Skip to main content

Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals

Abstract

In this paper, we obtain an equality involving tempered fractional integrals for twice-differentiable functions. By using this equality, we establish several left Hermite–Hadamard-type inequalities for the case of tempered fractional integrals. Moreover, we derive our results by using special cases of obtained theorems.

1 Introduction

C. Hermite and J. Hadamard introduced Hermite–Hadamard-type inequalities for convex functions. Let us consider that \(\mathfrak{F}:I\rightarrow \mathbb{R}\) is a convex function on the interval I of real numbers and \(\mathfrak{\sigma },\mathfrak{\delta }\in I\) with \(\mathfrak{\sigma }<\mathfrak{\delta }\). Then, the following double inequality holds:

$$ \mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \leq \frac{1}{\mathfrak{\delta }-\mathfrak{\sigma }} \int _{\mathfrak{\sigma }}^{\mathfrak{\delta }}\mathfrak{F}(x)\,dx\leq \frac{\mathfrak{F} ( \mathfrak{\sigma } ) +\mathfrak{F} ( \mathfrak{\delta } ) }{2}. $$
(1)

If \(\mathfrak{F}\) is concave, then both inequalities in (1) are valid in the reverse direction. Many papers have been considered in order to obtain midpoint- and trapezoid-type inequalities, which give bounds for the left- and right-hand side of the inequality (1), respectively. For example, Dragomir and Agarwal first proved trapezoid-type inequalities for the case of convex functions in [12] and Kirmacı first obtained midpoint-type inequalities for convex functions in [18]. Iqbal et al. [16] investigated some fractional midpoint-type inequalities for convex functions. Sarikaya et al. generalized (1) for fractional integrals. The authors also investigated some corresponding trapezoid-type inequalities in [35]. Moreover, in [11] Dragomir proved Hermite–Hadamard-type inequalities for the case of coordinated convex functions. In addition to this, trapezoid- and midpoint-type inequalities for coordinated convex functions were established in [34] and [19], respectively. Furthermore, in [37], several fractional midpoint-type inequalities were established for coordinated convex functions. In addition, they proved Hermite–Hadamard inequalities and several trapezoid- and midpoint-type inequalities for the case of generalized fractional integrals. We refer to [8, 10, 27] for further information about these kinds of inequalities.

Some Hermite–Hadamard and Simpson-type inequalities were established for functions whose absolute values of derivatives are convex in [31]. Barani et al. [6] proved Hermite–Hadamard-type inequalities for the case of twice-differentiable convex functions. In [28], J. Park considered new estimates in generalizations of Hadamard, Ostrowski, and Simpson-type inequalities for functions whose second derivatives in absolute value at certain powers are convex and quasiconvex functions. Moreover, some new generalized fractional integral inequalities of midpoint- and trapezoid-type for twice-differentiable convex functions are obtained in [24]. Furthermore, in [7], Budak et al. established some midpoint- and trapezoid-type inequalities for functions whose second derivatives in absolute value are convex. See [15, 32, 33] for results related to these types of inequalities involving twice-differentiable functions.

Numerous authors have considered fractional integral inequalities and applications by using Riemann–Liouville fractional integrals. For example, a variant of Hermite–Hadamard inequalities in Riemann–Liouville fractional integral forms was investigated in [30]. Moreover, in [14], some left Hermite–Hadamard-type inequalities were established for the case of Riemann–Liouville fractional integrals. See [13, 17, 23] and the references therein for further information and properties of Riemann–Liouville fractional integrals. While a considerable number of mathematicians has studied Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals, some authors have also considered Hermite–Hadamard inequalities for the case of other types of fractional integrals such as k-fractional integrals, Hadamard fractional integrals, tempered fractional integrals, conformable fractional integrals, etc. For example, we refer the reader to [15, 26] and the references cited therein.

Tempered fractional calculus is a branch of mathematics that extends the concept of fractional calculus. In [9], the definitions of fractional integration with exponential kernels and weak singular were firstly reported in Buschman’s earlier work. For the other different definitions of the tempered fractional integration, see the books [22, 29, 36] and references therein. In [25], several Hermite–Hadamard-type inequalities were established associated with tempered fractional integrals for the case of convex functions which cover the previously published result for Riemann integrals and Riemann–Liouville fractional integrals.

The primary goal of this article is to present and prove left Hermite–Hadamard-type inequalities for tempered fractional integrals. The entire research structure takes four sections, including the introduction. In Sect. 2, we provide the basic definitions and facts from the fractional calculus theory. In Sect. 3, we establish an equality involving tempered fractional integrals for the case of twice-differentiable functions. By utilizing this equality, we prove midpoint-type inequalities for functions whose second derivatives are convex. We also present some remarks. Some conclusions and further directions of research are discussed in Sect. 4.

2 Preliminaries

We will now introduce the necessary mathematical preliminaries from fractional calculus theory, which will be utilized in the rest of this paper.

Definition 1

Let \(\mathfrak{F}\in L_{1}[\mathfrak{\sigma },\mathfrak{\delta }]\). The Riemann–Liouville integrals \(J_{\mathfrak{\sigma }+}^{\alpha }\mathfrak{F}\) and \(J_{\mathfrak{\delta }-}^{\alpha }\mathfrak{F}\) of order \(\alpha >0\) with \(\mathfrak{\sigma }\geq 0\) are defined by

$$ J_{\mathfrak{\sigma }+}^{\alpha }\mathfrak{F}(x)= \frac{1}{\Gamma (\alpha )}\int _{\mathfrak{\sigma }}^{x} ( x-\mu ) ^{\alpha -1} \mathfrak{F}(\mu )\,dt,\quad x>\mathfrak{\sigma }, $$
(2)

and

$$ J_{\mathfrak{\delta }-}^{\alpha }\mathfrak{F}(x)= \frac{1}{\Gamma (\alpha )}\int _{x}^{\mathfrak{\delta }} ( \mu -x ) ^{\alpha -1} \mathfrak{F}(\mu )\,dt,\quad x< \mathfrak{\delta }, $$
(3)

respectively. Here, \(\Gamma (\alpha )\) is the Gamma function defined as

$$ \Gamma (\alpha )= \int _{0}^{\infty }e^{-u}u^{\alpha -1}\,du. $$

Remark 1

In the case of \(\alpha = 1 \), the fractional integral becomes the classical integral.

The following are the fundamental definitions and new notations of tempered fractional operators that we will be using.

Definition 2

The incomplete gamma function and λ-incomplete gamma function are defined by

$$ \curlyvee ( \alpha ,x ) := \int _{0}^{x}\mu ^{ \alpha -1}e^{-\mu }\,dt $$

and

$$ \curlyvee _{\lambda } ( \alpha ,x ) := \int _{0}^{x} \mu ^{\alpha -1}e^{-\lambda t}\,dt, $$

respectively. Here, \(0<\alpha <\infty \) and \(\lambda \geq 0\).

Remark 2

(See [25])

For the real numbers \(\alpha >0\), \(x,\lambda \geq 0\), and \(\mathfrak{\sigma }<\mathfrak{\delta }\), we have

  1. (1)

    \(\curlyvee _{\lambda ( \frac{\mathfrak{\delta }-\mathfrak{\sigma }}{2} ) } ( \alpha ,1 ) =\int _{0}^{1}\mu ^{ \alpha -1}e^{-\lambda ( \frac{\mathfrak{\delta }-\mathfrak{\sigma }}{2} ) \mu }\,dt= ( \frac{2}{\mathfrak{\delta }-\mathfrak{\sigma }} ) ^{ \alpha }\curlyvee _{\lambda } ( \alpha ,\mathfrak{\delta }- \mathfrak{\sigma } ) \),

  2. (2)

    \(\int _{0}^{1}\curlyvee _{\lambda (\mathfrak{\delta }- \mathfrak{\sigma })} ( \alpha ,x )\,dx= \frac{\curlyvee _{\lambda } ( \alpha ,\mathfrak{\delta }-\mathfrak{\sigma } ) }{(\mathfrak{\delta }-\mathfrak{\sigma })^{\alpha }}- \frac{\curlyvee _{\lambda } ( \alpha +1,\mathfrak{\delta }-\mathfrak{\sigma } ) }{(\mathfrak{\delta }-\mathfrak{\sigma })^{\alpha +1}}\).

Definition 3

(See [20, 21])

The fractional tempered integral operators \(\mathcal{J}_{\mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) }\mathfrak{F}\) and \(\mathcal{J}_{\mathfrak{\delta }-}^{ ( \mathfrak{\sigma }, \lambda ) }\mathfrak{F}\) of order \(\alpha >0\) and \(\lambda \geq 0\) are given by

$$ \mathcal{J}_{\mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) }\mathfrak{F} ( x ) = \frac{1}{\Gamma (\alpha )} \int _{ \mathfrak{\sigma }}^{x} ( x-\mu ) ^{\alpha -1}e^{-\lambda ( x- \mu ) } \mathfrak{F}(\mu )\,dt,\quad x\in [ \mathfrak{\sigma },\mathfrak{\delta } ], $$
(4)

and

$$ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) }\mathfrak{F}(x)= \frac{1}{\Gamma (\alpha )} \int _{x}^{ \mathfrak{\delta }} ( \mu -x ) ^{\alpha -1}e^{-\lambda ( \mu -x ) }\mathfrak{F}(\mu )\,dt,\quad x\in [ \mathfrak{\sigma }, \mathfrak{\delta } ] , $$
(5)

respectively, for \(\mathfrak{F}\in L_{1}[\mathfrak{\sigma },\mathfrak{\delta }]\).

If we choose \(\lambda =0\), then the fractional integrals in (4) and (5) equal to the Riemann–Liouville fractional integral in (2) and (3), respectively.

3 Main results

In this section, we give several tempered fractional midpoint-type inequalities for the case of twice-differentiable functions. Let us first prove an identity in order to build midpoint-type inequalities.

Lemma 1

If \(\mathfrak{F}:[\mathfrak{\sigma },\mathfrak{\delta }]\rightarrow \mathbb{R} \) is absolutely continuous on \((\mathfrak{\sigma },\mathfrak{\delta })\) and \(\mathfrak{F}^{\prime \prime }\in L_{1} ( [ \mathfrak{\sigma },\mathfrak{\delta } ] ) \), then we have

$$\begin{aligned}& \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) }\mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{\mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) }\mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\& \quad =\frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \sum^{4}_{k=1}I_{k}. \end{aligned}$$
(6)

Here,

$$ \textstyle\begin{cases} I_{1}=\int _{0}^{\frac{1}{2}}\varphi _{\alpha } ( \lambda ,\mu ) \mathfrak{F}^{\prime \prime } ( tb+ ( 1- \mu ) \mathfrak{\sigma } )\,dt, & I_{3}=\int _{ \frac{1}{2}}^{1}\psi _{\alpha } ( \lambda ,\mu ) \mathfrak{F}^{\prime \prime } ( tb+ ( 1-\mu ) \mathfrak{\sigma } )\,dt, \\ I_{2}=\int _{0}^{\frac{1}{2}}\varphi _{\alpha } ( \lambda ,\mu ) \mathfrak{F}^{\prime \prime } ( ta+ ( 1- \mu ) \mathfrak{\delta } )\,dt, & I_{4}=\int _{ \frac{1}{2}}^{1}\psi _{\alpha } ( \lambda ,\mu ) \mathfrak{F}^{\prime \prime } ( ta+ ( 1-\mu ) \mathfrak{\delta } )\,dt,\end{cases} $$

with

$$\textstyle\begin{cases} \varphi _{\alpha } ( \lambda ,\mu ) =\mu \curlyvee _{ \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\mu ) -\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } ( \alpha +1,\mu ), \\ \psi _{\alpha } ( \lambda ,\mu ) =\mu \curlyvee _{ \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\mu ) -\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } ( \alpha +1,\mu ) -\mu \curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) + \curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha +1,1 ) .\end{cases} $$

Proof

With the help of integration by parts, we obtain

$$\begin{aligned} I_{1} ={}& \int _{0}^{\frac{1}{2}} \bigl[ \mu \curlyvee _{ \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\mu ) -\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } ( \alpha +1,\mu ) \bigr] \mathfrak{F}^{\prime \prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr)\,dt \\ ={}& \bigl[ \mu \curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } ( \alpha ,\mu ) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha +1,\mu ) \bigr] \frac{\mathfrak{F}^{\prime } ( tb+ ( 1-\mu ) \mathfrak{\sigma } ) }{\mathfrak{\delta }-\mathfrak{\sigma }}\vert _{0}^{\frac{1}{2}} \\ & {}-\frac{1}{\mathfrak{\delta }-\mathfrak{\sigma }} \int _{0}^{\frac{1}{2}}\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } ( \alpha , \mu ) \mathfrak{F}^{\prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr)\,dt \\ ={}&\frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl[ \frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } \biggl( \alpha ,\frac{1}{2} \biggr) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl( \alpha +1,\frac{1}{2} \biggr) \biggr] \mathfrak{F}^{\prime } \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\ &{} -\frac{1}{\mathfrak{\delta }-\mathfrak{\sigma }} \biggl[ \frac{\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\mu ) \mathfrak{F} ( tb+ ( 1-\mu ) \mathfrak{\sigma } ) }{\mathfrak{\delta }-\mathfrak{\sigma }}\vert _{0}^{\frac{1}{2}} \\ &{}- \frac{1}{\mathfrak{\delta }-\mathfrak{\sigma }} \int _{0}^{\frac{1}{2}}\mu ^{\alpha -1}e^{-\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) \mu } \mathfrak{F} \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr)\,dt \biggr] \\ ={}&\frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl[ \frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } \biggl( \alpha ,\frac{1}{2} \biggr) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl( \alpha +1,\frac{1}{2} \biggr) \biggr] \mathfrak{F}^{\prime } \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\ & {}- \frac{\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\frac{1}{2} ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) + \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \int _{0}^{\frac{1}{2}}\mu ^{\alpha -1}e^{- \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) \mu }\mathfrak{F} \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr)\,dt. \end{aligned}$$
(7)

Then, similarly we have

$$\begin{aligned}& I_{2} =- \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl[ \frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } \biggl( \alpha ,\frac{1}{2} \biggr) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl( \alpha +1,\frac{1}{2} \biggr) \biggr] \mathfrak{F}^{\prime } \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \end{aligned}$$
(8)
$$\begin{aligned}& \hphantom{I_{2} =}{} - \frac{\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\frac{1}{2} ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) + \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \int _{0}^{\frac{1}{2}}\mu ^{\alpha -1}e^{- \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) \mu }\mathfrak{F} \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr)\,dt, \\& I_{3} =- \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl[ \frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } \biggl( \alpha ,\frac{1}{2} \biggr) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl( \alpha +1,\frac{1}{2} \biggr) \\& \hphantom{I_{3} =}{} -\frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) +\curlyvee _{ \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha +1,1 ) \biggr] \mathfrak{F}^{\prime } \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\& \hphantom{I_{3} =}{} + \frac{\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\frac{1}{2} ) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\& \hphantom{I_{3} =}{} + \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \int _{\frac{1}{2}}^{1}\mu ^{\alpha -1}e^{-\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) \mu } \mathfrak{F} \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr)\,dt, \end{aligned}$$
(9)

and

$$\begin{aligned} I_{4} ={}& \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl[ \frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) } \biggl( \alpha ,\frac{1}{2} \biggr) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } \biggl( \alpha +1,\frac{1}{2} \biggr) \\ & {} -\frac{1}{2}\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) +\curlyvee _{ \lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha +1,1 ) \biggr] \mathfrak{F}^{\prime } \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\ & {}+ \frac{\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,\frac{1}{2} ) -\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\ &{} + \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \int _{\frac{1}{2}}^{1}\mu ^{\alpha -1}e^{-\lambda ( \mathfrak{\delta }- \mathfrak{\sigma } ) \mu } \mathfrak{F} \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr)\,dt. \end{aligned}$$
(10)

Adding (7)–(10), we get

$$\begin{aligned} \sum^{4}_{k=1}I_{k} ={}& \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}} \biggl[ \int _{0}^{1}\mu ^{ \alpha -1}e^{-\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) \mu }\mathfrak{F} \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr)\,dt \\ &{}+ \int _{0}^{1}\mu ^{\alpha -1}e^{-\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) \mu } \mathfrak{F} \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr)\,dt \biggr] \\ &{} - \frac{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\ ={}& \frac{\Gamma ( \alpha ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha +2}} \biggl[ \frac{1}{\Gamma ( \alpha ) }\int _{\mathfrak{\sigma }}^{\mathfrak{\delta }} ( x- \mathfrak{\sigma } ) ^{\alpha -1}e^{-\lambda ( \mu -x ) } \mathfrak{F} ( x )\,dx \\ &{}+ \frac{1}{\Gamma ( \alpha ) } \int _{\mathfrak{\sigma }}^{\mathfrak{\delta }} ( \mathfrak{\delta }-x ) ^{\alpha -1}e^{-\lambda ( x-\mu ) }\mathfrak{F} ( x )\,dx \biggr] \\ &{} - \frac{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \\ ={}& \frac{\Gamma ( \alpha ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha +2}} \bigl[ \mathcal{J}_{ \mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{\mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) }\mathfrak{F} ( \mathfrak{\delta } ) \bigr] - \frac{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) }{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) . \end{aligned}$$
(11)

If we multiply both sides of (11) by \(\frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) }\), then we have (6) simultaneously. This finishes the proof of Lemma 1. □

Theorem 1

Assume that the assumptions of Lemma 1hold. If \(\vert \mathfrak{F}^{\prime \prime } \vert \) is convex on \([ \mathfrak{\sigma },\mathfrak{\delta } ] \), then we have the following midpoint-type inequality:

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \Omega _{1} ( \lambda , \alpha ) + \Omega _{2} ( \lambda ,\alpha ) \bigr] \bigl[ \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\delta } ) \bigr\vert \bigr] . \end{aligned}$$

Here,

$$ \textstyle\begin{cases} \Omega _{1} ( \lambda ,\alpha ) =\int _{0}^{ \frac{1}{2}} \vert \varphi _{\alpha } ( \lambda ,\mu ) \vert \,dt, \\ \Omega _{2} ( \lambda ,\alpha ) =\int _{ \frac{1}{2}}^{1} \vert \psi _{\alpha } ( \lambda ,\mu ) \vert \,dt.\end{cases} $$
(12)

Proof

If we take modulus in equation (6) and apply the triangle inequality, then we have

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( tb+ ( 1- \mu ) \mathfrak{\sigma } \bigr) \bigr\vert \,dt \\ &\qquad {}+ \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr) \bigr\vert \,dt \\ & \qquad {} + \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{ \alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr) \bigr\vert \,dt+ \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( ta+ ( 1- \mu ) \mathfrak{\delta } \bigr) \bigr\vert \,dt \biggr] . \end{aligned}$$
(13)

By using the convexity of \(\vert \mathfrak{F}^{\prime \prime } \vert \), we have

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ & \quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert + ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert \bigr]\,dt \\ & \qquad {}+ \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + ( 1-\mu ) \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\delta } ) \bigr\vert \bigr]\,dt \\ & \qquad {} + \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{ \alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert + ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert \bigr]\,dt \\ &\qquad {}+ \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert \bigr]\,dt \biggr] \\ & \quad = \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt+ \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr] \bigl[ \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert \bigr] . \end{aligned}$$

This ends the proof of Theorem 1. □

Remark 3

If we choose \(\lambda =0\) in Theorem 1, then the following midpoint-type inequality holds:

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha +1 ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }} \bigl[ J_{\mathfrak{\sigma }+}^{\alpha } \mathfrak{F} ( \mathfrak{\delta } ) +J_{ \mathfrak{\delta }-}^{\alpha }\mathfrak{F} ( \mathfrak{\sigma } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2 ( \alpha +1 ) } \biggl( \frac{1}{\alpha +2}+ \frac{\alpha -3}{8} \biggr) \bigl[ \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{ \delta } ) \bigr\vert \bigr] , \end{aligned}$$

which is presented in [14, Theorem 2.2].

Remark 4

If we let \(\alpha =1\) and \(\lambda =0\) in Theorem 1, then we obtain the midpoint-type inequality

$$ \biggl\vert \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) }\int _{\mathfrak{\sigma }}^{\mathfrak{\delta }}\mathfrak{F} ( \mu )\,dt-\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{48} \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert \bigr) , $$

which is given in [33, Theorem 5].

Theorem 2

Let us consider that the assumptions of Lemma 1hold. If, moreover, \(\vert \mathfrak{F}^{\prime \prime } \vert ^{q}\), \(q>1\) is convex on \([\mathfrak{\sigma },\mathfrak{\delta }]\), then

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}}+ \biggl( \int _{ \frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggr] \\ &\qquad {} \times \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}} \biggr] \\ & \quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2^{\frac{3}{q}-1}\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}}+ \biggl( \int _{ \frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggr] \\ &\qquad {}\times \bigl[ \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert \bigr] , \end{aligned}$$

where \(\frac{1}{p}+\frac{1}{q}=1\).

Proof

Let us first apply Hölder’s inequality in (13). Then, we get

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \mathfrak{F}^{ \prime \prime } \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ & \qquad {}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{ \alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{ \frac{1}{p}} \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

By using the convexity of \(\vert \mathfrak{F}^{\prime \prime } \vert ^{q}\), we get

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ & \quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{ \frac{1}{2}} \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{ \frac{1}{q}} \\ & \qquad {} + \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{\frac{1}{2}} \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{\frac{1}{2}}^{1} \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{\frac{1}{2}}^{1} \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{\frac{1}{q}} \biggr] \\ & \quad = \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}}+ \biggl( \int _{ \frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggr] \\ & \qquad {}\times \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

Let \(\mathfrak{\sigma }_{1}= \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}\), \(\mathfrak{\delta }_{1}=3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}\), \(\mathfrak{\sigma }_{2}=3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}\), and \(\mathfrak{\delta }_{2}= \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}\) for the proof of the second inequality. Using the facts that

$$ \sum_{k=1}^{n} ( \mathfrak{\sigma }_{k}+ \mathfrak{\delta }_{k} ) ^{s} \leq \sum_{k=1}^{n}\mathfrak{\sigma }_{k}^{s}+\sum_{k=1}^{n} \mathfrak{\delta }_{k}^{s},\quad 0 \leq s< 1, $$

and \(1+3^{\frac{1}{q}}\leq 4\), the desired result of Theorem 2 can be obtained straightforwardly. □

Remark 5

Let us consider \(\lambda =0\) in Theorem 2. Then, the following midpoint-type inequality holds:

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha +1 ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }} \bigl[ J_{\mathfrak{\sigma }+}^{\alpha } \mathfrak{F} ( \mathfrak{\delta } ) +J_{ \mathfrak{\delta }-}^{\alpha }\mathfrak{F} ( \mathfrak{\sigma } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2 ( \alpha +1 ) } \biggl[ \biggl( \frac{1}{2^{ ( p ( 1+\alpha ) +1 ) } ( p ( 1+\alpha ) +1 ) } \biggr) ^{\frac{1}{p}}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \mu ^{ \alpha +1}- ( 1+\alpha ) \mu +\alpha \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggr] \\ &\qquad {}\times \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2^{\frac{3}{q}-1} ( \alpha +1 ) } \biggl[ \biggl( \frac{1}{2^{ ( p ( 1+\alpha ) +1 ) } ( p ( 1+\alpha ) +1 ) } \biggr) ^{\frac{1}{p}} \\ &\qquad {}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \mu ^{\alpha +1}- ( 1+\alpha ) \mu +\alpha \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggr] \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{ \sigma } ) \bigr\vert \bigr) , \end{aligned}$$

which is presented in [14, Theorem 2.5].

Remark 6

If we assign \(\alpha =1\) and \(\lambda =0\) in Theorem 2, then we have

$$\begin{aligned} & \biggl\vert \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) }\int _{\mathfrak{\sigma }}^{\mathfrak{\delta }}\mathfrak{F} ( \mu )\,dt-\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{16} \biggl( \frac{1}{2p+1} \biggr) ^{\frac{1}{p}} \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}}{4} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}+ \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}}{4} \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{16} \biggl( \frac{4}{2p+1} \biggr) ^{\frac{1}{p}} \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert \bigr) , \end{aligned}$$

which are given in [7, Corollary 4.8].

Theorem 3

Suppose that the assumptions of Lemma 1hold. If \(\vert \mathfrak{F}^{\prime \prime } \vert ^{q}\), \(q\geq 1\) is convex on \([\mathfrak{\sigma },\mathfrak{\delta }]\), then

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \\ &\qquad {}\times \bigl[ \bigl( \Omega _{1} ( \lambda ,\alpha ) \bigr) ^{1-\frac{1}{q}} \bigl[ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \Omega _{3} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigl( \Omega _{1} ( \lambda ,\alpha ) -\Omega _{3} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \\ &\qquad {}+ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}\Omega _{3} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigl( \Omega _{1} ( \lambda ,\alpha ) -\Omega _{3} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \bigr] + \bigl( \Omega _{2} ( \lambda ,\alpha ) \bigr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \bigl[ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{ \delta } ) \bigr\vert ^{q}\Omega _{4} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigl( \Omega _{2} ( \lambda ,\alpha ) - \Omega _{4} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \\ &\qquad {}+ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{ \sigma } ) \bigr\vert ^{q}\Omega _{4} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigl( \Omega _{2} ( \lambda ,\alpha ) - \Omega _{4} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \bigr] \bigr] . \end{aligned}$$

Here, \(\Omega _{1} ( \lambda ,\alpha ) \) and \(\Omega _{2} ( \lambda ,\alpha ) \) are defined in (12) and

$$ \textstyle\begin{cases} \Omega _{3} ( \lambda ,\alpha ) =\int _{0}^{ \frac{1}{2}}\mu \vert \varphi _{\alpha } ( \lambda ,\mu ) \vert \,dt, \\ \Omega _{4} ( \lambda ,\alpha ) =\int _{ \frac{1}{2}}^{1}\mu \vert \psi _{\alpha } ( \lambda ,\mu ) \vert \,dt.\end{cases} $$

Proof

By applying the power-mean inequality in (13), we have

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{\prime \prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime \prime } \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime \prime } \bigl( tb+ ( 1-\mu ) \mathfrak{\sigma } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime \prime } \bigl( ta+ ( 1-\mu ) \mathfrak{\delta } \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

It is known that \(\vert \mathfrak{F}^{\prime \prime } \vert ^{q}\) is convex. Then, we obtain

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \bigl[ \mathcal{J}_{\mathfrak{\delta }-}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\sigma } ) +\mathcal{J}_{ \mathfrak{\sigma }+}^{ ( \alpha ,\lambda ) } \mathfrak{F} ( \mathfrak{\delta } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \biggl[ \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q}+ ( 1- \mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{ \frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert \varphi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1-\frac{1}{q}} \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \,dt \biggr) ^{1- \frac{1}{q}} \biggl( \int _{\frac{1}{2}}^{1} \bigl\vert \psi _{\alpha } ( \lambda ,\mu ) \bigr\vert \bigl[ \mu \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}+ ( 1-\mu ) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad = \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2\curlyvee _{\lambda ( \mathfrak{\delta }-\mathfrak{\sigma } ) } ( \alpha ,1 ) } \\ &\qquad {}\times \bigl[ \bigl( \Omega _{1} ( \lambda ,\alpha ) \bigr) ^{1-\frac{1}{q}} \bigl[ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \Omega _{3} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigl( \Omega _{1} ( \lambda ,\alpha ) -\Omega _{3} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \\ &\qquad {}+ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}\Omega _{3} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigl( \Omega _{1} ( \lambda ,\alpha ) -\Omega _{3} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \bigr] + \bigl( \Omega _{2} ( \lambda ,\alpha ) \bigr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \bigl[ \bigl( \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \Omega _{4} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigl( \Omega _{2} ( \lambda , \alpha ) -\Omega _{4} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \\ &\qquad {}+ \bigl( \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{ \sigma } ) \bigr\vert ^{q}\Omega _{4} ( \lambda ,\alpha ) + \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigl( \Omega _{2} ( \lambda ,\alpha ) - \Omega _{4} ( \lambda ,\alpha ) \bigr) \bigr) ^{\frac{1}{q}} \bigr] \bigr] . \end{aligned}$$

 □

Remark 7

Consider \(\lambda =0\) in Theorem 3. Then, the following midpoint-type inequality holds:

$$\begin{aligned} & \biggl\vert \frac{\Gamma ( \alpha +1 ) }{2 ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{\alpha }} \bigl[ J_{\mathfrak{\sigma }+}^{\alpha } \mathfrak{F} ( \mathfrak{\delta } ) +J_{ \mathfrak{\delta }-}^{\alpha }\mathfrak{F} ( \mathfrak{\sigma } ) \bigr] -\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{2 ( \alpha +1 ) } \biggl[ \biggl( \frac{1}{2^{\alpha +2} ( \alpha +2 ) } \biggr) \biggl[ \biggl( \frac{ ( \alpha +2 ) \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}+ ( \alpha +4 ) \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}}{2 ( \alpha +3 ) } \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{ ( \alpha +2 ) \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}+ ( \alpha +4 ) \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}}{2 ( \alpha +3 ) } \biggr) ^{\frac{1}{q}} \biggr] + \bigl( \phi _{1} ( \alpha ) \bigr) ^{1- \frac{1}{q}} \\ &\qquad {}\times \bigl[ \bigl[ \bigl( \phi _{2} ( \alpha ) \bigr) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q}+ \bigl( \phi _{1} ( \alpha ) - \phi _{2} ( \alpha ) \bigr) \bigl\vert \mathfrak{F}^{ \prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \\ &\qquad {}+ \bigl[ \bigl( \phi _{2} ( \alpha ) \bigr) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \bigr\vert ^{q}+ \bigl( \phi _{1} ( \alpha ) -\phi _{2} ( \alpha ) \bigr) \bigl\vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \bigr] \biggr] , \end{aligned}$$

where

$$ \textstyle\begin{cases} \phi _{1} ( \alpha ) = \frac{2^{\alpha +2}-1}{2^{\alpha +2} ( \alpha +2 ) }+\frac{\alpha -3}{8}, \\ \phi _{2} ( \alpha ) = \frac{2^{\alpha +3}-1}{2^{\alpha +3} ( \alpha +3 ) }+\frac{2\alpha -7}{24}.\end{cases} $$

This result coincides with [14, Theorem 2.7].

Remark 8

Let us consider \(\alpha =1\) and \(\lambda =0\) in Theorem 3. Then, we have the midpoint-type inequality

$$\begin{aligned}& \biggl\vert \frac{1}{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) }\int _{\mathfrak{\sigma }}^{\mathfrak{\delta }}\mathfrak{F} ( \mu )\,dt-\mathfrak{F} \biggl( \frac{\mathfrak{\sigma }+\mathfrak{\delta }}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( \mathfrak{\delta }-\mathfrak{\sigma } ) ^{2}}{48} \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{3 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\sigma } ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime \prime } ( \mathfrak{\delta } ) \vert ^{q}}{8} \biggr) ^{\frac{1}{q}} \biggr] , \end{aligned}$$

which is given in [31, Proposition 5].

4 Conclusion

In this paper, we proved an equality involving tempered fractional integrals for the case of twice-differentiable functions. By using this equality, we established midpoint-type inequalities for tempered fractional integrals. Moreover, our results generalize known results from the literature.

In a future research, exploring the ideas and results related to midpoint-type inequalities using tempered fractional integrals could pave the way for new directions in this field of mathematics. Moreover, one can try to generalize our results by utilizing a different version of convex function classes or another type fractional integral operators. Finally, this suggests that using tempered fractional integrals with quantum calculus may lead to similar inequalities for convex functions.

Availability of data and materials

Data sharing not applicable to this paper as no data sets were generated or analyzed during the current study.

References

  1. Agarwal, P., Tariboon, J., Ntouyas, S.K.: Some generalized Riemann–Liouville k-fractional integral inequalities. J. Inequal. Appl. 2016, 122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aljaaidi, T.A., Pachpatte, D.B., Abdeljawad, T., Abdo, M.S., Almalahi, M.A., Redhwan, S.S.: Generalized proportional fractional integral Hermite–Hadamard’s inequalities. Adv. Differ. Equ. 2021(1), 1 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Aljaaidi, T.A., Pachpatte, D.B., Abdo, M.S., Botmart, T., Ahmad, H., Almalahi, M.A., Redhwan, S.S.: \((K, \Psi ) \)-Proportional fractional integral Polya–Szego-and Gruss-type inequalities. Fractal Fract. 5(4), 172 (2021)

    Article  Google Scholar 

  4. Aljaaidi, T.A., Pachpatte, D.B., Shatanawi, W., et al.: Generalized proportional fractional integral functional bounds in Minkowski’s inequalities. Adv. Differ. Equ. 2021, 419 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anastassiou, G.A.: General fractional Hermite–Hadamard inequalities using m-convexity and \((s,m)\)-convexity. In: Frontiers in Time Scales and Inequalities, pp. 237–255 (2016)

    MATH  Google Scholar 

  6. Barani, A., Barani, S., Dragomir, S.S.: Refinements of Hermite–Hadamard inequalities for functions when a power of the absolute value of the second derivative is P-convex. J. Appl. Math., 2012 (2012)

  7. Budak, H., Ertugral, F., Pehlivan, E.: Hermite–Hadamard type inequalities for twice differentiable functions via generalized fractional integrals. Filomat 33(15), 4967–4979 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Budak, H., Hezenci, F., Kara, H.: On generalized Ostrowski, Simpson and trapezoidal type inequalities for coordinated convex functions via generalized fractional integrals. Adv. Differ. Equ. 2021, 1 (2021)

    Article  MATH  Google Scholar 

  9. Buschman, R.G.: Decomposition of an integral operator by use of Mikusinski calculus. SIAM J. Math. Anal. 3, 83–85 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, F.: A note on the Hermite–Hadamard inequality for convex functions on the coordinates. J. Math. Inequal. 8(4), 915–923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dragomir, S.S.: On Hadamard’s inequality for convex functions on the co–ordinates in a rectangle from the plane. Taiwan. J. Math. 4, 775–788 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, pp. 223–276. Springer, Wien (1997)

    MATH  Google Scholar 

  14. Hezenci, F., Bohner, M., Budak, H.: Fractional midpoint-type inequalities for twice-differentiable functions. Filomat 37, 24 (2023)

    MathSciNet  Google Scholar 

  15. Hezenci, F., Budak, H., Kara, H.: New version of fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 460 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iqbal, M., Bhatti, M.I., Nazeer, K.: Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 52(3), 707–716 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  18. Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 147(5), 137–146 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Latif, M.A., Dragomir, S.S.: On some new inequalities for differentiable co-ordinated convex functions. J. Inequal. Appl. 2012(1), 1 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Discrete Contin. Dyn. Syst., Ser. B 24, 1989–2015 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Meerschaert, M.M., Sabzikar, F., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43 (2012)

    MATH  Google Scholar 

  23. Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  24. Mohammed, P.O., Sarikaya, M.Z.: On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 372, 112740 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mohammed, P.O., Sarikaya, M.Z., Baleanu, D.: On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 12(4), 595 (2020)

    Article  Google Scholar 

  26. Ozdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via \((\alpha ,m) \)-convexity. Comput. Math. Appl. 61(9), 2614–2620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ozdemir, M.E., Yildiz, C., Akdemir, A.O.: On some new Hadamard-type inequalities for co-ordinated quasi-convex functions. Hacet. J. Math. Stat. 41(5), 697–707 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Park, J.: On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals. Appl. Math. Sci. 9(62), 3057–3069 (2015)

    Google Scholar 

  29. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, London (1993)

    MATH  Google Scholar 

  30. Sarıkaya, M.Z.: On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25(2), 134–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sarikaya, M.Z., Aktan, N.: On the generalization of some integral inequalities and their applications. Math. Comput. Model. 54(9–10), 2175–2182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sarikaya, M.Z., Budak, H.: Some Hermite–Hadamard type integral inequalities for twice differentiable mappings via fractional integrals. Facta Univ., Ser. Math. Inform. 29(4), 371–384 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Sarikaya, M.Z., Saglam, A., Yildirim, H.: New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex. Int. J. Open Probl. Comput. Sci. Math. 5(3), 2074–2827 (2012)

    Google Scholar 

  34. Sarikaya, M.Z., Set, E., Ozdemir, M.E., Dragomir, S.S.: New some Hadamard’s type inequalities for coordinated convex functions. Tamsui Oxf. J. Inf. Math. Sci. 28(2), 137–152 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9–10), 2403–2407 (2013)

    Article  MATH  Google Scholar 

  36. Srivastava, H.M., Buschman, R.G.: Convolution Integral Equations with Special Function Kernels. Wiley, New York (1977)

    MATH  Google Scholar 

  37. Tunç, T., Sarikaya, M.Z., Yaldiz, H.: Fractional Hermite–Hadamard’s type inequality for co-ordinated convex functions. TWMS J. Pure Appl. Math. 11(1), 3–29 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.H. and H.B.; investigation, H.B.; methodology, F.H.; validation, F.H.; visualization, H.B. and F.H.; writing-original draft, H.B. and F.H.; writing-review and editing, H.B. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatih Hezenci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hezenci, F., Budak, H. Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals. J Inequal Appl 2023, 150 (2023). https://doi.org/10.1186/s13660-023-03064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03064-3

Mathematics Subject Classification

Keywords