
n∑

i=1

Mi + 1
(
Clearly, M is independent of λ

)
. (3.29)

Take

Ω = {x ∈ X : ‖x‖
X
< M}. (3.30)
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It is clear that Ω satisfies all the requirements in Lemma 2.13 and condition(H) is satisfied. In
view of all the discussions above, we conclude from Lemma 2.13 that system (1.1) has at least
one ω/2-anti-periodic solution. This completes the proof.

4. Global Exponential Stability of Antiperiodic Solution

Suppose that x∗(t) = (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

T is an ω/2-anti-periodic solution of system (1.1).
In this section, we will construct some suitable Lyapunov functions to study the global
exponential stability of this anti-periodic solution.

Theorem 4.1. Assume that (H1)–(H5) hold. Suppose further that

(H6) there exist positive constants La
i such that

|ai(t, u) − ai(t, v)| ≤ La
i |u − v|, ∀u, v ∈ R, i = 1, 2, . . . , n; (4.1)

(H7) for all u, v ∈ R, i = 1, 2, . . . , n, there exist positive constants Lab
i such that

[ai(t, u)bi(t, u) − ai(t, v)bi(t, v)](u − v) ≤ 0, i = 1, 2, . . . , n,

|ai(t, u)bi(t, u) − ai(t, v)bi(t, v)| ≥ Lab
i |u − v|, i = 1, 2, . . . , n;

(4.2)

(H8) there are ω-periodic functions ri(t) such that ri(t) = supu∈R|fi(t, u)|, i = 1, 2, . . . , n;

(H9) there exists a positive constant ε such that

Ψi(ε, t) =
[
ε +
(
1 + εμ(t)

)(−Lab
i + La

i r
M
i

)]

+
n∑

j=1

(
1 + εμ(t − θ)

)
eε(t − θ, t)aM

i ci > 0, i = 1, 2, . . . , n;
(4.3)

(H10) impulsive operator Iik(xi(tk) satisfy

Iik(xi(tk)) = −γik(xi(tk)), 0 < γik < 2, i = 1, . . . , n, k ∈ N. (4.4)

Then the ω/2-anti-periodic solution of system (1.1) is globally exponentially stable.

Proof. According to Theorem 3.1, we know that system (1.1) has an ω/2-anti-periodic
solution x∗(t) = (x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T with initial value x∗(s), s ∈ ET, suppose that
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x(t) = (x1(t), x2(t), . . . , xn(t))
T is an arbitrary solution of system (1.1) with initial value

φ(s), s ∈ ET. Then it follows from system (1.1) that

(
xi(t) − x∗

i (t)
)Δ = ai(t, xi(t))bi(t, xi(t)) − ai

(
t, x∗

i (t)
)
bi
(
t, x∗

i (t)
)
+ ai(t, xi(t))fi(t, xt)

− ai

(
t, x∗

i (t)
)
fi(t, x∗

t ), t ∈ T
+, t /= tk,

Δ
(
xi(tk) − x∗

i (tk)
)
= −γik

(
xi(tk) − x∗

i (tk)
)
, t = tk, k ∈ N, i = 1, 2, . . . , n.

(4.5)

In view of system (4.5), for t ∈ T
+, t /= tk, k ∈ N, i = 1, 2, . . . , n, we have

(xi(t) − x∗
i (t))

Δ = ai(t, xi(t))bi(t, xi(t)) − ai

(
t, x∗

i (t)
)
bi
(
t, x∗

i (t)
)

+ ai(t, xi(t))fi(t, xt) − ai

(
t, x∗

i (t)
)
fi(t, x∗

t )

=
[
ai(t, xi(t))bi(t, xi(t)) − ai

(
t, x∗

i (t)
)
bi
(
t, x∗

i (t)
)]

+
[
ai(t, xi(t)) − ai

(
t, x∗

i (t)
)]
fi(t, xt) + ai

(
t, x∗

i (t)
)[
fi(t, xt) − fi(t, x∗

t )
]
.

(4.6)

Hence, we can obtain from (H6)–(H9) that

D+∣∣xi(t) − x∗
i (t)
∣∣Δ ≤ −Lab

i

∣∣xi(t) − x∗
i (t)
∣∣ + La

i r
M
i

∣∣xi(t) − x∗
i (t)
∣∣

+ aM
i

n∑

j=1

ci
∣∣∣xj(t + θ) − x∗

j (t + θ)
∣∣∣

=
(
−Lab

i + La
i r

M
i

)∣∣xi(t) − x∗
i (t)
∣∣ + aM

i ci
n∑

j=1

∣∣∣xj(t + θ) − x∗
j (t + θ)

∣∣∣,

(4.7)

for i = 1, 2, . . . , n, and we have from (H10) that

∣∣xi

(
t+k
) − x∗

i

(
t+k
)∣∣ =
∣∣1 − γik

∣∣∣∣xi(tk) − x∗
i (tk)
∣∣, i = 1, 2, . . . , n, k ∈ N. (4.8)

For any α ∈ E, we construct the Lyapunov functional

V (t) = V1(t) + V2(t),

V1(t) =
n∑

i=1

eε(t, α)
∣∣xi(t) − x∗

i (t)
∣∣,

V2(t) =
n∑

i=1

n∑

j=1

∫ t

t+θ

(
1 + εμ(s − θ)

)
eε(s − θ, α)aM

i ci
∣∣∣xj(s) − x∗

j (s)
∣∣∣Δs.

(4.9)
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For t ∈ T
+, t /= tk, k ∈ N, calculating the delta derivative D+V (t)Δ of V (t) along solutions of

system (4.5), we can get

D+V1(t)
Δ ≤

n∑

i=1

εeε(t, α)
∣
∣xi(t) − x∗

i (t)
∣
∣ +

n∑

i=1

eε(σ(t), α)D+∣∣xi(t) − x∗
i (t)
∣
∣Δ

≤
n∑

i=1

⎧
⎨

⎩
εeε(t, α)

∣
∣xi(t) − x∗

i (t)
∣
∣ + eε(σ(t), α)

×
⎡

⎣
(
−Lab

i + La
i r

M
i

)∣
∣xi(t) − x∗

i (t)
∣
∣ + aM

i ci
n∑

j=1

∣
∣
∣xj(t + θ) − x∗

j (t + θ)
∣
∣
∣

⎤

⎦

⎫
⎬

⎭

=
n∑

i=1

[
ε +
(
1 + εμ(t)

)(−Lab
i + La

i r
M
i

)]
eε(t, α)

∣∣xi(t) − x∗
i (t)
∣∣

+
(
1 + εμ(t)

)
eε(t, α)ci

n∑

i=1

n∑

j=1

aM
i

∣∣∣xj(t + θ) − x∗
j (t + θ)

∣∣∣,

(4.10)

D+V2(t)
Δ ≤

n∑

i=1

n∑

j=1

(
1 + εμ(t − θ)

)
eε(t − θ, α)aM

i ci
∣∣∣xj(t) − x∗

j (t)
∣∣∣

−
n∑

i=1

n∑

j=1

(
1 + εμ(t)

)
eε(t, α)aM

i ci
∣∣∣xj(t + θ) − x∗

j (t + θ)
∣∣∣.

(4.11)

By assumption (H8), it concludes that

D+V (t)Δ = D+V1(t)
Δ +D+V2(t)

Δ

≤
n∑

i=1

[
ε +
(
1 + εμ(t)

)(−Lab
i + La

i r
M
i

)]
eε(t, α)

∣∣xi(t) − x∗
i (t)
∣∣

+
n∑

i=1

n∑

j=1

(
1 + εμ(t − θ)

)
eε(t − θ, α)aM

i ci
∣∣∣xj(t) − x∗

j (t)
∣∣∣

≤
n∑

i=1

{[
ε +
(
1 + εμ(t)

)(−Lab
i + La

i r
M
i

)]

+
n∑

j=1

(
1 + εμ(t − θ)

)
eε(t − θ, t)aM

i ci
}
eε(t, α)

∣∣xi(t) − x∗
i (t)
∣∣

≤ 0, t ∈ T
+, t /= tk, k ∈ N.

(4.12)
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Also,

V
(
t+k
)
= V1
(
t+k
)
+ V2
(
t+k
)

=
n∑

i=1

eε
(
t+k, α
)∣∣xi

(
t+k
) − x∗

i

(
t+k
)∣∣

+
n∑

i=1

n∑

j=1

∫ t+
k

t+
k
+θ

(
1 + εμ(s − θ)

)
eε(s − θ, α)aM

i ci
∣
∣
∣xj(s) − x∗

j (s)
∣
∣
∣Δs

≤
n∑

i=1

eε(tk, α)
∣
∣xi(tk) − x∗

i (tk)
∣
∣

+
n∑

i=1

n∑

j=1

∫ tk

tk+θ

(
1 + εμ(s − θ)

)
eε(s − θ, α)aM

i ci
∣
∣
∣xj(s) − x∗

j (s)
∣
∣
∣Δs

= V (tk), k ∈ N.

(4.13)

It follows that V (t) ≤ V (0) for all t ∈ T
+.

On the other hand, we have

V (0) = V1(0) + V2(0)

=
n∑

i=1

eε(0, α)
∣∣xi(0) − x∗

i (0)
∣∣

+
n∑

i=1

n∑

j=1

∫0

θ

(
1 + εμ(s − θ)

)
eε(s − θ, α)aM

i ci
∣∣∣xj(s) − x∗

j (s)
∣∣∣Δs

≤
n∑

i=1

⎧
⎨

⎩
eε(0, α) +

n∑

j=1

∫0

θ

(
1 + εμ(s − θ)

)
eε(s − θ, α)aM

i ciΔs

⎫
⎬

⎭
sup
s∈ET

∣∣xi(s) − x∗
i (s)
∣∣

≤ M(ε)
n∑

i=1

sup
s∈ET

∣∣φi(s) − x∗
i (s)
∣∣,

(4.14)

where

M(ε) = max
1≤i≤n

⎧
⎨

⎩
sup
α∈ET

⎛

⎝eε(0, α) +
n∑

j=1

∫0

θ

(
1 + εμ(s − θ)

)
eε(s − θ, α)aM

i cijΔs

⎞

⎠

⎫
⎬

⎭
. (4.15)

It is obvious that

n∑

i=1

eε(0, α)
∣∣xi(t) − x∗

i (t)
∣∣ ≤ V (t) ≤ V (0) ≤ M(ε)sup

s∈ET

n∑

i=1

∣∣φi(s) − x∗
i (s)
∣∣. (4.16)



Journal of Inequalities and Applications 17

So we can finally get

n∑

i=1

∣
∣xi(t) − x∗

i (t)
∣
∣ ≤ M(ε)e�ε(0, α)sup

s∈ET

n∑

i=1

∣
∣φi(s) − x∗

i (s)
∣
∣ = M(ε)e�ε(0, α)

∥
∥φ − x∗∥∥. (4.17)

Since M(ε) ≥ 1, from Definition 2.12, the ω/2-anti-periodic solution of system (1.1) is
globally exponential stable. This completes the proof.

5. An Example

Example 5.1. Consider the following impulsive generalized neural networks:

xΔ(t) = A(t, x(t))[B(t, x(t)) + F(t, xt)], t ∈ T, t /= tk,

Δx(tk) = x
(
t+k
) − x
(
t−k
)
= Ik(x(tk)), t = tk, k ∈ Z,

(5.1)

where

A(t, u) = diag
{
10 +

2
π

arctan |u|, 11 + 2
π

arctan |u|
}
,

B(t, u) =
1
100

(
u

u

)

, F(t, xt) =

⎛

⎜⎜⎜⎜
⎝

2∑

j=1

ci(t)gj
(
xjt

)

2∑

j=1

ci(t)gj
(
xjt

)

⎞

⎟⎟⎟⎟
⎠

,

(
gj
)
2×1 =

1
1000

(
sinu

sinu

)

, (ci)2×1 =
1

1000

(
sin t

cos t

)

, (Ik)2×2 =
1

500

(−u − u

−u − u

)

,

ω = 2π, [0, 2π]
T
∩ {tk : k ∈ N} = {t1, t2},

(5.2)

when T = R, system (5.1) has at least one exponentially stable π-anti-periodic solution.

Proof. By calculation, we have am
1 = 10, aM

1 = 11, am
2 = 11, am

2 = 12, La
1 = La

2 = 2/π, Lb
1 = Lb

2 =
1/100, cM1 = 1/1000, cM2 = 1/1000, LI

11 = LI
21 = LI

12 = LI
22 = 1/500, and μ1 = μ2 = 1/100.

It is obvious that (H1)–(H4), (H6)–(H8), and (H10) are satisfied. Furthermore, we can easily
calculate that

E ≈
(

7.52 −12.74
−11.25 3.61

)
(5.3)

is a nonsingular M matrix, thus (H5) is satisfied.
When T = R, μ(t) = 0. Take ε = 0.01, θ = −1, we have that

Ψ1(ε, t) ≈ −0.04 < 0, Ψ2(ε, t) ≈ −0.03 < 0. (5.4)
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Hence (H10) holds. By Theorems 3.1 and 4.1, system (5.1) has at least one exponentially stable
π-anti-periodic solution. This completes the proof.

6. Conclusions

Using the time scales calculus theory, the coincidence degree theory, and the Lyapunov
functional method, we obtain sufficient conditions for the existence and global exponential
stability of anti-periodic solutions for a class of generalized neural networks with impulses
and arbitrary delays. This class of generalized neural networks include many continuous
or discrete time neural networks such as, Hopfield type neural networks, cellular neural
networks, Cohen-Grossberg neural networks, and so on. To the best of our knowledge, the
known results about the existence of anti-periodic solutions for neural networks are all done
by a similar analytic method, and only good for neural networkswithout impulse. Our results
obtained in this paper are completely new even if the time scale T = R or Z and are of great
significance in designs and applications of globally stable anti-periodic Cohen-Grossberg
neural networks with delays and impulses .
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