Skip to main content

A modified class of Ostrowski-type inequalities and error bounds of Hermite–Hadamard inequalities

Abstract

This paper aims to extend the application of the Ostrowski inequality, a crucial tool for figuring out the error bounds of various numerical quadrature rules, including Simpson’s, trapezoidal, and midpoint rules. Specifically, we develop a more comprehensive class of Ostrowski-type inequalities by utilizing the weighted version of Riemann–Liouville (RL) fractional integrals on an increasing function. We apply our findings to estimate the error bounds of Hadamard-type inequalities. Our results are more comprehensive, since we obtain the results of the existing literatures as particular cases for certain parameter values. This research motivates researchers to apply this concept to other fractional operators.

1 Introduction

Fractional calculus has a rich academic history and represents a natural extension of traditional calculus. Recent advances in fractional calculus can be found in mathematical physics, biology, chemistry, engineering, signal processing, fluid mechanics, viscoelasticity, mathematical biology, and electrochemistry [13]. The well-known RL fractional operators include single kernels and are used to examine and evaluate memory effect phenomena in mathematical physics [4]. Fractional calculus operators with various types of kernels are important for generalizing classical mathematical inequalities. The kernels involved in other mathematical conceptions serve a critical role in their existence and applications [5, 6]. Our findings can encompass a wide range of fractional operators as the kernel includes a strictly increasing function. This allows us to extend and unify numerous previously published results in the literature. A variety of fractional integral operators that reduce to the traditional RL fractional integral operator have been developed [711]. Weighted fractional integral operators are revealed to be bound in the Lebesgue space, and various classical fractional integral and differential operators are found as special instances [12]. Fractional operators are used to generalize integrals, derivatives, and in particular integrals involving inequalities [13]. We generalize the inequalities for a family of n positive functions by employing the \((k,\varsigma )\)-fractional integral operator [14, 15].

Inequalities are a modern mathematical analysis model that depicts the rate of advancement in the mathematical analysis competition [16]. The study of fractional partial and ordinary differential equations can greatly benefit from Hermite–Hadamard inequalities that involve fractional integral operators [17, 18]. Fractional integral inequalities have shown to be one of the most powerful and broad-reaching tools for advancing many fields of pure and applied mathematics [19, 20]. Due to their distinctive applications in numerical quadrature, transform theory, probability, and statistical issues, these inequalities have gained tremendous prominence and relevance during the last few decades [21, 22]. The Ostrowski inequality holds significant value and utility in the fields of mathematical analysis, numerical analysis, and engineering [23]. It provides an estimate of the integral mean of a function [2426]. Such inequalities are used to derive explicit limits for the perturbed trapezoidal, midpoint, Simpson, Newton–Cotes, and left and right rectangle rules. These are also applied to various composite quadrature rules, and the analysis allows for the calculation of the partition necessary for the accuracy of the result to be within a certain error tolerance [27]. It also specifies the error boundaries of specific mean relations and numerous numerical quadrature rules of integration [28].

The Ostrowski inequality was first proposed by Ostrowski [29] in 1938 and can be expressed as follows.

Theorem 1.1

Suppose that γ is differentiable function on \(J^{0}\), \(\lambda _{1},\lambda _{2}\in J^{0}\), \(\lambda _{1}<\lambda _{2}\), and \(|\gamma ^{\prime }(\tau )|\leq M\) for all \(\tau \in [\lambda _{1},\lambda _{2}]\). Then we have the following inequality:

$$\begin{aligned} \biggl\vert \gamma (\theta )-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{ \lambda _{1}}^{\lambda _{2}}\gamma (\tau )\,d\tau \biggr\vert \leq \biggl[ \frac{1}{4}+ \frac{ (\theta -\frac{\lambda _{1}+\lambda _{2}}{2} )^{2}}{ (\lambda _{2}-\lambda _{1} )^{2}} \biggr](\lambda _{2}-\lambda _{1})M, \end{aligned}$$
(1.1)

where \(\theta \in [\lambda _{1},\lambda _{2}]\).

The Hadamard inequality provides an interesting viewpoint on convex functions in the Cartesian plane as in the following statement.

Theorem 1.2

Suppose that γ is positive convex function defined on a real interval J. Then we have the following inequality for \(\lambda _{1},\lambda _{2}\in J\) such that \(\lambda _{1}<\lambda _{2}\):

$$\begin{aligned} & \gamma \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)\leq \frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \gamma (\tau )\,d\tau \leq \frac{\gamma (\lambda _{1})+\gamma (\lambda _{2})}{2}. \end{aligned}$$

To begin, let us review some definitions and notions. The gamma and k-gamma functions can be represented as integrals, as outlined in [10]. Specifically, these functions are defined as follows.

Definition 1.3

If \(\Re (\mu )>0\), then the k-gamma function is defined as

$$\begin{aligned} \Gamma _{k}(\mu )= \int _{0}^{\infty}\tau ^{\mu -1}e^{- \frac{\tau ^{k}}{k}}\,d\tau \end{aligned}$$

with the property

$$\begin{aligned} \Gamma _{k}(\mu +k)=\mu \Gamma _{k}(\mu ). \end{aligned}$$

Setting \(k=1\) yields the classical gamma function.

Let us revisit the definitions of RL fractional integrals and their general forms [30]. The left- and right-sided RL k-fractional integrals are defined in [10]. The idea of RL fractional integrals is extended by the \((k,\varsigma )\)-RL fractional integrals described in [9].

Definition 1.4

The right and left RL fractional integrals of order \(\mu >0\) for a continuous function \(\gamma _{1}\) on the finite real interval \([\lambda _{1},\lambda _{2}]\) is given by

$$\begin{aligned} \bigl(\Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) ( \theta )= \frac{1}{\Gamma (\mu )} \int _{\lambda _{1}}^{\theta}(\theta -\tau )^{ \mu -1} \gamma _{1}(\tau )\,d\tau ,\quad \theta >\lambda _{1}, \end{aligned}$$

and

$$\begin{aligned} \bigl(\Im _{\lambda _{2}^{-}}^{\mu}\gamma _{1}\bigr) ( \theta )= \frac{1}{\Gamma (\mu )} \int _{\theta}^{\lambda _{2}}(\tau -\theta )^{ \mu -1} \gamma _{1}(\tau )\,d\tau ,\quad \theta < \lambda _{2}. \end{aligned}$$

Definition 1.5

Let \(\gamma _{1}\) be a continuous function on the real interval \([\lambda _{1},\lambda _{2}]\). Then the right and left RL k-fractional integrals of order \(\mu ,k>0\) are defined as

$$\begin{aligned} \bigl(_{k}\Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) (\theta )= \frac{1}{k\Gamma _{k}(\mu )} \int _{\lambda _{1}}^{\theta}(\theta - \tau )^{\frac{\mu}{k}-1} \gamma (\tau )\,d\tau ,\quad \theta >\lambda _{1}, \end{aligned}$$

and

$$\begin{aligned} \bigl(_{k}\Im _{\lambda _{2}^{-}}^{\mu}\gamma _{1}\bigr) (\theta )= \frac{1}{k\Gamma _{k}(\mu )} \int _{\theta}^{\lambda _{2}}(\tau - \theta )^{\frac{\mu}{k}-1} \gamma _{1}(\tau )\,d\tau ,\quad \theta < \lambda _{2}. \end{aligned}$$

Definition 1.6

Let \(\gamma _{1}\) be a continuous function on \([\lambda _{1},\lambda _{2}]\). Then the right and left \((k,\varsigma )\)-RL fractional integrals of order \(\mu ,k>0\) are defined as

$$\begin{aligned} \bigl(_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu} \gamma _{1}\bigr) (\theta )= \frac{(\varsigma +1)^{1-\frac{\mu}{k}}}{k\Gamma _{k}(\mu )} \int _{ \lambda _{1}}^{\theta}\bigl(\theta ^{\varsigma +1}- \tau ^{\varsigma +1}\bigr)^{ \frac{\mu}{k}-1}\tau ^{\varsigma}\gamma _{1}(\tau )\,d\tau ,\quad \theta >\lambda _{1}, \end{aligned}$$

and

$$\begin{aligned} \bigl(_{k}^{\varsigma}\Im _{\lambda _{2}^{-}}^{\mu} \gamma _{1}\bigr) (\theta )= \frac{(\varsigma +1)^{1-\frac{\mu}{k}}}{k\Gamma _{k}(\mu )} \int _{ \theta}^{\lambda _{2}}\bigl(\tau ^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{ \frac{\mu}{k}-1}\tau ^{\varsigma}\gamma _{1}(\tau )\,d\tau ,\quad \theta < \lambda _{2}, \end{aligned}$$

where \(\varsigma \in \mathbb{R}\setminus \{-1\}\).

The \((k,\varsigma )\)-weighted RL fractional integrals, which generalize the RL fractional integrals, are defined in [9].

Definition 1.7

Let \(\gamma _{1}\) be a continuous function on \([\lambda _{1},\lambda _{2}]\), and let σ be a nonzero increasing weight function. Then right and left weighted \((k,\varsigma )\)-RL fractional integrals of order \(\mu ,k>0\) are defined as

$$\begin{aligned} \bigl(_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) ( \theta )= \frac{(\varsigma +1)^{1-\frac{\mu}{k}}\sigma ^{-1}(\theta )}{k\Gamma _{k}(\mu )} \int _{\lambda _{1}}^{\theta}\bigl(\theta ^{\varsigma +1}- \tau ^{ \varsigma +1}\bigr)^{\frac{\mu}{k}-1}\tau ^{\varsigma}\sigma (\tau ) \gamma _{1}(\tau )\,d\tau ,\quad \theta >\lambda _{1}, \end{aligned}$$

and

$$\begin{aligned} \bigl(_{k}^{\varsigma}\Im _{\lambda _{2}^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) ( \theta )= \frac{(\varsigma +1)^{1-\frac{\mu}{k}}\sigma ^{-1}(\theta )}{k\Gamma _{k}(\mu )} \int _{\theta}^{\lambda _{2}}\bigl(\tau ^{\varsigma +1}-\theta ^{ \varsigma +1}\bigr)^{\frac{\mu}{k}-1}\tau ^{\varsigma}\sigma (\tau ) \gamma _{1}(\tau )\,d\tau ,\quad \theta < \lambda _{2}, \end{aligned}$$

where \(\sigma (\theta )\neq 0\) and \(\varsigma \in \mathbb{R}\setminus \{-1\}\).

An extension of RL fractional integrals for an increasing function is presented in [31], expressed in the following definition.

Definition 1.8

Let \(\gamma _{1}\) be a continuous function on \([\lambda _{1},\lambda _{2}]\), let \(\gamma _{2}\) be a strictly increasing function, and let σ be a nonzero increasing weight function. Then the right and left generalized weighted RL fractional integrals of order \(\mu >0\) are defined as

$$\begin{aligned} \bigl(\gamma _{2}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) ( \theta )=\frac{\sigma ^{-1}(\theta )}{\Gamma (\mu )} \int _{\lambda _{1}}^{ \theta}\bigl(\gamma _{2}( \theta )-\gamma _{2}(\tau )\bigr)^{\mu -1}\gamma _{2}^{\prime }( \tau )\sigma (\tau )\gamma _{1}( \tau )\,d\tau ,\quad \theta >\lambda _{1}, \end{aligned}$$

and

$$\begin{aligned} \bigl(\gamma _{2}\Im _{\lambda _{2}^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) ( \theta )=\frac{\sigma ^{-1}(\theta )}{\Gamma (\mu )} \int _{\theta}^{ \lambda _{2}}\bigl(\gamma _{2}(\tau )-\gamma _{2}(\theta )\bigr)^{\mu -1} \gamma _{2}^{\prime }(\tau )\sigma (\tau )\gamma _{1}( \tau )\,d\tau ,\quad \theta < \lambda _{2}, \end{aligned}$$

where \(\sigma (\theta )\neq 0\).

Reference [32] presents the Hadamard inequality in fractional form by utilizing RL fractional integrals. The following theorem presents a variant of the fractional Hadamard inequality for RL fractional integrals, as defined in Definition 1.4.

Theorem 1.9

Let γ be a convex function on \([\lambda _{1},\lambda _{2}]\), \(0\leq \lambda _{1}<\lambda _{2}\), and \(\gamma \in L_{1}[\lambda _{1},\lambda _{2}]\). Then the RL fractional integrals obey the following inequality:

$$\begin{aligned} \gamma \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)\leq \frac{\Gamma (\mu +1)}{2(\lambda _{2} -\lambda _{1})^{\mu}} \bigl[ \bigl(\Im _{\lambda _{1}^{+}}^{\mu}\gamma \bigr) ( \lambda _{2})+\bigl(\Im _{\lambda _{2}^{-}}^{\mu}\gamma \bigr) ( \lambda _{1}) \bigr] \leq \frac{\gamma (\lambda _{1})+\gamma (\lambda _{2})}{2}. \end{aligned}$$

By utilizing generalized RL fractional integrals Farid et al. [33] achieved a generalization of the Hadamard inequality. The following theorem presents the generalized version of the Hadamard inequality for generalized RL fractional integrals defined in Definition 1.5.

Theorem 1.10

Let γ be a convex function on \([\lambda _{1},\lambda _{2}]\), \(0\leq \lambda _{1}<\lambda _{2}\), and \(\gamma \in L_{1}[\lambda _{1},\lambda _{2}]\). Then the RL k-fractional integrals satisfy the following inequality:

$$\begin{aligned} \gamma \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)\leq \frac{\Gamma _{k}(\mu +k)}{2(\lambda _{2}-\lambda _{1})^{\frac{\mu}{k}}} \bigl[ \bigl(_{k}\Im _{\lambda _{1}^{+}}^{\mu}\gamma \bigr) ( \lambda _{2})+\bigl(_{k} \Im _{\lambda _{2}^{-}}^{\mu} \gamma \bigr) (\lambda _{1}) \bigr]\leq \frac{\gamma (\lambda _{1})+\gamma (\lambda _{2})}{2}. \end{aligned}$$

Reference [34] illustrates the fractional version of the aforementioned fractional Hadamard inequality as follows.

Theorem 1.11

Let γ be a convex function on \([\lambda _{1},\lambda _{2}]\), \(0\leq \lambda _{1}<\lambda _{2}\), and \(\gamma \in L_{1}[\lambda _{1},\lambda _{2}]\). Then the RL fractional integrals satisfy the following inequality:

$$\begin{aligned} \gamma \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)&\leq \frac{2^{\mu -1}\Gamma (\mu +1)}{(\lambda _{2}-\lambda _{1})^{\mu}} \bigl[ \bigl(\Im _{(\frac{\lambda _{1}+\lambda _{2}}{2})^{+}}^{\mu} \gamma \bigr) (\lambda _{2})+ \bigl(\Im _{( \frac{\lambda _{1}+\lambda _{2}}{2})^{-}}^{\mu}\gamma \bigr) ( \lambda _{1}) \bigr] \\ & \leq \frac{\gamma (\lambda _{1})+\gamma (\lambda _{2})}{2}. \end{aligned}$$

Reference [33] illustrates the k-fractional version of the aforementioned fractional Hadamard inequality as follows.

Theorem 1.12

Let γ be a convex function on \([\lambda _{1},\lambda _{2}]\), \(0\leq \lambda _{1}<\lambda _{2}\), and \(\gamma \in L_{1}[\lambda _{1},\lambda _{2}]\). Then the RL k-fractional integrals satisfy the following inequality:

$$\begin{aligned} \gamma \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)&\leq \frac{2^{\frac{\mu}{k}-1}\Gamma _{k}(\mu +k)}{(\lambda _{2}-\lambda _{1})^{\frac{\mu}{k}}} \bigl[ \bigl(_{k}\Im _{(\frac{\lambda _{1}+\lambda _{2}}{2})^{+}}^{ \mu}\gamma \bigr) ( \lambda _{2})+ \bigl(_{k}\Im _{( \frac{\lambda _{1}+\lambda _{2}}{2})^{-}}^{\mu} \gamma \bigr) ( \lambda _{1}) \bigr] \\ & \leq \frac{\gamma (\lambda _{1})+\gamma (\lambda _{2})}{2}. \end{aligned}$$

The Ostrowski-type inequalities for RL fractional integrals are reported in [35]. Inspired by the research discussed earlier, we intend to propose a new class of Ostrowski-type inequalities. Our approach involves the utilization of generalized weighted \((k,\varsigma )\)-RL fractional operators.

2 Weighted fractional integral inequalities via generalized fractional operator

In this section, we proof the Ostrowski-type inequalities by using weighted \((k,\varsigma )\)-RL fractional integral operator with respect to an increasing function.

In [12] an extension of weighted \((k,\varsigma )\)-RL fractional integrals for an increasing function is written in the following way.

Definition 2.1

Let \(\gamma _{1}\) be a continuous function on \([\lambda _{1},\lambda _{2}]\), let \(\gamma _{2}\) be a strictly increasing function, and let σ be the nonzero increasing weight function. Then the right and left generalized weighted \((k,\varsigma )\)-RL fractional integrals of order \(\mu >0\) and type \(k>0\) are defined as

$$\begin{aligned} & \bigl(\gamma _{2},_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{ \sigma}\gamma _{1} \bigr) (\theta ) \\ &\quad = \frac{(\varsigma +1)^{1-\frac{\mu}{k}}\sigma ^{-1}(\theta )}{k\Gamma _{k}(\mu )} \int _{\lambda _{1}}^{\theta}\bigl(\gamma _{2}^{\varsigma +1}( \theta )- \gamma _{2}^{\varsigma +1}(\tau )\bigr)^{\frac{\mu}{k}-1} \gamma _{2}^{ \varsigma}(\tau )\gamma _{2}^{\prime }( \tau )\sigma (\tau )\gamma _{1}( \tau )\,d\tau ,\quad \theta >\lambda _{1}, \end{aligned}$$

and

$$\begin{aligned} & \bigl(\gamma _{2},_{k}^{\varsigma}\Im _{\lambda _{2}^{-}}^{\mu},_{ \sigma}\gamma _{1} \bigr) (\theta ) \\ & \quad = \frac{(\varsigma +1)^{1-\frac{\mu}{k}}\sigma ^{-1}(\theta )}{k\Gamma _{k}(\mu )} \int _{\theta}^{\lambda _{2}}\bigl(\gamma _{2}^{\varsigma +1}( \tau )- \gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\mu}{k}-1} \gamma _{2}^{ \varsigma}(\tau )\gamma _{2}^{\prime }( \tau )\sigma (\tau )\gamma _{1}( \tau )\,d\tau ,\quad \theta < \lambda _{2}, \end{aligned}$$

where \(\sigma (\theta )\neq 0\), \(\varsigma \in \mathbb{R}\setminus \{-1\}\), and \(\gamma _{2}^{\varsigma +1}(\theta )= (\gamma _{2}(\theta ) )^{\varsigma +1}\).

Remark 2.2

In Definition 2.1, setting

  1. (i)

    \(\gamma _{2}(\theta )=\theta \), \(\varsigma =0\), \(k=1\), and \(\sigma (\theta )=1\), we obtain Definition 1.4;

  2. (ii)

    \(\gamma _{2}(\theta )=\theta \), \(\varsigma =0\), and \(\sigma (\theta )=1\), we obtain Definition 1.5;

  3. (iii)

    \(\gamma _{2}(\theta )=\theta \) and \(\sigma (\theta )=1\), we obtain Definition 1.6;

  4. (iv)

    \(\gamma _{2}(\theta )=\theta \), we obtain Definition 1.7;

  5. (v)

    \(\varsigma =0\) and \(k=1\), we get Definition 1.8.

Theorem 2.3

Let \(\gamma _{1}:J\rightarrow R\) be a differentiable function on \(J^{0}\), \(\lambda _{1},\lambda _{2}\in J^{0}\), and \(\lambda _{1}<\lambda _{2}\). Also, let \(\gamma _{2}:[\lambda _{1},\lambda _{2}]\rightarrow R\) be a differentiable, increasing function such that \(\gamma _{2}^{\prime }\in L[\lambda _{1},\lambda _{2}]\) and \(|\gamma _{1}^{\prime }(\tau )|\leq M\) for all \(\tau \in [\lambda _{1},\lambda _{2}]\), and let σ be a nonzero increasing weight function. Then for \(\mu ,\nu \geq 0\) and \(k>0\), we have the following inequality for weighted \((k,\varsigma )\)-RL fractional integrals:

$$\begin{aligned} & \biggl\vert \gamma _{1}(\theta ) \bigl( \bigl( \gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{ \frac{\nu}{k}}+ \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \bigr) \\ &\quad \quad{} - \biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\theta ) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\theta ^{\varsigma +1} \bigl(\bigl( \gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\frac{\mu}{k}}-\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \bigr) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) (\theta ) \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I \bigr) (\theta ) \biggr). \end{aligned}$$
(2.1)

Proof

Let \(\theta \in [\lambda _{1},\lambda _{2}]\) and \(\tau \in [\lambda{_{1}},\theta ]\). Since \(\gamma _{2}\) is a strictly increasing function, \(\mu \geqslant 0\), and \(k>0\), we have the following relation:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}(\tau )\bigr)^{ \frac{\mu}{k}}\leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}( \lambda _{1})\bigr)^{\frac{\mu}{k}}. \end{aligned}$$
(2.2)

Let \(\tau ^{\varsigma}\geq 1\). Then the following inequalities are simple consequences of (2.2) and the boundedness requirement on \(\gamma _{1}^{\prime }\):

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \tau )\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{ \varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.3)

and

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{\varsigma}+ \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \tau )\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{ \varsigma}+ \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau . \end{aligned}$$
(2.4)

By performing integration and straightforward calculations on (2.3) and (2.4) and utilizing Definition 2.1, we arrive at the following inequalities:

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\theta )-(\varsigma +1)^{ \frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl(\bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \theta ^{\varsigma +1}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{ \sigma}I\bigr) (\theta ) \bigr) \end{aligned}$$
(2.5)

and

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\theta )-\bigl( \gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\theta ) \\ &\quad \leq \frac{M}{\varsigma +1}\bigl(\bigl(\gamma _{2}^{\varsigma +1}( \theta )- \gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}}\theta ^{ \varsigma +1}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I\bigr) ( \theta )\bigr). \end{aligned}$$
(2.6)

Therefore from inequality (2.5) and (2.6) we have following modulus inequality:

$$\begin{aligned} & \bigl\vert \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\theta )-( \varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \bigr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \bigl(\bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \theta ^{\varsigma +1}-(\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I\bigr) ( \theta ) \bigr). \end{aligned}$$
(2.7)

Similarly, for \(\theta \in [\lambda _{1},\lambda _{2}]\), \(\tau \in [\theta ,\lambda{_{2}}]\), \(\nu \geq 0\), and \(k>0\), we have the following inequality:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\nu}{k}}\leq \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}}. \end{aligned}$$
(2.8)

If \(\tau ^{\varsigma}\geq 1\), then the following inequalities are the basic consequences of (2.8) and the boundedness of \(\gamma _{1}^{\prime }\):

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\nu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl(M \tau ^{\varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.9)

and

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(M\tau ^{\varsigma}+ \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\nu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl(M \tau ^{\varsigma}+ \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau . \end{aligned}$$
(2.10)

After integrating and performing straightforward calculations on (2.9) and (2.10) and utilizing Definition 2.1, we obtain the following inequalities:

$$\begin{aligned} & (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\theta )-\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\theta ) \\ &\quad \leq \frac{M}{\varsigma +1}\biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) (\theta )-\bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\nu}{k}}\theta ^{\varsigma +1}\biggr) \end{aligned}$$
(2.11)

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\theta )-(\varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma} \gamma _{1}\bigr) (\theta ) \\ &\quad \leq \frac{M}{\varsigma +1}\biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) (\theta )-\bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\nu}{k}}\theta ^{\varsigma +1}\biggr). \end{aligned}$$
(2.12)

From (2.11) and (2.12) we have following modulus inequality:

$$\begin{aligned} & \biggl\vert \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\theta )-( \varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma} \gamma _{1}\bigr) (\theta ) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\nu}{k}} \Gamma _{k}(\nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) ( \theta )-\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}}\theta ^{\varsigma +1} \biggr). \end{aligned}$$
(2.13)

Inequalities (2.7) and (2.13) involving modulus together form inequality (2.1). □

Corollary 2.4

For \(\mu =\nu \) in (2.1), we have the following generalized weighted \((k,\varsigma )\)-fractional integral inequality:

$$\begin{aligned} & \biggl\vert \gamma _{1}(\theta ) \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\mu}{k}}+\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{ \frac{\mu}{k}}\bigr) \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl( \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\theta )+\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1} \bigr) (\theta )\biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\theta ^{\varsigma +1}\bigl(\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{ \frac{\mu}{k}}-\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\mu}{k}}\bigr) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\mu},_{\sigma}I\bigr) (\theta )-\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I \bigr) (\theta ) \biggr). \end{aligned}$$

Corollary 2.5

For \(\gamma _{2}(\theta )=\theta \) and \(\sigma (\theta )=1\) in (2.1), we have the following inequality for \((k,\varsigma )\)-RL fractional integrals:

$$\begin{aligned} & \bigl\vert \gamma _{1}(\theta ) \bigl(\bigl(\lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}}+ \bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{\frac{\mu}{k}} \bigr) \\ &\quad \quad{} - \bigl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \bigl(_{k}^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu} \gamma _{1}\bigr) (\theta )+( \varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(_{k}^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) (\theta ) \bigr) \bigr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +k}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\frac{\mu}{k}+1}+ \frac{\nu}{\nu +k}\bigl(\lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{ \frac{\nu}{k}+1} \biggr). \end{aligned}$$

Corollary 2.6

For \(\gamma _{2}(\theta )=\theta \), \(k=1\), and \(\sigma (\theta )=1\) in (2.1), we have the following inequality for RL fractional integrals:

$$\begin{aligned} & \bigl\vert \gamma _{1}(\theta ) \bigl(\bigl(\lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1}\bigr)^{\nu}+ \bigl(\theta ^{\varsigma +1}-\lambda _{1}^{ \varsigma +1} \bigr)^{\mu} \bigr) \\ &\quad \quad{} - \bigl((\varsigma +1)^{\nu}\Gamma (\nu +1) \bigl(^{\varsigma} \Im _{ \lambda _{2}^{-}}^{\nu}\gamma _{1}\bigr) (\theta )+( \varsigma +1)^{\mu} \Gamma (\mu +1) \bigl(^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) ( \theta ) \bigr) \bigr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +1}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\mu +1}+ \frac{\nu}{\nu +1}\bigl(\lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{ \nu +1} \biggr). \end{aligned}$$

Corollary 2.7

For \(\mu =\nu =k=1\), \(\sigma (\theta )=1\), and \(\gamma _{2}(\theta )=\theta \) in (2.1), we have the following fractional integral inequality:

$$\begin{aligned} & \biggl\vert \gamma _{1}(\theta )- \frac{(\varsigma +1)}{(\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1})} \int _{\lambda _{1}}^{\lambda _{2}}\tau ^{\varsigma}\gamma _{1}(\tau )\,d\tau \biggr\vert \\ &\quad \leq \frac{M(\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1})}{\varsigma +1} \biggl( \frac{ (\theta ^{\varsigma +1}-\frac{a^{\varsigma +1}+\lambda _{2}^{\varsigma +1}}{2} )^{2}}{ (\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1} )^{2}}+ \frac{1}{4} \biggr). \end{aligned}$$

Remark 2.8

If we set \(\gamma _{2}(\theta )=\theta \), \(k=1\), \(\varsigma =0\), and \(\sigma (\theta )=1\) in (2.1), then we get the following inequality for RL fractional integrals given in [36, Theorem 1.2]:

$$\begin{aligned} & \bigl\vert \gamma _{1}(\theta ) \bigl((\lambda _{2}-\theta )^{\nu}+( \theta -\lambda _{1})^{\mu} \bigr)- \bigl(\Gamma (\nu +1) \bigl(\Im _{ \lambda _{2}^{-}}^{\nu}\gamma _{1}\bigr) (\theta )+\Gamma (\mu +1) \bigl(\Im _{ \lambda _{1}^{+}}^{\mu} \gamma _{1}\bigr) (\theta ) \bigr) \bigr\vert \\ &\quad \leq M \biggl(\frac{\mu}{\mu +1}(\theta -\lambda _{1})^{\mu +1}+ \frac{\nu}{\nu +1}(\lambda _{2}-\theta )^{\nu +1} \biggr). \end{aligned}$$

Remark 2.9

For \(\mu =\nu =k=1\), \(\sigma (\theta )=1\), \(\varsigma =0\), and \(\gamma _{2}(\theta )=\theta \) in (2.1), we obtain the Östrowski inequality (1.1).

Next, we present a more extended fractional Ostrowski-type inequality for the weighted \((k,\varsigma )\)-RL fractional integrals operators.

Theorem 2.10

Let \(\gamma _{1}: J \rightarrow \mathbb{R}\) be a differentiable function on \(J^{0}\), \(\lambda _{1},\lambda _{2} \in J^{0}\), and \(\lambda _{1}<\lambda _{2}\). Also, let \(\gamma _{2}: [\lambda _{1},\lambda _{2}] \rightarrow \mathbb{R}\) be a differentiable increasing function with \(\gamma _{2}' \in L[\lambda _{1},\lambda _{2}]\), and suppose \(m \leq \gamma _{1}^{\prime }(\tau ) \leq M\) for all \(\tau \in [\lambda _{1},\lambda _{2}]\). Let σ be a nonzero increasing weight function. Then, for \(\mu , \nu \geq 0\) and \(k > 0\), we have the following inequality hold for weighted \((k,\varsigma )\)-RL:

$$\begin{aligned} & \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}}+\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \bigr)\gamma _{1}(\theta ) \\ &\quad \quad{} - \biggl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\theta ) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\theta ) \biggr) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl(\theta ^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{ \frac{\mu}{k}}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I\bigr) ( \theta ) \bigr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) (\theta ) \\ &\quad \quad {}-\theta ^{ \varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \biggr) \end{aligned}$$
(2.14)

and

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\theta )+( \varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\theta ) \\ &\quad \quad{} - \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}}+ \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \gamma _{1}(\theta ) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\nu}{k}} \Gamma _{k}(\nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) ( \theta )-\theta ^{\varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \biggr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \bigl(\theta ^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{ \frac{\mu}{k}} \\ &\quad \quad {}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I\bigr) ( \theta ) \bigr). \end{aligned}$$
(2.15)

Proof

Let \(\theta \in [\lambda _{1},\lambda _{2}]\) and \(\tau \in [\lambda{_{1}},\theta ]\). Since \(\gamma _{2}\) is a strictly increasing function, \(\mu \geqslant 0\), and \(k>0\), then we have the following inequality:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}(\tau )\bigr)^{ \frac{\mu}{k}}\leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}( \lambda _{1})\bigr)^{\frac{\mu}{k}}. \end{aligned}$$
(2.16)

Let \(\tau ^{\varsigma}\geq 1\). Then from (2.16) and the boundedness condition on \(\gamma _{1}^{\prime }\), as a simple consequence, we get following inequalities:

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \tau )\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{ \varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.17)

and

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(\gamma _{1}^{\prime }( \tau )-m\tau ^{ \varsigma}\bigr) \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{ \varsigma +1}(\tau )\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(\gamma _{1}^{\prime }( \tau )-m\tau ^{\varsigma}\bigr)\,d\tau . \end{aligned}$$
(2.18)

By performing integration and straightforward calculations on (2.17) and (2.18) and utilizing Definition 2.1 we arrive at the following inequalities:

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\theta )-(\varsigma +1)^{ \frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl(\bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \theta ^{\varsigma +1}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{ \sigma}I\bigr) (\theta ) \bigr) \end{aligned}$$
(2.19)

and

$$\begin{aligned}& (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\theta )-\bigl( \gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\theta ) \\& \quad \leq -\frac{m}{\varsigma +1} \bigl(\bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \theta ^{\varsigma +1}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{ \sigma}I\bigr) (\theta ) \bigr). \end{aligned}$$
(2.20)

Similarly, for \(\theta \in [\lambda _{1},\lambda _{2}]\), \(\tau \in [\theta , \lambda _{2}]\), \(\nu \geq 0\), and \(k > 0\), we have the following inequality:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\nu}{k}}\leq \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}}. \end{aligned}$$
(2.21)

If \(\tau ^{\varsigma}\geq 1\), then the following inequalities are a simple consequence of (2.21) and the boundedness condition on \(\gamma _{1}'\):

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\nu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl(M \tau ^{\varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.22)

and

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(\gamma _{1}^{\prime }( \tau )-m\tau ^{ \varsigma}\bigr) \bigl(\gamma _{2}^{\varsigma +1}( \tau )-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\nu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl( \gamma _{1}^{\prime }( \tau )-m\tau ^{\varsigma}\bigr)\,d\tau . \end{aligned}$$
(2.23)

By performing integration and straightforward calculations on (2.22) and (2.23) and utilizing Definition 2.1 we arrive at the following inequalities:

$$\begin{aligned} & (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\theta )-\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\theta ) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\nu}{k}} \Gamma _{k}(\nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) ( \theta )-\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}}\theta ^{\varsigma +1} \biggr) \end{aligned}$$
(2.24)

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\theta )-(\varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma} \gamma _{1}\bigr) (\theta ) \\ &\quad \leq -\frac{m}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\nu}{k}} \Gamma _{k}(\nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}I\bigr) ( \theta )-\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}}\theta ^{\varsigma +1} \biggr). \end{aligned}$$
(2.25)

By adding (2.19) and (2.25) we get (2.14). Similarly by adding (2.20) and (2.24) we get (2.15). □

Corollary 2.11

For \(\mu =\nu \) in (2.14) and (2.15), we have the following weighted \((k,\varsigma )\)-fractional integral inequalities:

$$\begin{aligned} & \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}}+ \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\mu}{k}} \bigr)\gamma _{1}(\theta ) \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl(\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta )+ \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \biggr) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl(\theta ^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{ \frac{\mu}{k}}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I\bigr) ( \theta ) \bigr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}( \mu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\mu},_{\sigma}I\bigr) (\theta ) \\ &\quad \quad {}-\theta ^{ \varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta ) \bigr)^{\frac{\mu}{k}} \biggr) \end{aligned}$$

and

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl(\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta )+ \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \biggr) \\ &\quad \quad{} - \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}}+ \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\mu}{k}} \gamma _{1}(\theta ) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl((\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{2}^{-}}^{\mu},_{\sigma}I\bigr) ( \theta )-\theta ^{\varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\mu}{k}} \biggr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \bigl(\theta ^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{ \frac{\mu}{k}}- (\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}I\bigr) ( \theta ) \bigr). \end{aligned}$$

Corollary 2.12

Substituting \(\gamma _{2}(\theta )=\theta \) and \(\sigma (\theta ) = 1\) into (2.14) and (2.15), we get the following inequalities for \((k,\varsigma )\)-RL fractional integrals:

$$\begin{aligned} & \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{ \frac{\mu}{k}}+\bigl(\lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{ \frac{\nu}{k}} \bigr)\gamma _{1}(\theta )- \bigl((\varsigma +1)^{ \frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{ \mu} \gamma \bigr) (\theta ) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \bigl(_{k}^{\varsigma} \Im _{\lambda _{2}^{-}}^{\nu} \gamma _{1}\bigr) (\theta )\bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +k}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\frac{\mu}{k}+1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\nu}{\nu +k}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}+1} \biggr) \end{aligned}$$

and

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu} \gamma _{1}\bigr) (\theta )+(\varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \bigl(_{k}^{\varsigma}\Im _{\lambda _{2}^{-}}^{ \nu}\gamma _{1}\bigr) (\theta ) \\ &\quad \quad{} - \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{ \frac{\mu}{k}}+\bigl(\lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{ \frac{\nu}{k}}\gamma _{1}(\theta ) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\nu}{\nu +k}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}+1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\mu}{\mu +k}\bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{\frac{\mu}{k}+1} \biggr). \end{aligned}$$

Corollary 2.13

Setting \(\gamma _{2}(\theta ) =\theta \), \(\sigma (\theta ) = 1\), and \(k = 1\) in (2.14) and (2.15), we get the following fractional integral inequalities for RL fractional integrals:

$$\begin{aligned} & \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{\mu}+\bigl( \lambda _{2}^{\varsigma +1}-\gamma _{2}^{\varsigma +1}\bigr)^{\nu} \bigr) \gamma _{1}(\theta )-\bigl((\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) (\theta ) \\ &\quad \quad{} + (\varsigma +1)^{\nu}\Gamma (\nu +1) \bigl(^{\varsigma}\Im _{\lambda _{2}^{-}}^{ \nu}\gamma _{1}\bigr) (\theta )\bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +1}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\mu +1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\nu}{\nu +1}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\nu +1} \biggr) \end{aligned}$$

and

$$\begin{aligned} & (\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(^{\varsigma}\Im _{\lambda _{1}^{+}}^{ \mu}\gamma _{1}\bigr) (\theta )+( \varsigma +1)^{\nu}\Gamma (\nu +1) \bigl(^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu}\gamma _{1}\bigr) (\theta ) \\ &\quad \quad{} - \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{\mu}+\bigl( \lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\nu}\gamma _{1}( \theta )\bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\nu}{\nu +1}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\nu +1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\mu}{\mu +1}\bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{\mu +1} \biggr). \end{aligned}$$

Corollary 2.14

Setting \(\mu = \nu = k = 1\), \(\sigma (\theta ) = 1\), and \(\gamma _{2}(\theta ) =\theta \) in (2.14) and (2.15), we get the following fractional integral inequalities for RL fractional integrals:

$$\begin{aligned} & \bigl(\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)\gamma _{1}(\theta )-(\varsigma +1) \int _{\lambda _{1}}^{ \lambda _{2}}\tau ^{\varsigma}\gamma _{1}(\tau )\,d\tau \\ &\quad \leq \frac{M}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{2}-\frac{m}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}-\lambda _{2}^{\varsigma +1} \bigr)^{2} \end{aligned}$$

and

$$\begin{aligned} & (\varsigma +1) \int _{\lambda _{1}}^{\lambda _{2}}\tau ^{\varsigma} \gamma _{1}(\tau )\,d\tau -\bigl(\lambda _{2}^{\varsigma +1}- \lambda _{1}^{ \varsigma +1}\bigr)\gamma _{1}(\theta ) \\ &\quad \leq \frac{M}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}- \lambda _{2}^{\varsigma +1} \bigr)^{2}-\frac{m}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{2}. \end{aligned}$$

Remark 2.15

Setting \(\gamma _{2}(\theta ) =\theta \), \(\sigma (\theta ) = 1\), \(\varsigma = 0\), and \(k = 1\) in (2.14) and (2.15), we obtain the inequalities for RL fractional integrals given in [36, Theorem 1.3]:

$$\begin{aligned} & \bigl((\theta -\lambda _{1})^{\mu}+(\lambda _{2}-h)^{\nu} \bigr) \gamma _{1}(\theta )- \bigl(\Gamma (\mu +1) \bigl(\Im _{\lambda _{1}^{+}}^{\mu} \gamma _{1}\bigr) (\theta )+\Gamma (\nu +1) \bigl(\Im _{\lambda _{2}^{-}}^{\nu} \gamma _{1}\bigr) (\theta )\bigr) \\ &\quad \leq M \biggl(\frac{\mu}{\mu +1}(\theta -\lambda _{1})^{\mu +1} \biggr)-m \biggl(\frac{\nu}{\nu +1}(\lambda _{2}-\theta )^{\nu +1} \biggr) \end{aligned}$$

and

$$\begin{aligned} & \Gamma (\mu +1) \bigl(\Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) (\theta )+ \Gamma (\nu +1) \bigl(\Im _{\lambda _{2}^{-}}^{\nu} \gamma _{1}\bigr) (\theta )-\bigl(( \theta -\lambda _{1})^{\mu}+(\lambda _{2}-\theta )^{\nu}\gamma _{1}( \theta )\bigr) \\ &\quad \leq M \biggl(\frac{\nu}{\nu +1}(\lambda _{2}-\theta )^{\nu +1} \biggr)-m \biggl(\frac{\mu}{\mu +1}(\theta -\lambda _{1})^{\mu +1} \biggr). \end{aligned}$$

Remark 2.16

By setting \(m=-M\) in Theorem 2.10 and making some rearrangements, we obtain Theorem 2.3.

Theorem 2.17

Let \(\gamma _{1}: J \rightarrow \mathbb{R}\) be a differentiable function on \(J^{0}\), \(\lambda _{1},\lambda _{2} \in J^{0}\), and \(\lambda _{1}<\lambda _{2}\). Also, let \(\gamma _{2}: [\lambda _{1},\lambda _{2}] \rightarrow \mathbb{R}\) be a differentiable and increasing function such that \(\gamma _{2}'(\tau ) \in L[\lambda _{1},\lambda _{2}]\) and \(|\gamma _{1}^{\prime }(\tau )| \leq M\) for all \(\tau \in [\lambda _{1},\lambda _{2}]\), and let σ be a nonzero increasing weight function. Then for \(\mu , \nu \geq 0\) and \(k > 0\), we have the following inequality for weighted \((k,\varsigma )\)-RL fractional integrals:

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{2}) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}}+ \gamma _{1}(\lambda _{1}) \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \\ &\quad \quad{} - \biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{2}) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1})\biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{ \frac{\mu}{k}} \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1}\bigr) \\ &\quad \quad {}-(\varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\lambda _{2} \bigr) \biggr). \end{aligned}$$
(2.26)

Proof

Let \(\theta \in [\lambda _{1},\lambda _{2}]\) and \(\tau \in [\lambda{_{1}},\theta ]\). Since the function \(\gamma _{2}\) is strictly increasing function, \(\mu \geqslant 0\), and \(k>0\), we have the following inequality:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\leq \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}}. \end{aligned}$$
(2.27)

If \(\tau ^{\varsigma}\geq 1\), then then the following inequalities are a simple consequence of (2.27) and boundedness condition on \(\gamma _{1}'\):

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{ \varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.28)

and

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{\varsigma}+ \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{ \varsigma}+ \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau . \end{aligned}$$
(2.29)

Utilizing Definition 2.1, integrating, and performing some straightforward calculations on (2.28) and (2.29), we obtain the following inequalities:

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{1})-\bigl( \gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1}) \\ &\quad \leq \frac{M}{\varsigma +1}\bigl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma}I\bigr) ( \lambda _{1})-\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \lambda _{1}^{\varsigma +1}\bigr) \end{aligned}$$
(2.30)

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1})-( \varsigma +1)^{ \frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma}\Im _{ \theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1}) \\ &\quad \leq \frac{M}{\varsigma +1}\bigl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1} \bigr)-\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \lambda _{1}^{\varsigma +1}\bigr). \end{aligned}$$
(2.31)

Thus, based on inequalities (2.30) and (2.31), we can derive the following modulus inequality:

$$\begin{aligned} & \bigl\vert \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1})-( \varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1}) \bigr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{ \mu},_{\sigma}\lambda _{1} \bigr)-\bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \lambda _{1}^{ \varsigma +1} \bigr). \end{aligned}$$
(2.32)

Similarly, if \(\theta \in [\lambda _{1},\lambda _{2}]\), \(\tau \in [\theta ,\lambda{_{2}}]\), \(\nu \geq 0\), and \(k>0\), then we have the following inequality:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \tau ) \bigr)^{\frac{\nu}{k}}\leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}}. \end{aligned}$$
(2.33)

Let \(\tau ^{\varsigma}\geq 1\). Then from (2.33) and the boundedness condition on \(\gamma _{1}^{\prime }\), as a simple consequence, we get the following inequalities:

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\tau )\bigr)^{\frac{\nu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl(M \tau ^{\varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.34)

and

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(M\tau ^{\varsigma}+ \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\tau )\bigr)^{\frac{\nu}{k}}\,d\tau \\ & \quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl(M \tau ^{\varsigma}+ \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau . \end{aligned}$$
(2.35)

Integrating (2.34) and (2.35), performing some straightforward calculations, and utilizing Definition 2.1, we obtain the following inequalities:

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2})-( \varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2}) \\ &\quad \leq \frac{M}{\varsigma +1}\biggl(\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}}\lambda _{2}^{ \varsigma +1}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\mu},_{\sigma} \lambda _{2}\bigr)\biggr) \end{aligned}$$
(2.36)

and

$$\begin{aligned} & (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2})-\bigl( \gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2}) \\ & \quad \leq \frac{M}{\varsigma +1} \biggl(\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \lambda _{2}^{\varsigma +1}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr). \end{aligned}$$
(2.37)

From (2.36) and (2.37) we have following modulus inequality:

$$\begin{aligned} & \biggl\vert \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{ \varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2})-( \varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2}) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \lambda _{2}^{\varsigma +1}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr). \end{aligned}$$
(2.38)

Modulus inequalities (2.32) and (2.38) constitute inequality (2.26). □

Corollary 2.18

For \(\mu =\nu \) in (2.26), we have the following weighted \((k,\varsigma )\)-RL fractional integral inequality:

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{2}) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\frac{\mu}{k}}+ \gamma _{1}(\lambda _{1}) \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2})+\bigl( \gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{1})) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\mu}{k}}-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{ \frac{\mu}{k}} \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl(\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1}\bigr)- \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\mu},_{\sigma} \lambda _{2}\bigr)\biggr) \biggr). \end{aligned}$$

Corollary 2.19

By setting \(\gamma _{2}(\theta )=\theta \) and \(\sigma (\theta )=1\) in (2.26) we obtain the following inequality for \((k,\varsigma )\)-RL fractional integrals:

$$\begin{aligned} & \bigl\vert \gamma _{1}(\lambda _{2}) \bigl(\lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}}+ \gamma _{1}(\lambda _{1}) \bigl( \theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\frac{\mu}{k}} \\ &\quad \quad{} - \bigl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \bigl(_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu} \gamma _{1}\bigr) (\lambda _{2})+( \varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(_{k}^{\varsigma} \Im _{ \theta ^{-}}^{\mu}\gamma _{1}\bigr) (\lambda _{1})\bigr) \bigr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\nu}{\nu +k}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}+1}+ \frac{\mu}{\mu +k}\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{ \frac{\mu}{k}+1} \biggr). \end{aligned}$$

Corollary 2.20

By putting \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), and \(k=1\) in (2.26) we obtain the following inequality for RL fractional integrals:

$$\begin{aligned} & \bigl\vert \gamma _{1}(\lambda _{2}) \bigl(\lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1}\bigr)^{\nu}+ \gamma _{1}(\lambda _{1}) \bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\mu} \\ &\quad \quad{} - \bigl((\varsigma +1)^{\nu}\Gamma (\nu +1) \bigl(^{\varsigma} \Im _{ \theta ^{+}}^{\nu}\gamma _{1}\bigr) (\lambda _{2})+(\varsigma +1)^{\mu} \Gamma (\mu +1) \bigl(^{\varsigma}\Im _{\theta ^{-}}^{\mu}\gamma _{1}\bigr) ( \lambda _{1})\bigr) \bigr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +1}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\mu +1}+ \frac{\nu}{\nu +1}\bigl(\lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr)^{ \nu +1} \biggr). \end{aligned}$$

Corollary 2.21

By substituting \(\mu =\nu =k=1\), \(\sigma (\theta )=1\), and \(\gamma _{2}(\theta )=\theta \) into (2.26) we obtain the following inequality for RL fractional integrals:

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{2}) \bigl(\lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1}\bigr)+\gamma _{1}(\lambda _{1}) \bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1}\bigr)-(\varsigma +1) \int _{\lambda _{1}}^{ \lambda _{2}}\tau ^{\varsigma}\gamma _{1}(\tau )\,d\tau \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl( \biggl(\theta ^{\varsigma +1}- \frac{a^{\varsigma +1}+\lambda _{2}^{\varsigma +1}}{2} \biggr)^{2}+ \frac{ (\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1} )^{2}}{4} \biggr). \end{aligned}$$

Remark 2.22

By setting \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), \(\varsigma =0\), and \(k=1\) in (2.26) we obtain the inequality for RL fractional integrals given in [36, Theorem 1.4]:

$$\begin{aligned} & \bigl\vert \gamma _{1}(\lambda _{2}) (\lambda _{2}-\theta )^{\nu}+ \gamma _{1}(\lambda _{1}) (\theta -\lambda _{1})^{\mu} \\ &\quad \quad{} - \bigl(\Gamma (\nu +1) \bigl(\Im _{\theta ^{+}}^{\nu}\gamma _{1}\bigr) ( \lambda _{2})+\Gamma (\mu +1) \bigl(\Im _{\theta ^{-}}^{\mu}\gamma _{1}\bigr) ( \lambda _{1})\bigr) \bigr\vert \\ & \quad \leq M \biggl(\frac{\mu}{\mu +1}(\theta -\lambda _{1})^{\mu +1}+ \frac{\nu}{\nu +1}(\lambda _{2}-\theta )^{\nu +1} \biggr). \end{aligned}$$

Theorem 2.23

Let \(\gamma _{1}:J\rightarrow \mathbb{R}\) be a differentiable function in \(J^{0}\), \(\lambda _{1},\lambda _{2}\in J^{0}\), and \(\lambda _{1}<\lambda _{2}\). Also, let \(\gamma _{2}:[\lambda _{1},\lambda _{2}]\rightarrow R\) be a differentiable increasing function with \(\gamma _{2}^{\prime }\in L[\lambda _{1},\lambda _{2}]\) and \(m\leq \gamma _{1}^{\prime }(\tau )\leq M\) for all \(\tau \in [\lambda _{1},\lambda _{2}]\), and let σ be a nonzero increasing weight function. Then for \(\mu ,\nu \geq 0\) and \(k>0\), we have the following inequalities for weighted RL k-fractional integrals:

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{1})+( \varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{2}) \\ &\quad \quad{} - \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \gamma _{1}(\lambda _{1})+\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{ \mu},_{\sigma}\lambda _{1} \bigr)-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{ \frac{\mu}{k}} \bigr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1}\bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\nu}{k}} \\ &\quad \quad {}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr) \end{aligned}$$
(2.39)

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1})+ \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2}) \\ &\quad \quad{} - \biggl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{1}) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{2}) \biggr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\nu}{k}}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1} \bigr)-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \bigr). \end{aligned}$$
(2.40)

Proof

Since \(\gamma _{2}\) is strictly increasing function, for \(\theta \in [\lambda _{1},\lambda _{2}]\), \(\tau \in [\lambda{_{1}},\theta ]\), \(\mu \geqslant 0\), and \(k>0\), we have the following inequality:

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\leq \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}}. \end{aligned}$$
(2.41)

If \(\tau ^{\varsigma}\geq 1\), then the following inequalities are a simple consequence of (2.41) and the boundedness condition on \(\gamma _{1}^{\prime }\):

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\tau )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(M\tau ^{ \varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.42)

and

$$\begin{aligned} & \int _{\lambda _{1}}^{\theta}\bigl(\gamma _{1}^{\prime }( \tau )-m\tau ^{ \varsigma}\bigr) \bigl(\gamma _{2}^{\varsigma +1}( \tau )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \int _{\lambda _{1}}^{\theta}\bigl(\gamma _{1}^{\prime }( \tau )-m\tau ^{\varsigma}\bigr)\,d\tau . \end{aligned}$$
(2.43)

Integrating (2.42) and (2.43), performing some simple calculations, and applying Definition 2.1, we obtain

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{1})-\bigl( \gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1}) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{ \mu},_{\sigma}\lambda _{1} \bigr)-\bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \lambda _{1}^{ \varsigma +1} \bigr) \end{aligned}$$
(2.44)

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1})-( \varsigma +1)^{ \frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma}\Im _{ \theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1}) \\ & \quad \leq -\frac{m}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{ \mu},_{\sigma}\lambda _{1} \bigr)-\bigl(\gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \lambda _{1}^{ \varsigma +1} \bigr). \end{aligned}$$
(2.45)

Similarly, for \(\theta \in [\lambda _{1},\lambda _{2}]\), \(\tau \in [\theta ,\lambda{_{2}}]\), \(\nu \geq 0\), and \(k>0 \), we have

$$\begin{aligned} \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \tau ) \bigr)^{\frac{\nu}{k}}\leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}}. \end{aligned}$$
(2.46)

Let \(\tau ^{\varsigma}\geq 1\). Then the following inequalities are a simple consequence of (2.46) with boundedness condition on \(\gamma _{1}^{\prime }\):

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(M\tau ^{\varsigma}- \gamma _{1}^{\prime }( \tau )\bigr) \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\tau )\bigr)^{\frac{\nu}{k}}\,d\tau \\ & \quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl(M \tau ^{\varsigma}- \gamma _{1}^{\prime }(\tau )\bigr)\,d\tau \end{aligned}$$
(2.47)

and

$$\begin{aligned} & \int _{\theta}^{\lambda _{2}}\bigl(\gamma _{1}^{\prime }( \tau )-m\tau ^{ \varsigma}\bigr) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{ \varsigma +1}(\tau ) \bigr)^{\frac{\nu}{k}}\,d\tau \\ &\quad \leq \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{ \varsigma +1}(\theta )\bigr)^{\frac{\nu}{k}} \int _{\theta}^{\lambda _{2}}\bigl( \gamma _{1}^{\prime }( \tau )-m\tau ^{\varsigma}\bigr)\,d\tau . \end{aligned}$$
(2.48)

Integrating (2.47) and (2.48), performing some simple calculations, and applying Definition 2.1, we obtain

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2})-( \varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2}) \\ & \quad \leq \frac{M}{\varsigma +1} \biggl(\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \lambda _{2}^{\varsigma +1}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr) \end{aligned}$$
(2.49)

and

$$\begin{aligned} & (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\theta ^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2})-\bigl( \gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2}) \\ & \quad \leq -\frac{m}{\varsigma +1} \biggl(\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\frac{\nu}{k}} \lambda _{2}^{\varsigma +1}-(\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}( \nu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr). \end{aligned}$$
(2.50)

By adding (2.44) and (2.50) we get (2.39). Similarly, by adding (2.45) and (2.49) we get (2.40). □

Corollary 2.24

For \(\mu =\nu \) in (2.39) and (2.40), we have the following \((k,\varsigma )\)-fractional integral inequalities:

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl(\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1})+ \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{2})\biggr) \\ &\quad \quad{} - \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \gamma _{1}(\lambda _{1})+\bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}} \Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{ \mu},_{\sigma}\lambda _{1} \bigr)-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{ \frac{\mu}{k}} \bigr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1}\bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\mu}{k}}-(\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\mu},_{\sigma} \lambda _{2}\bigr) \biggr) \end{aligned}$$

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}}\gamma _{1}(\lambda _{1})+\bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{ \frac{\mu}{k}}\gamma _{1}(\lambda _{2}) \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl(\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1})+ \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2})\biggr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\frac{\mu}{k}}-(\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}( \mu +k)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\mu},_{\sigma} \lambda _{1}\bigr) \biggr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \bigl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}( \mu +k) \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1} \bigr)-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\frac{\mu}{k}} \bigr). \end{aligned}$$

Corollary 2.25

By setting \(\gamma _{2}(\theta )=\theta \) and \(\sigma (\theta )=1\) in (2.39) and (2.40) we obtain the following inequalities for \((k,\varsigma )\)-RL fractional integrals:

$$\begin{aligned} & (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(_{k}^{\varsigma} \Im _{\theta ^{-}}^{\mu} \gamma _{1}\bigr) (\lambda _{1})+(\varsigma +1)^{ \frac{\nu}{k}}\Gamma _{k}(\nu +k) \bigl(_{k}^{\varsigma} \Im _{\theta ^{+}}^{ \nu}\gamma _{1}\bigr) (\lambda _{2}) \\ &\quad \quad{} - \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{ \frac{\mu}{k}}\gamma _{1}(\lambda _{1})+\bigl( \lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1} \bigr)^{\frac{\nu}{k}}\gamma _{1}(\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +k}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\frac{\mu}{k}+1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\nu}{\nu +k}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}+1} \biggr) \end{aligned}$$

and

$$\begin{aligned} & \bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{ \frac{\mu}{k}}\gamma _{1}(\lambda _{1})+ \bigl( \lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1} \bigr)^{\frac{\nu}{k}}\gamma _{1}( \lambda _{2}) \\ &\quad \quad{} - \bigl((\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(_{k}^{ \varsigma}\Im _{\theta ^{-}}^{\mu} \gamma _{1} \bigr) (\lambda _{1})+( \varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \bigl(_{k}^{\varsigma} \Im _{ \theta ^{+}}^{\nu}\gamma _{1}\bigr) (\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\nu}{\nu +k}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\frac{\nu}{k}+1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\mu}{\mu +k}\bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{\frac{\mu}{k}+1} \biggr). \end{aligned}$$

Corollary 2.26

By substituting \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )= 1\), and \(k=1\) into (2.39) and (2.40) we obtain the following inequalities for RL fractional integrals:

$$\begin{aligned} & (\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(^{\varsigma}\Im _{\theta ^{-}}^{ \mu}\gamma _{1}\bigr) (\lambda _{1})+(\varsigma +1)^{\nu}\Gamma (\nu +1) \bigl(^{ \varsigma}\Im _{\theta ^{+}}^{\nu}\gamma _{1}\bigr) (\lambda _{2}) \\ &\quad \quad{} - \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)\gamma _{1}( \lambda _{1})+\bigl(\lambda _{2}^{\varsigma +1}-\theta ^{\varsigma +1}\bigr) \gamma _{1}(\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\mu}{\mu +1}\bigl(\theta ^{ \varsigma +1}-\lambda _{1}^{\varsigma +1}\bigr)^{\mu +1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\nu}{\nu +1}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\nu +1} \biggr) \end{aligned}$$

and

$$\begin{aligned} & \bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{ \mu}\gamma _{1}(\lambda _{1})+ \bigl( \lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1} \bigr)^{\nu}\gamma _{1}(\lambda _{2}) \\ &\quad \quad{} - \bigl((\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(^{\varsigma} \Im _{ \theta ^{-}}^{\mu}\gamma _{1} \bigr) (\lambda _{1})+(\varsigma +1)^{ \nu}\Gamma (\nu +1) \bigl(^{\varsigma}\Im _{\theta ^{+}}^{\nu}\gamma _{1}\bigr) ( \lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\frac{\nu}{\nu +1}\bigl(\lambda _{2}^{ \varsigma +1}-\theta ^{\varsigma +1}\bigr)^{\nu +1} \biggr)- \frac{m}{\varsigma +1} \biggl(\frac{\mu}{\mu +1}\bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{\mu +1} \biggr). \end{aligned}$$

Corollary 2.27

By substituting \(\mu =\nu =k=1\), \(\sigma (\theta )=1\), and \(\gamma _{2}(\theta )=\theta \) into (2.39) and (2.40) we obtain the following inequalities for RL fractional integrals:

$$\begin{aligned} & (\varsigma +1) \int _{\lambda _{1}}^{\lambda _{2}}\tau ^{\varsigma} \gamma _{1}(\tau )\,d\tau - \bigl(\bigl(\theta ^{\varsigma +1}-\lambda _{1}^{ \varsigma +1}\bigr)\gamma _{1}(\lambda _{1})+\bigl(\lambda _{2}^{\varsigma +1}- \theta ^{\varsigma +1}\bigr)\gamma _{1}(\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr)^{2}-\frac{m}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}-\lambda _{2}^{\varsigma +1} \bigr)^{2} \end{aligned}$$

and

$$\begin{aligned} & \bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr) \gamma _{1}(\lambda _{1})+ \bigl(\lambda _{2}^{\varsigma +1}-\theta ^{ \varsigma +1} \bigr)\gamma _{1}(\lambda _{2})-(\varsigma +1) \int _{ \lambda _{1}}^{\lambda _{2}}\tau ^{\varsigma}\gamma _{1}(\tau )\,d\tau \\ &\quad \leq \frac{M}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}- \lambda _{2}^{\varsigma +1} \bigr)^{2}-\frac{m}{2(\varsigma +1)} \bigl(\theta ^{\varsigma +1}-\lambda _{1}^{\varsigma +1} \bigr)^{2}. \end{aligned}$$

Remark 2.28

By substituting \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), \(\varsigma =0\), and \(k=1\) into (2.39) and (2.40) we obtain the following inequalities for RL fractional integrals:

$$\begin{aligned} & \Gamma (\mu +1) \bigl(\Im _{\theta ^{-}}^{\mu}\gamma _{1}\bigr) (\lambda _{1})+ \Gamma (\nu +1) \bigl(\Im _{\theta ^{+}}^{\nu}\gamma _{1}\bigr) (\lambda _{2}) \\ &\quad \quad{} - \bigl((\theta -\lambda _{1})\gamma _{1}(\lambda _{1})+(\lambda _{2}- \theta )\gamma _{1}( \lambda _{2}) \bigr) \\ &\quad \leq M \biggl(\frac{\mu}{\mu +1}(\theta -\lambda _{1})^{\mu +1} \biggr)-m \biggl(\frac{\nu}{\nu +1}(\lambda _{2}-\theta )^{\nu +1} \biggr) \end{aligned}$$

and

$$\begin{aligned} & (\theta -\lambda _{1} )^{\mu}\gamma _{1}( \lambda _{1})+ (\lambda _{2}-\theta )^{\nu} \gamma _{1}(\lambda _{2}) \\ &\quad \quad{} - \bigl(\Gamma (\mu +1) \bigl(\Im _{\theta ^{-}}^{\mu}\gamma _{1} \bigr) (\lambda _{1})+\Gamma (\nu +1) \bigl(\Im _{\theta ^{+}}^{\nu} \gamma _{1}\bigr) (\lambda _{2}) \bigr) \\ &\quad \leq M \biggl(\frac{\nu}{\nu +1}(\lambda _{2}-\theta )^{\nu +1} \biggr)-m \biggl(\frac{\mu}{\mu +1}(\theta -\lambda _{1})^{\mu +1} \biggr). \end{aligned}$$

Remark 2.29

If we take \(m=-M\) in Theorem 2.23, then by some rearrangements we obtain Theorem 2.17.

3 General forms of weighted fractional integrals inequalities

This section is devoted to presenting general forms of the outcomes from the previous section. In this section, Theorem 2.3 takes the following specific form.

Theorem 3.1

Under the assumptions of Theorem 2.3, we have

$$\begin{aligned} & \biggl\vert \gamma _{1}(\theta ) \bigl( \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\nu}+ \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\mu} \bigr) \\ &\quad \quad{} - \biggl((\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma} \gamma _{1}\bigr) (\theta ) \\ &\quad \quad {}+( \varsigma +1)^{\mu}\Gamma ( \mu +1) \bigl(\gamma _{2},^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\theta ^{\varsigma +1} \bigl(\bigl( \gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\mu}-\bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\nu} \bigr) \\ &\quad \quad{} + (\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\operatorname{id}_{[\theta ,\lambda{_{2}}]} \bigr) ( \theta ) \\ &\quad \quad {}-(\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma}\operatorname{id}_{[\lambda{_{1}},\theta ]} \bigr) ( \theta ) \biggr). \end{aligned}$$

The notation \(\operatorname{id}[\cdot ,\cdot ]\) represents the identity function on the interval \([\cdot ,\cdot ]\).

Proof

The result is proved in the same way as Theorem 2.3. □

In particular, Theorem 2.10 is transformed into the following form.

Theorem 3.2

Assuming that the conditions of Theorem 2.10are satisfied, we have

$$\begin{aligned} & \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\mu}+ \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\nu} \bigr) \gamma _{1}(\theta ) \\ &\quad \quad{} - \biggl((\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta ) \\ &\quad \quad {}+( \varsigma +1)^{\nu}\Gamma ( \nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\theta ) \biggr) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl(\theta ^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\mu}-( \varsigma +1)^{\mu} \Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu},_{\sigma}\operatorname{id}_{[\lambda{_{1}},\theta ]}\bigr) ( \theta ) \bigr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \biggl((\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\operatorname{id}_{[\theta ,\lambda{_{2}}]}\bigr) ( \theta ) \\ &\quad \quad {}-\theta ^{\varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\nu} \biggr) \end{aligned}$$

and

$$\begin{aligned} & (\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\theta )+(\varsigma +1)^{ \nu}\Gamma ( \nu +1)\frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl( \gamma _{2},^{\varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma} \gamma _{1} \bigr) (\theta ) \\ &\quad \quad{} - \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\mu}+ \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\nu}\gamma _{1}( \theta ) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl((\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},^{ \varsigma}\Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\operatorname{id}_{[\theta ,\lambda{_{2}}]}\bigr) ( \theta ) \\ &\quad \quad {}-\theta ^{\varsigma +1}\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})- \gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\nu} \biggr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \bigl(\theta ^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\mu}-( \varsigma +1)^{\mu} \Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma}\Im _{ \lambda _{1}^{+}}^{\mu},_{\sigma}\operatorname{id}_{[\lambda{_{1}},\theta ]}\bigr) ( \theta ) \bigr). \end{aligned}$$

The notation \(\operatorname{id}[\cdot ,\cdot ]\) represents the identity function on the interval \([\cdot ,\cdot ]\).

Proof

The result is proved in the same way as Theorem 2.10. □

In particular, Theorem 2.17 takes the following form.

Theorem 3.3

Under the assumptions of Theorem 2.17, we have

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{2}) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\nu}+\gamma _{1}( \lambda _{1}) \bigl(\gamma _{2}^{\varsigma +1}( \theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1}) \bigr)^{\mu} \\ &\quad \quad{} - \biggl((\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \gamma _{1} \bigr) ( \lambda _{2}) \\ &\quad \quad {}+(\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{ \varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{1})\biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta ) \bigr)^{\nu}-\lambda _{1}^{\varsigma +1}\bigl(\gamma _{2}^{ \varsigma +1}( \theta )-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{\mu} \\ &\quad \quad{} + (\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma} \Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1}\bigr)-(\varsigma +1)^{\nu} \Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl( \gamma _{2},^{\varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma}\lambda _{2} \bigr) \biggr). \end{aligned}$$

Proof

The result is proved in the same way as Theorem 2.17. □

In particular, Theorem 2.23 takes the following form.

Theorem 3.4

Under the assumptions of Theorem 2.23, we have

$$\begin{aligned} & (\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{\varsigma}\Im _{ \theta ^{-}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{1})+(\varsigma +1)^{ \nu}\Gamma (\nu +1)\frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},^{\varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \gamma _{1} \bigr) (\lambda _{2}) \\ &\quad \quad{} - \bigl(\bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\mu} \gamma _{1}(\lambda _{1})+\bigl(\gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\nu} \gamma _{1}(\lambda _{2}) \bigr) \\ &\quad \leq \frac{M}{\varsigma +1} \bigl((\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl( \gamma _{2},^{\varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1}\bigr)- \lambda _{1}^{\varsigma +1}\bigl( \gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\mu} \bigr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1}\bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta )\bigr)^{\nu}-( \varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr) \end{aligned}$$

and

$$\begin{aligned} & \bigl(\gamma _{2}^{\varsigma +1}(\theta )-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\mu}\gamma _{1}(\lambda _{1})+ \bigl( \gamma _{2}^{ \varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}(\theta ) \bigr)^{\nu}\gamma _{1}(\lambda _{2}) \\ &\quad \quad{} - \biggl((\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl(\gamma _{2},^{ \varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \gamma _{1} \bigr) ( \lambda _{1}) \\ &\quad \quad {}+(\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \gamma _{1} \bigr) ( \lambda _{2}) \biggr) \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \theta )\bigr)^{\nu}-(\varsigma +1)^{\nu}\Gamma (\nu +1) \frac{\sigma (\theta )}{\sigma (\lambda _{2})}\bigl(\gamma _{2},^{ \varsigma}\Im _{\theta ^{+}}^{\nu},_{\sigma} \lambda _{2}\bigr) \biggr) \\ &\quad \quad{} - \frac{m}{\varsigma +1} \bigl((\varsigma +1)^{\mu}\Gamma (\mu +1) \bigl( \gamma _{2},^{\varsigma}\Im _{\theta ^{-}}^{\mu},_{\sigma} \lambda _{1}\bigr)- \lambda _{1}^{\varsigma +1}\bigl( \gamma _{2}^{\varsigma +1}(\theta )- \gamma _{2}^{\varsigma +1}( \lambda _{1})\bigr)^{\mu} \bigr). \end{aligned}$$

Proof

The result is proved in the same way as Theorem 2.23. □

The results presented in this section also provide the fractional integral inequalities for weighted RL fractional integrals, specifically, when the function \(\gamma _{2}\) behaves like the identity function.

4 Applications to main results

This section pertains to the applications of our main results. The first application is presented for Theorem 2.3.

Theorem 4.1

Under the conditions of Theorem 2.3, we have

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{1}) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\lambda _{1})\bigr)^{ \frac{\nu}{k}}+\gamma _{1}(\lambda _{2}) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\lambda _{1})\bigr)^{ \frac{\mu}{k}} \\ &\quad \quad{} - \biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\lambda _{1})}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{1}) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \gamma _{1}\bigr) (\lambda _{2}) \biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\bigl(\lambda _{2}^{\varsigma +1}- \lambda _{1}^{\varsigma +1}\bigr) \bigl(\bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\lambda _{1})\bigr)^{ \frac{\nu}{k}}+ \bigl(\gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{ \varsigma +1}(\lambda _{1})\bigr)^{\frac{\mu}{k}} \bigr) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\lambda _{1})}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\nu},_{\sigma}\lambda _{1} \bigr) \\ &\quad \quad {}-( \varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl( \gamma _{2},_{k}^{ \varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \lambda _{2}\bigr) \biggr). \end{aligned}$$
(4.1)

Proof

Substituting first \(\theta =\lambda _{1}\) and secondly \(\theta =\lambda _{2}\) into (2.1) and then adding the obtained results, we get (4.1). □

Corollary 4.2

Under the conditions of Theorem 2.3, for \(\mu =\nu \) in (4.1), we obtain

$$\begin{aligned} & \biggl\vert \bigl(\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2})\bigr) \bigl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \bigr)^{\frac{\mu}{k}} \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl( \frac{\sigma (\lambda _{1})}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{1})+\bigl(\gamma _{2},_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{ \mu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2})\biggr) ) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(2\bigl(\lambda _{2}^{\varsigma +1}- \lambda _{1}^{\varsigma +1}\bigr) \bigl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}(\lambda _{1}) \bigr)^{ \frac{\mu}{k}} \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl( \frac{\sigma (\lambda _{1})}{\sigma (\lambda _{2})}\bigl(\gamma _{2},_{k}^{ \varsigma} \Im _{\lambda _{2}^{-}}^{\mu},_{\sigma}\lambda _{1} \bigr)-\bigl( \gamma _{2},_{k}^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu},_{\sigma} \lambda _{2} \bigr) \biggr) \biggr). \end{aligned}$$
(4.2)

Corollary 4.3

Under the conditions of Theorem 2.3, for \(\gamma _{2}(\theta )=\theta \) and \(\sigma (\theta )=1\) in (4.2), we obtain

$$\begin{aligned} & \biggl\vert \frac{(\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2}))}{2}- \frac{(\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k)}{2(\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1})^{\frac{\mu}{k}}} \bigl( \bigl(_{k}^{\varsigma}\Im _{\lambda _{2}^{-}}^{\mu} \gamma _{1}\bigr) ( \lambda _{1})+\bigl(_{k}^{\varsigma} \Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) ( \lambda _{2})\bigr) ) \biggr\vert \\ &\quad \leq \frac{M(3\mu +k)}{2(\varsigma +1)(\mu +k)} \bigl(\lambda _{2}^{ \varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr). \end{aligned}$$

Next, we derive an approximation for the Hadamard inequality for RL k-fractional integrals given in [37, Theorem 2.1].

Corollary 4.4

Under the conditions of Theorem 2.3, for \(\gamma _{2}(\theta )=\theta \), \(\varsigma =0\), and \(\sigma (\theta )=1\) in (4.2), we obtain

$$\begin{aligned} & \biggl\vert \frac{\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2})}{2}- \frac{\Gamma _{k}(\mu +k)}{2(\lambda _{2}-\lambda _{1})^{\frac{\mu}{k}}} \bigl[ \bigl(_{k}\Im _{\lambda _{2}^{-}}^{\mu}\gamma _{1}\bigr) (\lambda _{1})+\bigl(_{k} \Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) (\lambda _{2}) \bigr] \biggr\vert \\ &\quad \leq \frac{M(3\mu +k)}{2(\mu +k)} (\lambda _{2}-\lambda _{1} ). \end{aligned}$$

Corollary 4.5

Under the conditions of Theorem 2.3, for \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), and \(k=1\) in (4.2), we obtain

$$\begin{aligned} & \biggl\vert \frac{(\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2}))}{2}- \frac{(\varsigma +1)^{\mu}\Gamma (\mu +1)}{2(\lambda _{2}^{\varsigma +1}-\lambda _{1}^{\varsigma +1})^{\mu}} \bigl( \bigl(^{\varsigma}\Im _{\lambda _{2}^{-}}^{\mu}\gamma _{1}\bigr) ( \lambda _{1})+\bigl(^{\varsigma}\Im _{\lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) ( \lambda _{2})\bigr) ) \biggr\vert \\ &\quad \leq \frac{M(3\mu +1)}{2(\varsigma +1)(\mu +1)} \bigl(\lambda _{2}^{ \varsigma +1}- \lambda _{1}^{\varsigma +1} \bigr). \end{aligned}$$

Subsequently, we derive an approximation for the Hadamard inequality for RL fractional integrals [38, Theorem 2].

Corollary 4.6

Under the conditions of Theorem 2.3, for \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), \(\varsigma =0\), and \(k=1\) in (4.2), we have

$$\begin{aligned} & \biggl\vert \frac{\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2})}{2}- \frac{\Gamma (\mu +1)}{2(\lambda _{2}-\lambda _{1})^{\mu}} \bigl[\bigl( \Im _{\lambda _{2}^{-}}^{\mu}\gamma _{1}\bigr) (\lambda _{1})+\bigl(\Im _{ \lambda _{1}^{+}}^{\mu}\gamma _{1}\bigr) (\lambda _{2}) \bigr] \biggr\vert \\ & \quad \leq \frac{M(3\mu +1)}{2(\mu +k)} (\lambda _{2}-\lambda _{1} ). \end{aligned}$$

Theorem 4.7

Under the conditions of Theorem 2.17, we have

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{2}) \biggl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr)\biggr)^{\frac{\nu}{k}}+\gamma _{1}( \lambda _{1}) \biggl(\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr)-\gamma _{2}^{\varsigma +1}( \lambda _{1})\biggr)^{\frac{\mu}{k}} \\ &\quad \quad{} - \biggl((\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\frac{\lambda _{1}+\lambda _{2}}{2})}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{ \frac{\lambda _{1}+\lambda _{2}}{2}^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2}) \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\frac{\lambda _{1}+\lambda _{2}}{2}^{-}}^{\mu},_{ \sigma} \gamma _{1}\bigr) (\lambda _{1})\biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \biggl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr) \biggr)^{\frac{\nu}{k}} \\ &\quad \quad {}-\lambda _{1}^{ \varsigma +1}\biggl(\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr)-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \biggr)^{\frac{\mu}{k}} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \bigl(\gamma _{2},_{k}^{ \varsigma}\Im _{\frac{\lambda _{1}+\lambda _{2}}{2}^{-}}^{\mu},_{ \sigma} \lambda _{1}\bigr) \\ &\quad \quad{} - (\varsigma +1)^{\frac{\nu}{k}}\Gamma _{k}(\nu +k) \frac{\sigma (\frac{\lambda _{1}+\lambda _{2}}{2})}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{ \frac{\lambda _{1}+\lambda _{2}}{2}^{+}}^{\nu},_{\sigma}\lambda _{2} \bigr) \biggr). \end{aligned}$$
(4.3)

Proof

Inequality (4.3) can be obtained by substituting \(\theta =\frac{\lambda _{1}+\lambda _{2}}{2}\) into (2.26). □

Corollary 4.8

Under the assumptions of Theorem 2.17with \(\mu =\nu \) in (4.3), we have

$$\begin{aligned} & \biggl\vert \gamma _{1}(\lambda _{2}) \biggl(\gamma _{2}^{\varsigma +1}( \lambda _{2})-\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr)\biggr)^{\frac{\mu}{k}}+\gamma _{1}( \lambda _{1}) \biggl(\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr)-\gamma _{2}^{\varsigma +1}( \lambda _{1})\biggr)^{\frac{\mu}{k}} \\ &\quad \quad{} - (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl( \frac{\sigma (\frac{\lambda _{1}+\lambda _{2}}{2})}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{ \frac{\lambda _{1}+\lambda _{2}}{2}^{+}}^{\nu},_{\sigma}\gamma _{1} \bigr) (\lambda _{2})+\bigl(\gamma _{2},_{k}^{\varsigma} \Im _{ \frac{\lambda _{1}+\lambda _{2}}{2}^{-}}^{\mu},_{\sigma}\gamma _{1} \bigr) ( \lambda _{1}) \biggr) \biggr\vert \\ &\quad \leq \frac{M}{\varsigma +1} \biggl(\lambda _{2}^{\varsigma +1} \biggl( \gamma _{2}^{\varsigma +1}(\lambda _{2})-\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr) \biggr)^{\frac{\mu}{k}} \\ &\quad \quad {}-\lambda _{1}^{ \varsigma +1} \biggl(\gamma _{2}^{\varsigma +1}\biggl( \frac{\lambda _{1}+\lambda _{2}}{2}\biggr)-\gamma _{2}^{\varsigma +1}( \lambda _{1}) \biggr)^{\mu} \\ &\quad \quad{} + (\varsigma +1)^{\frac{\mu}{k}}\Gamma _{k}(\mu +k) \biggl(\bigl( \gamma _{2},_{k}^{\varsigma}\Im _{\frac{\lambda _{1}+\lambda _{2}}{2}^{-}}^{ \mu},_{\sigma}\lambda _{1} \bigr)- \frac{\sigma (\frac{\lambda _{1}+\lambda _{2}}{2})}{\sigma (\lambda _{2})} \bigl(\gamma _{2},_{k}^{\varsigma} \Im _{ \frac{\lambda _{1}+\lambda _{2}}{2}^{+}}^{\mu},_{\sigma}\lambda _{2} \bigr) \biggr) \biggr). \end{aligned}$$
(4.4)

Next, we derive an estimation of the Hadamard inequality for RL k-fractional integrals given in [39, Theorem 2.1].

Corollary 4.9

Under the assumptions of Theorem 2.17, for \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), and \(\varsigma =0\) in (4.4), we have the following inequality for RL k-fractional integrals:

$$\begin{aligned} & \biggl\vert \frac{\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2})}{2}- \frac{2^{\frac{\mu}{k}-1}\Gamma _{k}(\mu +k)}{(\lambda _{2}-\lambda _{1})^{\frac{\mu}{k}}} \bigl( \bigl(_{k}\Im _{\frac{\lambda _{1}+\lambda _{2}}{2}^{+}}^{\nu} \gamma _{1}\bigr) (\lambda _{2})+\bigl(_{k}\Im _{ \frac{\lambda _{1}+\lambda _{2}}{2}^{-}}^{\mu}\gamma _{1}\bigr) (\lambda _{1}) \bigr) \biggr\vert \\ &\quad \leq \frac{M\mu (\lambda _{1}+\lambda _{2})}{2(\mu +k)}. \end{aligned}$$

The following result provides an estimate for the Hadamard inequality for RL fractional integrals [40, Theorem 4].

Corollary 4.10

Under the conditions of Theorem 2.17, for \(\gamma _{2}(\theta )=\theta \), \(\sigma (\theta )=1\), \(\varsigma =0\), and \(k=1\) in (4.4), we have

$$\begin{aligned} & \biggl\vert \frac{\gamma _{1}(\lambda _{1})+\gamma _{1}(\lambda _{2})}{2}- \frac{2^{\mu -1}\Gamma (\mu +1)}{(\lambda _{2}-\lambda _{1})^{\mu}} \bigl(\bigl(\Im _{\frac{\lambda _{1}+\lambda _{2}}{2}^{+}}^{\nu}\gamma _{1}\bigr) ( \lambda _{2})+\bigl(\Im _{\frac{\lambda _{1}+\lambda _{2}}{2}^{-}}^{\mu} \gamma _{1}\bigr) (\lambda _{1}) \bigr) \biggr\vert \\ &\quad \leq \frac{M\mu (\lambda _{1}+\lambda _{2})}{2(\mu +1)}. \end{aligned}$$

5 Conclusions

Inequalities are a crucial concept in mathematics that is used extensively in various fields of study. It allows us to compare and contrast the relative values of different mathematical expressions, leading to a deeper understanding of the relationships between them. Inequalities are not only essential for theoretical purposes, but also for practical applications, such as optimization problems and statistical data analysis. Understanding inequalities is a critical component of mathematical literacy, enabling individuals to evaluate and interpret quantitative information and make informed decisions in various aspects of their lives. The presented work includes generalized fractional integral inequalities for the family of generalized weighted RL fractional integrals. These operators have been extensively studied and utilized by researchers across different fields. We specifically investigate the weighted RL k-fractional integral operators and extend the established in the direction of weighted version. Our study provides a simple method for proving Östrowski-type inequalities using the weighted fractional integral operators. We explored a more comprehensive form of the Östrowski-type inequalities that is more inclusive than the current ones in the literature. These inequalities have various applications in numerical analysis, specifically in numerical integration. Furthermore, we determine the best possible error bounds for Hadamard-type inequalities. Our results, which are related to the existing literature, are obtained through the application of Theorems 2.3, 2.10, 2.17, and 2.23. These findings have significant implications in establishing error bounds for Hadamard inequalities in fractional calculus.

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  2. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413–3442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Samraiz, M., Perveen, Z., Abdeljawad, T., Iqbal, S., Naheed, S.: On certain fractional calculus operators and applications in mathematical physics. Phys. Scr. 95(11), 115210 (2020)

    Article  Google Scholar 

  5. Zhang, X., Farid, G., Reunsumrit, J., Ahmad, A., Sitthiwirattham, T.: Some fractional integral inequalities involving Mittag-kernels. J. Math. 2022, 1–12 (2022)

    MathSciNet  Google Scholar 

  6. Samraiz, M., Mehmood, A., Iqbal, S., Naheed, S., Rahman, G., Chu, Y.M.: Generalized fractional operator with applications in mathematical physics. Chaos Solitons Fractals 165(2), 112830 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu, S., Samraiz, M., Perveen, Z., Iqbal, S., Hussain, A.: On weighted k-fractional operators with application in mathematical physics. Fractals 29(4), 2150084 (2021)

    Article  MATH  Google Scholar 

  8. Du, T.S., Zhou, T.C.: On the fractional double integral inclusion relations having exponential kernels via interval-valued coordinated convex mappings. Chaos Solitons Fractals 156, Article ID 111846 (2022)

    Article  MATH  Google Scholar 

  9. Samraiz, M., Umer, M., Kashuri, A., Abdeljawad, T., Iqbal, S., Mlaiki, N.: On weighted \((k,\varsigma )\)-Riemann–Liouville fractional operators and solution of fractional kinetic equation. Fractal Fract. 5(3), 118 (2021)

    Article  Google Scholar 

  10. Mubeen, S., Habibullah, G.M.: k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Zhou, T.C., Yuan, Z.R., Du, T.S.: On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci. 17(2), 107–120 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  12. Samraiz, M., Umer, M., Abduljawad, T., Naheed, S., Rahman, G., Shah, K.: On Riemann-type weighted fractional operator and solution to Cauchy problems. Comput. Model. Eng. Sci. 136(1), 901–919 (2022)

    Google Scholar 

  13. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aldhaifallah, M., Tomar, M., Nisar, K.S., Purohit, S.D.: Some new inequalities for \((k,\varsigma )\)-fractional integrals. J. Nonlinear Sci. Appl. 9(9), 5374–5381 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohammed, P.O., Abdeljawad, T.: Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020(1), 363 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, S.M., Farid, G., Nazeer, W., Tariq, B.: Hadamard and Fejer–Hadamard inequalities for extended generalized fractional integrals involving special functions. J. Inequal. Appl. 2018(1), 119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baleanu, D., Samraiz, M., Perveen, Z., Iqbal, S., Nisar, K.S., Rahman, G.: Hermite–Hadamard–Fejer type inequalities via fractional integral of a function concerning another function. AIMS Math. 6(5), 4280–4295 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rahman, G., Nisar, K.S., Mubeen, S., Choi, J.: Certain inequalities involving the \((k, \sigma )\)-fractional integral operator. Far East J. Math. Sci. 103(11), 1879–1888 (2018)

    Google Scholar 

  20. Khan, H., Abdeljawad, T., Tunç, C., Alkhazzan, A., Khan, A.: Minkowski’s inequality for the AB-fractional integral operator. J. Inequal. Appl. 2019(1), 96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baleanu, D., Agarwal, P.: Certain inequalities involving the fractional q-integral operators. Abstr. Appl. Anal. 2014, 371274 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Anastassiou, G.A.: Advances on Fractional Inequalities. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  23. Cerone, P., Dragomir, S.S., Kikianty, E.: Ostrowski and trapezoid type inequalities related to Pompeiu’s mean value theorem. J. Math. Inequal. 9(3), 739–762 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farid, G., Rafique, S., Rehman, A.U.: More on Ostrowski and Ostrowski–Gruss type inequalities. Commun. Optim. Theory 2017(2017), 1–9 (2017)

    Google Scholar 

  25. Farid, G., Rehman, A.U., Usman, M.: Ostrowski type fractional integral inequalities for s-Godunova–Levin functions via Katugampola fractional integrals. Open J. Math. Sci. 1(1), 97–110 (2017)

    Article  MATH  Google Scholar 

  26. Farid, G.: Straightforward proofs of Ostrowski inequality and some related results. Int. J. Anal. 2016, 3918483 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Dragomir, S.S., Rassias, T.M.: Ostrowski Type Inequalities and Applications in Numerical Integration. Kluwer Academic, Dordrecht (2002)

    Book  MATH  Google Scholar 

  28. Dragomir, S.S., Wang, S.: An inequality of Ostrowski type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Comput. Math. Appl. 33(11), 15–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  31. Jarad, F., Abdeljawad, T., Shah, K.: On the weighted fractional operators of a function with respect to another function. Fractals 28(6), 2040011 (2020)

    Article  MATH  Google Scholar 

  32. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9–10), 2403–2407 (2013)

    Article  MATH  Google Scholar 

  33. Farid, G., Rehman, A.U., Zahra, M.: On Hadamard inequalities for k-fractional integrals. Nonlinear Funct. Anal. Appl. 21(3), 463–478 (2016)

    MATH  Google Scholar 

  34. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kwun, Y.C., Farid, G., Nazeer, W., Ullah, S., Kang, S.M.: Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski-type inequalities and error bounds of Hadamard inequalities. IEEE Access 6, 64946–64953 (2018)

    Article  Google Scholar 

  36. Farid, G.: Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 14(1), 64–68 (2017)

    MATH  Google Scholar 

  37. Farid, G., Rehman, A.U., Zahra, M.: On Hadamard inequalities for k-fractional integrals. Nonlinear Funct. Anal. Appl. 21(3), 463–478 (2016)

    MATH  Google Scholar 

  38. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9–10), 2403–2407 (2013)

    Article  MATH  Google Scholar 

  39. Farid, G., Rehman, A.U., Zahra, M.: On Hadamard-type inequalities for k-fractional integrals. Konuralp J. Math. 4(2), 79–86 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Ssrikaya, M.Z., Yildilim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors take equal part in the preparation of this manuscipt. All author read and approved it for submission in Journal of Ineaualities ans Applications.

Corresponding author

Correspondence to Sajid Iqbal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivas-Cortez, M., Samraiz, M., Ullah, A. et al. A modified class of Ostrowski-type inequalities and error bounds of Hermite–Hadamard inequalities. J Inequal Appl 2023, 130 (2023). https://doi.org/10.1186/s13660-023-03035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03035-8

Mathematics Subject Classification

Keywords