Skip to main content

\((H_{p}-L_{p})\)-Type inequalities for subsequences of Nörlund means of Walsh–Fourier series

Abstract

We investigate the subsequence \(\{t_{2^{n}}f \}\) of Nörlund means with respect to the Walsh system generated by nonincreasing and convex sequences. In particular, we prove that a large class of such summability methods are not bounded from the martingale Hardy spaces \(H_{p}\) to the space \(\mathit{weak-}L_{p} \) for \(0< p<1/(1+\alpha ) \), where \(0<\alpha <1\). Moreover, some new related inequalities are derived. As applications, some well-known and new results are pointed out for well-known summability methods, especially for Nörlund logarithmic means and Cesàro means.

1 Introduction

The terminology and notations used in this introduction can be found in Sect. 2.

The fact that the Walsh system is the group of characters of a compact abelian group connects Walsh analysis with abstract harmonic analysis was discovered independently by Fine [7] and Vilenkin [28]. For general references to the Haar measure and harmonic analysis on groups see Pontryagin [22], Rudin [23], and Hewitt and Ross [14]. In particular, Fine investigated the group G, which is a direct product of the additive groups \(Z_{2}=:\{0,1\}\) and introduced the Walsh system \(\{{w}_{j}\}_{j=0}^{\infty}\).

It is well known (for details see, e.g., the books [21, 24], and [29]) that Walsh systems do not form bases in the space \(L_{1}\). Moreover, there exists a martingale \(f\in H_{p}\) (\(0< p\leq 1\)), such that \(\sup_{n\in \mathbb{N}} \Vert S_{2^{n}+1}f \Vert _{p}=\infty \). On the other hand, by the definition of Hardy spaces, the subsequence \(\{S_{2^{n}}\}\) of partial sums is bounded from the space \(H_{p}\) to the space \(H_{p}\), for all \(p>0\).

Weisz [30] proved that the Fejér means of Vilenkin–Fourier series are bounded from the martingale Hardy space \(H_{p}\) to the space \(H_{p}\), for \(p>1/2\). Goginava [11] (see also [19]) proved that there exists a martingale \(f\in H_{1/2}\) such that

$$ \sup_{n\in \mathbb{N}} \Vert \sigma _{n}f \Vert _{1/2}=+ \infty . $$

However, Weisz [30] (see also [18]) proved that for every \(f\in H_{p} \), there exists an absolute constant \(c_{p} \), such that the following inequality holds:

$$ \Vert \sigma _{2^{n}}f \Vert _{H_{p}}\leq c_{p} \Vert f \Vert _{H_{p}}, \quad n\in \mathbb{N}, p>0. $$
(1)

Móricz and Siddiqi [17] investigated the approximation properties of some special Nörlund means of Walsh–Fourier series of \(L_{p}\) functions in norm. Approximation properties for general summability methods can be found in [3, 4]. Fridli, Manchanda, and Siddiqi [8] improved and extended the results of Móricz and Siddiqi [17] to martingale Hardy spaces. The case when \(\{ q_{k}=1/k:k\in \mathbb{N} \} \) was excluded, since the methods are not applicable to Nörlund logarithmic means. In [9] Gát and Goginava proved some convergence and divergence properties of the Nörlund logarithmic means of functions in the Lebesgue space \(L_{1}\). In particular, they proved that there exists a function f in the space \(L_{1} \), such that \(\sup_{n\in \mathbb{N}} \Vert L_{n}f \Vert _{1}=\infty \). In [1] it was proved that there exists a martingale \(f\in H_{p}\), (\(0< p< 1\)) such that

$$ \sup_{n\in \mathbb{N}} \Vert L_{2^{n}}f \Vert _{p}= \infty . $$

A counterexample for \(p=1\) was proved in [20]. However, Goginava [10] proved that for every \(f\in H_{1} \), there exists an absolute constant c, such that the following inequality holds:

$$ \Vert L_{2^{n}}f \Vert _{1}\leq c \Vert f \Vert _{H_{1}}, \quad n\in \mathbb{N}. $$
(2)

The convergence of subsequences of Nörlund logarithmic means of Walsh–Fourier series in martingale Hardy spaces was investigated by Goginava [13] and Memić [16].

In [19] it was proved that for any nondecreasing sequence \((q_{k},k\in \mathbb{N})\) satisfying the conditions

$$\begin{aligned} \frac{1}{Q_{n}}=O \biggl(\frac{1}{n^{\alpha}} \biggr), \quad \text{where } Q_{n} = \sum_{k=0}^{n-1} q_{k} \end{aligned}$$
(3)

and

$$\begin{aligned} q_{n}-q_{n+1}=O \biggl(\frac{1}{n^{2-\alpha}} \biggr) ,\quad\text{as } n\rightarrow \infty , \end{aligned}$$
(4)

then, for every \(f\in H_{p} \), where \(p>1/(1+\alpha )\), there exists an absolute constant \(c_{p} \), depending only on p, such that the following inequality holds:

$$ \Vert t_{n}f \Vert _{H_{p}}\leq c_{p} \Vert f \Vert _{H_{p}}, \quad n\in \mathbb{N}. $$
(5)

Boundedness does not hold from \(H_{p}\) to \(\mathit{weak-}L_{p}\), for \(0< p< 1/ (1+\alpha )\). As a consequence, (for details see [31]) we obtain that the Cesàro means \(\sigma _{n}^{\alpha}\) is bounded from \(H_{p}\) to \(L_{p}\), for \(p>1/(1+\alpha )\), but they are not bounded from \(H_{p}\) to \(\mathit{weak-}L_{p}\), for \(0< p< 1/ (1+\alpha )\). In the endpoint case \(p=1/ (1+\alpha )\), Weisz and Simon [26] (see also [25]) proved that the maximal operator \(\sigma ^{\alpha ,\ast }\) of Cesàro means defined by

$$ \sigma ^{\alpha ,\ast }f:=\sup_{n\in \mathbb{N}} \bigl\vert \sigma ^{ \alpha}_{n}f \bigr\vert $$

is bounded from the Hardy space \(H_{1/ (1+\alpha ) }\) to the space \(\mathit{weak-}L_{1/ (1+\alpha )}\). Goginava [12] gave a counterexample, which shows that boundedness does not hold for \(0< p\leq 1/ (1+\alpha ) \).

In this paper we develop some methods considered in [1, 2, 15] (see also the new book [21]) and prove that for any \(0< p<1\), there exists a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \Vert t_{2^{n}}f \Vert _{\mathit{weak-}L_{p}}= \infty . $$

Moreover, we prove that a class of subsequence \(\{t_{2^{n}}f \}\) of Nörlund means with respect to the Walsh system generated by nonincreasing and convex sequences are not bounded from the martingale Hardy spaces \(H_{p}\) to the space \(\mathit{weak-}L_{p} \) for \(0< p<1/(1+\alpha ) \), where \(0<\alpha <1\). Moreover, some new related inequalities are derived. As applications, some well-known and new results are pointed out for well-known summability methods, especially for Nörlund logarithmic means and Cesàro means.

The main results in this paper are presented and proved in Sect. 4. Section 3 is used to present some auxiliary results, where, in particular, Lemma 2 is new and of independent interest. In order not to disturb our discussions later some definitions and notations are given in Sect. 2.

2 Definitions and notations

Let \(\mathbb{N}_{+}\) denote the set of the positive integers, \(\mathbb{N}:=\mathbb{N}_{+}\cup \{0\}\). Denote by \(Z_{2}\) the discrete cyclic group of order 2, that is \(Z_{2}:=\{0,1\}\), where the group operation is the modulo 2 addition and every subset is open. The Haar measure on \(Z_{2}\) is given so that the measure of a singleton is 1/2.

Define the group G as the complete direct product of the group \(Z_{2}\), with the product of the discrete topologies of \(Z_{2}\)s.

The elements of G are represented by sequences

$$ x:=(x_{0},x_{1},\ldots,x_{j},\ldots), \quad \text{where } x_{k}=0\vee 1. $$

It is easy to give a base for the neighborhood of \(x\in G\) namely:

$$ I_{0} ( x ) :=G,\qquad I_{n}(x):=\{y\in G:y_{0}=x_{0},\ldots,y_{n-1}=x_{n-1} \} \quad(n\in \mathbb{N}). $$

Denote \(I_{n}:=I_{n} ( 0 ) \), \(\overline{I_{n}}:=G \backslash I_{n}\) and

$$ e_{n}:= ( 0,\ldots,0,x_{n}=1,0,\ldots ) \in G, \quad \text{for } n \in \mathbb{N}. $$

If \(n\in \mathbb{N}\), then every n can be uniquely expressed as \(n=\sum_{k=0}^{\infty }n_{j}2^{j}\), where \(n_{j}\in Z_{2} \) (\(j\in \mathbb{N}\)) and only a finite number of \(n_{j}\)s differ from zero. Let

$$ \vert n \vert :=\max \{k\in \mathbb{N}: n_{k}\neq 0\}. $$

The norms (or quasinorms) of the spaces \(L_{p}(G)\) and \(\mathit{weak-}L_{p} ( G ) \), (\(0< p<\infty \)) are, respectively, defined by

$$ \Vert f \Vert _{p}^{p}:= \int _{G} \vert f \vert ^{p}\,d\mu \quad \text{and} \quad \Vert f \Vert _{\mathit{weak-}L_{p}}^{p}:=\sup _{\lambda >0} \lambda ^{p}\mu ( f>\lambda ) . $$

The kth Rademacher function is defined by

$$ r_{k} ( x ) := ( -1 ) ^{x_{k}}\quad ( x\in G,k\in \mathbb{N} ) . $$

Now, define the Walsh system \(w:=(w_{n}:n\in \mathbb{N})\) on G as:

$$ w_{n}(x):=\prod_{k=0}^{\infty }r_{k}^{n_{k}} ( x ) =r_{ \vert n \vert } ( x ) ( -1 ) ^{ \sum _{k=0}^{ \vert n \vert -1}n_{k}x_{k}} \quad ( n\in \mathbb{N} ) . $$

It is well known that (see, e.g., [24]) the Walsh system is orthonormal and complete in \(L_{2} ( G ) \). Moreover, for any \(n\in \mathbb{N}\),

$$\begin{aligned} w_{n} ( x+y ) =&w_{n} ( x )w_{n} ( y ). \end{aligned}$$
(6)

If \(f\in L_{1} ( G ) \) we define the Fourier coefficients, partial sums, and Dirichlet kernel by

$$\begin{aligned}& \widehat{f} ( k ) := \int _{G}fw_{k}\,d\mu \quad ( k \in \mathbb{N}\mathbbm{ } ) , \\& S_{n}f := \sum_{k=0}^{n-1} \widehat{f} ( k ) w_{k},\qquad D_{n}:=\sum _{k=0}^{n-1}w_{k}\quad ( n\in \mathbb{N}_{+} ). \end{aligned}$$

Recall that (for details see, e.g., [24]):

$$ D_{2^{n}} ( x ) =\textstyle\begin{cases} 2^{n}, & \text{if }x\in I_{n}, \\ 0, & \text{if } x\notin I_{n}\end{cases} $$
(7)

and

$$ D_{n}=w_{n}\sum_{k=0}^{\infty }n_{k}r_{k}D_{2^{k}}=w_{n}\sum_{k=0}^{\infty }n_{k} ( D_{2^{k+1}}-D_{2^{k}} ),\quad\text{for }n=\sum _{i=0}^{\infty }n_{i}2^{i}. $$
(8)

Let \(\{ q_{k}, k\geq 0 \} \) be a sequence of nonnegative numbers. The Nörlund means for the Fourier series of f are defined by

$$ t_{n}f:=\frac{1}{Q_{n}}\sum_{k=1}^{n}q_{n-k}S_{k}f, \quad \text{where } Q_{n}:=\sum_{k=0}^{n-1}q_{k}. $$

In this paper we consider convex \(\{ q_{k}, k\geq 0 \} \) sequences, that is

$$ q_{n-1}+q_{n+1}-2q_{n}\geq 0, \quad \text{for all } n \in \mathbb{N}\mathbbm{ }. $$

If the function \(\psi (x)\) is any real-valued and convex function (for example \(\psi (x)=x^{\alpha -1}\), \(0\leq \alpha \leq 1\)), then the sequence \(\{\psi (n), n\in \mathbb{N}\mathbbm{ }\}\) is convex.

Since \(q_{n-2}-q_{n-1}\geq q_{n-1}-q_{n}\geq q_{n}-q_{n+1}\geq q_{n+1}-q_{n+2}\) we find that

$$ q_{n-2}+q_{n+2}\geq q_{n-1}+q_{n+1} $$

and we also obtain that

$$ q_{n-2}+q_{n+2}-2q_{n}\geq 0, \quad \text{for all } n\in \mathbb{N}\mathbbm{ }. $$
(9)

In the special case when \(\{q_{k}=1, k\in \mathbb{N}\}\), we have the Fejér means

$$ \sigma _{n}f:=\frac{1}{n}\sum_{k=1}^{n}S_{k}f. $$

Moreover, if \(q_{k}={1}/{(k+1)}\), then we obtain the Nörlund logarithmic means:

$$ L_{n}f:=\frac{1}{l_{n}}\sum _{k=1}^{n}\frac{S_{k}f}{n+1-k}, \quad \text{where } l_{n}:=\sum_{k=1}^{n} \frac{1}{k}. $$
(10)

The Cesàro means \(\sigma _{n}^{\alpha}\) (sometimes also denoted \((C,\alpha )\)) is also a well-known example of Nörlund means defined by

$$ \sigma _{n}^{\alpha}f=:\frac{1}{A_{n}^{\alpha}} \sum _{k=1}^{n}A_{n-k}^{\alpha -1}S_{k}f, $$

where

$$ A_{0}^{\alpha}:=0,\qquad A_{n}^{\alpha}:= \frac{ (\alpha +1 )\ldots (\alpha +n )}{n!}, \quad \alpha \neq -1,-2,\ldots . $$

It is well known that

$$ A_{n}^{\alpha}=\sum_{k=0}^{n}A_{n-k}^{\alpha -1}, \qquad A_{n}^{\alpha}-A_{n-1}^{\alpha}=A_{n}^{\alpha -1} \quad \text{and} \quad A_{n}^{\alpha }\sim n^{\alpha }. $$
(11)

We also define \(U_{n}^{\alpha}\) means as

$$ U^{\alpha}_{n}f:=\frac{1}{Q_{n}}\sum _{k=1}^{n}{(n+1-k)}^{( \alpha -1)} S_{k}f, \quad \text{where } Q_{n}:=\sum_{k=1}^{n}k^{ \alpha -1}. $$

Let us also define \(V_{n}^{\alpha}\) means as

$$ V_{n}f:=\frac{1}{Q_{n}}\sum_{k=1}^{n}{ \ln (n+1-k)}S_{k}f, \quad \text{where } Q_{n}:=\sum _{k=1}^{n}\frac{1}{\ln (k+1)}. $$

The σ-algebra generated by the intervals \(\{ I_{n} ( x ) :x\in G \}\) will be denoted by \(\digamma _{n}\) (\(n\in \mathbb{N} \)). Denote by \(f:= ( f^{ ( n ) },n\in \mathbb{N} ) \) the martingale with respect to \(\digamma _{n}\) (\(n\in \mathbb{N} \)) (for details see, e.g., [29]).

We say that this martingale belongs to the Hardy martingale spaces \(H_{p} ( G ) \), where \(0< p<\infty \), if

$$ \Vert f \Vert _{H_{p}}:= \bigl\Vert f^{*} \bigr\Vert _{p}< \infty , \quad \text{with } f^{\ast }:=\sup _{n\in \mathbb{N}} \bigl\vert f^{(n)} \bigr\vert . $$

When \(f\in L_{1} (G )\), the maximal functions are also given by

$$ M(f) ( x ) :=\sup_{n\in \mathbb{N}} \biggl( \frac{1}{\mu ( I_{n} ( x ) ) } \biggl\vert \int _{I_{n} ( x ) }f ( u ) \,d\mu ( u ) \biggr\vert \biggr) . $$

If \(f\in L_{1} ( G )\), then it is easy to show that the sequence \(F= ( S_{2^{n}}f :n\in \mathbb{N} ) \) is a martingale and \(F^{*}=M(f)\).

If \(f= ( f^{ ( n ) }, n\in \mathbb{N} ) \) is a martingale, then the Walsh–Fourier coefficients must be defined in a slightly different manner:

$$ \widehat{f} ( i ) :=\lim_{k\rightarrow \infty } \int _{G}f^{ ( k ) } ( x )w_{i} ( x ) \,d\mu ( x ) . $$

A bounded measurable function a is p-atom, if there exists an interval I, such that

$$ \operatorname{supp} ( a ) \subset I, \qquad \int _{I}a\,d\mu =0 \quad\text{and}\quad \Vert a \Vert _{\infty }\leq \mu ( I ) ^{-1/p}. $$

3 Auxiliary results

The Hardy martingale space \(H_{p} ( G ) \) has an atomic characterization (see Weisz [29, 30]):

Lemma 1

A martingale \(f= ( f^{ ( n ) }, n\in \mathbb{N} ) \) is in \(H_{p}\) (\(0< p\leq 1\)) if and only if there exist a sequence \(( a_{k},k\in \mathbb{N} ) \) of p-atoms and a sequence \(( \mu _{k},k\in \mathbb{N} ) \) of real numbers such that for every \(n\in \mathbb{N}\):

$$ \sum_{k=0}^{\infty}\mu _{k}S_{2^{n}}a_{k}=f^{ ( n ) }, \quad \textit{where } \sum_{k=0}^{\infty } \vert \mu _{k} \vert ^{p}< \infty . $$
(12)

Moreover, the following two-sided inequality holds

$$ \Vert f \Vert _{H_{p}}\backsim \inf \Biggl( \sum _{k=0}^{ \infty } \vert \mu _{k} \vert ^{p} \Biggr) ^{1/p}, $$

where the infimum is taken over all decompositions of f of the form (12).

We also state and prove the following new lemma of independent interest:

Lemma 2

Let \(k\in \mathbb{N}\), \(\{ q_{k}:k\in \mathbb{N} \}\) be any convex and nonincreasing sequence and \(x\in I_{2}(e_{0}+e_{1})\in I_{0}\backslash I_{1}\). Then, for any \(\{\alpha _{k}\}\), the following inequality holds:

$$\begin{aligned} \Biggl\vert \sum_{j=2^{2\alpha _{k}}}^{2^{2\alpha _{k}+1}}q_{2^{2 \alpha _{k}+1}-j}{D_{j}} \Biggr\vert \geq q_{1}-\frac{3}{2}q_{3}. \end{aligned}$$

Proof

Let \(x\in I_{2}(e_{0}+e_{1})\in I_{0}\backslash I_{1}\). According to (7) and (8) we obtain that

$$ D_{j} ( x ) =\textstyle\begin{cases} -w_{j}, & \text{if }j \text{ is an odd number,} \\ 0, & \text{if } j \text{ is an even number}\end{cases} $$

and

$$\begin{aligned} \sum_{j=2^{2\alpha _{k}}}^{2^{2\alpha _{k}+1}-1}q_{2^{2\alpha _{k}+1}-j}D_{j}=- \sum_{j=2^{2\alpha _{k}-1}}^{2^{2\alpha _{k}}-1}q_{2^{2\alpha _{k}+1}-2j-1}{w_{2j+1}}=-w_{1} \sum_{j=2^{2\alpha _{k}-1}}^{2^{2\alpha _{k}}-1}q_{ 2^{2\alpha _{k}+1}-2j-1}{w_{2j}}. \end{aligned}$$

By using (9) we find that

$$\begin{aligned} &\sum_{j=2^{2\alpha _{k}-2}+1}^{2^{2\alpha _{k}-1}-1} \vert q_{2^{2 \alpha _{k}+1}-4j+3}-q_{2^{2\alpha _{k}+1}-4j+1} \vert \\ &\quad =\sum_{j=2^{2\alpha _{k}-2}+1}^{2^{2\alpha _{k}-1}-1} ( q_{ 2^{2 \alpha _{k}+1}-4j+1}-q_{2^{2\alpha _{k}+1}-4j+3} ) \\ &\quad = (q_{2^{2\alpha _{k}}-3}-q_{2^{2\alpha _{k}}-1} )+ ( q_{ 2^{2\alpha _{k}}-7}-q_{2^{2\alpha _{k}}-5} )+ \cdots + ( q_{5}-q_{7} ) \\ &\quad \leq \frac{1}{2} ( q_{2^{2\alpha _{k}}-3}-q_{2^{2\alpha _{k}}-1} )+ \frac{1}{2} ( q_{2^{2\alpha _{k}}-5}-q_{2^{2\alpha _{k}}-3} ) \\ &\qquad {}+\frac{1}{2} ( q_{2^{2\alpha _{k}}-7}-q_{2^{2\alpha _{k}}-5} ) + \frac{1}{2} ( q_{2^{2\alpha _{k}}-9}-q_{2^{2\alpha _{k}}-7} ) \\ &\qquad {}+\ldots +\frac{1}{2} ( q_{5}-q_{7} )+ \frac{1}{2} ( q_{3}-q_{5} )\leq \frac{1}{2}q_{3}-\frac{1}{2}q_{2^{2\alpha _{k}}-1}. \end{aligned}$$

Hence, if we apply

$$ w_{4k+2}=w_{2}w_{4k}=-w_{4k}, \quad \text{for } x\in I_{2}(e_{0}+e_{1}), $$

we find that

$$\begin{aligned} & \Biggl\vert \sum_{j=2^{2\alpha _{k}}}^{2^{2\alpha _{k}+1}-1}q_{2^{2 \alpha _{k}+1}-j}{D_{j}} \Biggr\vert \\ &\quad = \Biggl\vert q_{1}w_{2^{2\alpha _{k}+1}-2}+q_{3}{w_{2^{2\alpha _{k}+1}-4}}+ \sum_{j=2^{2\alpha _{k}-1}}^{2^{2\alpha _{k}}-3}q_{2^{2\alpha _{k}+1}-2j-1}{w_{2j}} \Biggr\vert \\ &\quad = \Biggl\vert (q_{3}-q_{1}){2w_{2^{2\alpha _{k}+1}-4}} +\sum_{j=2^{2 \alpha _{k}-2}+1}^{2^{2\alpha _{k}-1}-1} ( q_{2^{2\alpha _{k}+1}-4j+3}{w_{4j-4}}-q_{2^{2 \alpha _{k}+1}-4j+1}{w_{4j-4}} ) \Biggr\vert \\ &\quad \geq q_{1}-q_{3}-\sum _{j=2^{2\alpha _{k}-2}+1}^{2^{2\alpha _{k}-1}-1} \vert q_{2^{2\alpha _{k}+1}-4j+3}-q_{2^{2\alpha _{k}+1}-4j+1} \vert \\ &\quad \geq q_{1}-q_{3}-\frac{1}{2}(q_{3}-q_{2^{2\alpha _{k}}-1}) \geq q_{1}- \frac{3}{2}q_{3}. \end{aligned}$$

The proof is complete. □

4 The main result

In previous sections we have discussed a number of inequalities and sometimes their sharpness. Our main result is the following new sharpness result:

Theorem 1

Let \(0\leq \alpha \leq 1\), β be any nonnegative real number and \(t_{n}\) be Nörlund means with a convex and nonincreasing sequence \(\{ q_{k}:k\in \mathbb{N} \}\) satisfying the condition

$$ \frac{q_{1}-({3}/{2})q_{3}}{Q_{n}}\geq \frac{C}{ n^{\alpha}\ln ^{\beta}n}, $$
(13)

for some positive constant C. Then, for any \(0< p<1/(1+\alpha )\) there exists a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \Vert t_{2^{n}}f \Vert _{\mathit{weak-}L_{p}}= \infty . $$

Proof

Let \(0< p<1/(1+\alpha )\). Under condition (13) there exists a sequence \(\{ n _{k}:k\in \mathbb{N} \}\) such that

$$ \frac{2^{2n_{k}(1/p-1)}}{n_{k}Q_{2^{2n_{k}+1}}}\geq \frac{2^{2n_{k}(1/p-1-\alpha )}}{n_{k}^{\beta +1}}\to \infty , \quad \text{as } k\to \infty . $$

Let \(\{ \alpha _{k}:k\in \mathbb{N} \}\subset \{ n _{k}:k \in \mathbb{N} \} \) be an increasing sequence of positive integers such that

$$\begin{aligned}& \sum_{k=0}^{\infty }\alpha _{k}^{-p/2}< \infty , \end{aligned}$$
(14)
$$\begin{aligned}& \sum_{\eta =0}^{k-1} \frac{ (2^{2\alpha _{\eta}} )^{1/p}}{\sqrt{ \alpha _{\eta}}}< \frac{ (2^{2\alpha _{k}} )^{1/p}}{\sqrt{\alpha _{k}}} \end{aligned}$$
(15)

and

$$ \frac{ ( 2^{2\alpha _{k-1}} ) ^{1/p}}{\sqrt{\alpha _{k-1}}}< \frac{q_{1}-({3}/{2})q_{3}}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k}(1/p-1)-3}}{\alpha _{k}}. $$
(16)

Let

$$ f^{ ( n ) } :=\sum_{ \{ k;2\alpha _{k}< n \} }\lambda _{k}a_{k}, $$

where

$$ \lambda _{k}=\frac{1}{\sqrt{\alpha _{k}}} \quad \text{and} \quad a_{k}={2^{2\alpha _{k}(1/p-1)}} ( D_{2^{2\alpha _{k}+1}}-D_{2^{2 \alpha _{k}}} ) . $$

From (14) and Lemma 1 we find that \(f \in H_{p}\).

It is easy to prove that

$$ \widehat{f}(j)=\textstyle\begin{cases} \frac{2^{2\alpha _{k}(1/p-1)}}{\sqrt{\alpha _{k}}},& \text{if }j\in \{ 2^{2\alpha _{k}},\ldots, 2^{2\alpha _{k}+1}-1 \} , k\in \mathbb{N}, \\ 0,& \text{if }j\notin \bigcup_{k=1}^{\infty } \{ 2^{2 \alpha _{k}},\ldots,2^{2\alpha _{k}+1}-1 \}. \end{cases} $$
(17)

Moreover,

$$\begin{aligned} &t_{2^{2\alpha _{k}+1}}f \\ &\quad =\frac{1}{Q_{2^{2\alpha _{k}+1}}}\sum_{j=1}^{2^{2\alpha _{k}}-1}q_{2^{2 \alpha _{k}+1}-j}{S_{j}f}+ \frac{1}{Q_{2^{2\alpha _{k}+1}}} \sum_{j=2^{2 \alpha _{k}}}^{2^{2\alpha _{k}+1}}q_{{2^{2\alpha _{k}+1}-j}} {S_{j}f} \\ &\quad :=I+\mathit{II}. \end{aligned}$$
(18)

Let \(j<2^{2\alpha _{k}}\). By combining (15), (16), and (17) we can conclude that

$$\begin{aligned} \vert S_{j}f \vert \leq &\sum_{\eta =0}^{k-1} \sum_{v=2^{2 \alpha _{\eta }}}^{2^{2\alpha _{\eta }+1}-1} \bigl\vert \widehat{f}(v) \bigr\vert \\ \leq & \sum_{\eta =0}^{k-1}\sum _{v=2^{2\alpha _{\eta }}}^{2^{2 \alpha _{\eta }+1}-1} \frac{ 2^{2\alpha _{\eta }(1/p-1)}}{\sqrt{\alpha _{\eta }}} \leq \sum _{ \eta =0}^{k-1}\frac{2^{2\alpha _{\eta }/p}}{\sqrt{\alpha _{\eta}}} \leq \frac{2^{2\alpha _{k-1}/p}}{\sqrt{\alpha _{k-1}}}. \end{aligned}$$

Hence,

$$\begin{aligned} \vert I \vert \leq &\frac{1}{Q_{2^{2\alpha _{k}+1}}} \sum _{j=1}^{2^{2\alpha _{k}}-1} q_{2^{2\alpha _{k}+1}-j}{ \vert S_{j}f \vert } \\ \leq &\frac{1}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k-1}/p}}{\sqrt{\alpha _{k-1}}}\sum _{j=0}^{2^{2\alpha _{k}+1}-1}q_{j}\leq \frac{2^{2\alpha _{k-1}/p}}{\sqrt{\alpha _{k-1}}}. \end{aligned}$$
(19)

Let \(2^{2\alpha _{k}}\leq j\leq 2^{2\alpha _{k}+1}\). Since

$$\begin{aligned} S_{j}f =&\sum_{\eta =0}^{k-1}\sum _{v=2^{2\alpha _{\eta }}}^{2^{2 \alpha _{\eta }+1}-1}\widehat{f}(v)w_{v}+ \sum_{v=2^{2\alpha _{k}}}^{j-1} \widehat{f}(v)w_{v} \\ =&\sum_{\eta =0}^{k-1} \frac{2^{{2\alpha _{\eta }} ( 1/p-1 ) }}{\sqrt{\alpha _{\eta }}} ( D_{2^{2\alpha _{\eta }+1}}-D_{2^{2 \alpha _{\eta }}} ) + \frac{2^{{2\alpha _{k}} ( 1/p-1 ) }}{\sqrt{\alpha _{k}}} ( D_{j}-D_{2^{{2\alpha _{k}}}} ), \end{aligned}$$

for II we can conclude that

$$\begin{aligned} \mathit{II} =& \frac{1}{Q_{2^{2\alpha _{k}+1}}} \sum _{j=2^{2\alpha _{k}}}^{2^{2\alpha _{k}+1}} q_{2^{2\alpha _{k}+1}-j} \Biggl( \sum _{ \eta =0}^{k-1} \frac{2^{2\alpha _{\eta } ( 1/p-1 ) }}{\sqrt{\alpha _{\eta}}} ( D_{2^{2\alpha _{\eta }+1}}-D_{2^{2\alpha _{\eta }}} ) \Biggr) \\ &{}+\frac{1}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k} ( 1/p-1 ) }}{\sqrt{\alpha _{k}}}\sum_{j=2^{2\alpha _{k}}}^{2^{2\alpha _{k}+1}} q_{2^{2 \alpha _{k}+1}-j}{ (D_{j}-D_{2^{2\alpha _{k}}} )}. \end{aligned}$$
(20)

Let \(x\in I_{2}(e_{0}+e_{1})\in I_{0}\backslash I_{1}\). According to the fact that \(\alpha _{0}\geq 1\) we obtain that \(2\alpha _{k}\geq 2\), for all \(k\in \mathbb{N}\) and if we use (7) we obtain that \(D_{2^{2\alpha _{k}}}=0\) and if we use Lemma 2 we can also conclude that

$$\begin{aligned} \vert \mathit{II} \vert =&\frac{1}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k}(1/p-1)}}{ \sqrt{\alpha _{k}}}\sum_{j=2^{2\alpha _{k}}}^{2^{2\alpha _{k}+1}} q_{2^{2 \alpha _{k}+1}-j}{D_{j}} \\ \geq & \frac{q_{1}-(3/2)q_{3}}{Q_{2^{2\alpha _{k}+1}}}\frac{2^{2\alpha _{k}(1/p-1)}}{\sqrt{\alpha _{k}}}. \end{aligned}$$
(21)

By combining (16), and (18)–(21) for \(x\in I_{2}(e_{0}+e_{1})\) we have that

$$\begin{aligned} \bigl\vert t_{2^{2\alpha _{k}+1}}f (x ) \bigr\vert \geq & \vert \mathit{II} \vert - \vert I \vert \\ \geq &\frac{q_{1}-({3}/{2})q_{3}}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k}(1/p-1)}}{ \sqrt{\alpha _{k}}}-\frac{q_{1}-(3/2)q_{3}}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k}(1/p-1)-3}}{\alpha _{k}} \\ \geq &\frac{q_{1}-(3/2)q_{3}}{Q_{2^{2\alpha _{k}+1}}} \frac{2^{2\alpha _{k}(1/p-1)-3}}{ \sqrt{\alpha _{k}}}\geq \frac{C2^{2\alpha _{k}(1/p-1-\alpha )-3}}{ (\ln 2^{2\alpha _{k}+1}+1 )^{\beta}\sqrt{\alpha _{k}}} \\ \geq & \frac{C2^{2\alpha _{k}(1/p-1-\alpha )-3}}{{\alpha ^{\beta +1} _{k}}}. \end{aligned}$$

Hence, we can conclude that

$$\begin{aligned} & \Vert t_{2^{2\alpha _{k}+1}}f \Vert _{\mathit{weak-}L_{p}} \\ &\quad \geq \frac{C2^{2\alpha _{k}(1/p-1-\alpha )-3}}{\alpha ^{\beta +1}_{k}}\mu \biggl\{ x\in G: \vert t_{2^{2\alpha _{k}+1}}f \vert \geq \frac{C2^{2\alpha _{k}(1/p-1)-3}}{\alpha ^{\beta +1}_{k}} \biggr\} ^{1/p} \\ &\quad \geq \frac{C2^{2\alpha _{k}(1/p-1-\alpha )-3}}{\alpha ^{\beta +1}_{k}}\mu \biggl\{ x\in I_{2}(e_{0}+e_{1}): \vert t_{2^{2\alpha _{k}+1}}f \vert \geq \frac{C2^{2\alpha _{k}(1/p-1)-3}}{\alpha ^{\beta +1}_{k}} \biggr\} ^{1/p} \\ &\quad \geq \frac{C2^{2\alpha _{k}(1/p-1-\alpha )-3}}{\alpha ^{\beta +1}_{k}}\bigl( \mu \bigl( I_{2}(e_{0}+e_{1}) \bigr) \bigr)^{1/p} \\ &\quad >\frac{c2^{2\alpha _{k}(1/p-1-\alpha )}}{\alpha _{k}^{\beta +1}} \rightarrow \infty , \quad \text{as }k\rightarrow \infty . \end{aligned}$$

The proof is complete. □

In an actual case we obtain a result for Nörlund logarithmic means \(\{ L_{n} \}\) proved in [1]:

Corollary 1

Let \(0< p<1\). Then, there exists a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \Vert L_{2^{n}}f \Vert _{\mathit{weak-}L_{p}}= \infty . $$

Proof

It is easy to show that

$$ q_{1}-({3}/{2})q_{3}=\frac{1}{2}- \frac{3}{2}\cdot \frac{1}{4}= \frac{1}{8}>0, $$

and condition (13) holds true for \(\alpha =\beta =0\). □

We also obtain a similar new result for the \(V_{n}\) means:

Corollary 2

Let \(0< p<1\). Then, there exists a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \Vert V_{2^{n}}f \Vert _{\mathit{weak-}L_{p}}= \infty . $$

Proof

It is easy to show that

$$ q_{1}-({3}/{2})q_{3}=\frac{1}{\ln 2}- \frac{3}{2}\cdot \frac{1}{\ln 4}= \log _{2}^{e}-(3/2) \frac{\log _{2}^{e}}{\log _{2}^{4}}=\log _{2}^{e} \biggl(1-\frac{3}{4} \biggr)>0, $$

and condition (13) holds true for \(\alpha =\beta =0\). □

We also obtain a corresponding new result for the Cesàro means \(\sigma ^{\alpha}_{2^{n}}\).

Corollary 3

Let \(0< p<1/(1+\alpha )\), for some \(0< \alpha \leq 0.56\). Then, there exists a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \bigl\Vert \sigma ^{\alpha}_{2^{n}}f \bigr\Vert _{\mathit{weak-}L_{p}}=\infty . $$

Proof

By a routine calculation we find that

$$ q_{1}-({3}/{2})q_{3}=\alpha -\frac{\alpha (\alpha +1)(\alpha +2)}{4}= \alpha \cdot \frac{2-3\alpha -\alpha ^{2}}{4}. $$

It is easy to show that when \(0< \alpha <0.56\) this expression is positive. Hence, condition (13) holds true for \(\beta =0\) and \(0<\alpha <1\). □

Corollary 4

Let \(0< p<1/(1+\alpha )\), for some \(0< \alpha \leq 0.41\). Then, there exists a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \bigl\Vert U^{\alpha}_{2^{n}}f \bigr\Vert _{\mathit{weak-}L_{p}}= \infty . $$

Proof

By a straightforward calculation, we find that

$$ q_{1}-({3}/{2})q_{3}=2^{\alpha -1}-({3}/{2})4^{\alpha -1}=2^{\alpha -1} \bigl(1-3/ 2^{2-\alpha} \bigr). $$

It is easy to show that when \(0< \alpha <0.41\) this expression is positive. Hence, condition (13) holds true for \(\beta =0\) and \(0<\alpha <1\). □

5 Open questions and final remarks

Remark 1

This article can be regarded as a complement to the new book [21]. In this book a number of open problems are also raised. Also, this new investigation implies some corresponding open questions.

Open Problem 1

Let \(0< p<1/(1+\alpha )\), for some \(0.56< \alpha <1\). Does there exist a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \bigl\Vert \sigma ^{\alpha}_{2^{n}}f \bigr\Vert _{\mathit{weak-}L_{p}}=\infty ? $$

Open Problem 2

Let \(0< p<1/(1+\alpha )\), for some \(0.41< \alpha <1\). Does there exist a martingale \(f\in H_{p}\) such that

$$ \sup_{n\in \mathbb{N}} \bigl\Vert U^{\alpha}_{2^{n}}f \bigr\Vert _{\mathit{weak-}L_{p}}= \infty ? $$

We also can investigate similar problems for more general summability methods:

Open Problem 3

Let \(0< p<1/(1+\alpha )\), for some \(0.56< \alpha <1\) and \(t_{n}\) be Nörlund means of Walsh–Fourier series with nonincreasing and convex sequence \(\{ q_{k}:k\in \mathbb{N} \}\), satisfying the condition (13).

Does there exist a martingale \(f\in H_{1/(1+\alpha )}\) (\(0< p<1\)), such that

$$ \sup_{n\in \mathbb{N}} \Vert t_{2^{n}}f \Vert _{H_{1/(1+ \alpha )}}= \infty ? $$

Open Problem 4

Let \(f\in H_{1/(1+\alpha )}\), where \(0< \alpha <1\). Does there exist an absolute constant \(C_{\alpha}\), such that the following inequality holds

$$ \bigl\Vert \sigma ^{\alpha}_{2^{n}}f \bigr\Vert _{1/(1+\alpha )} \leq C_{\alpha } \Vert f \Vert _{H_{1/(1+\alpha )}}? $$

Open Problem 5

Let \(f\in H_{1/(1+\alpha )}\), where \(0< \alpha <1\). Does there exist an absolute constant \(C_{\alpha}\), such that the following inequality holds

$$ \bigl\Vert U^{\alpha}_{2^{n}}f \bigr\Vert _{1/(1+\alpha )}\leq C_{ \alpha } \Vert f \Vert _{H_{1/(1+\alpha )}}? $$

Open Problem 6

Let \(f\in H_{1/(1+\alpha )}\), where \(0< \alpha <1\) and \(t_{n}\) are Nörlund means of Walsh–Fourier series with a nonincreasing and convex sequence \(\{ q_{k}:k\in \mathbb{N} \}\), satisfying the condition (13). Does there exist an absolute constant \(C_{\alpha}\), such that the following inequality holds

$$ \bigl\Vert t^{\alpha}_{2^{n}}f \bigr\Vert _{1/(1+\alpha )}\leq C_{ \alpha } \Vert f \Vert _{H_{1/(1+\alpha )}}? $$

Remark 2

There is an important relation between Walsh–Fourier series and wavelet theory, see, e.g., [21] and the papers [5] and [6]. This is of special interest also for applications as described in the recent PhD thesis of K. Tangrand [27].

Availability of data and materials

Not applicable.

References

  1. Baramidze, D., Persson, L.-E., Singh, H., Tephnadze, G.: Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh-Fourier series. J. Inequal. Appl. 2022(1), 30 (2022). https://doi.org/10.1186/s13660-022-02765-5

    Article  MATH  Google Scholar 

  2. Baramidze, L., Persson, L.E., Tephnadze, G., Wall, P.: Sharp \(H_{p}- L_{p}\) type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications. J. Inequal. Appl. 2016(1), 242 (2016). https://doi.org/10.1186/s13660-016-1182-1

    Article  MATH  Google Scholar 

  3. Blahota, I., Nagy, K.: Approximation by Θ-means of Walsh-Fourier series. Anal. Math. 44(1), 57–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blahota, I., Nagy, K., Tephnadze, G.: Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series. Math. Inequal. Appl. 22(3), 837–853 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Farkov, Y., Goginava, U., Kopaliani, T.: Unconditional convergence of wavelet expansion on the Cantor dyadic group. Jaen J. Approx. 1(3), 117–133 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Farkov, Y., Lebedeva, E.A., Skopina, M.: Wavelet frames on Vilenkin groups and their approximation properties. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fine, N.J.: On the Walsh functions. Trans. Am. Math. Soc. 65, 372–414 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fridli, S., Manchanda, P., Siddiqi, A.H.: Approximation by Walsh-Nörlund means. Acta Sci. Math. 74(3–4), 593–608 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Gàt, G., Goginava, U.: Uniform and L-convergence of logarithmic means of Walsh-Fourier series. Acta Math. Sin. 22(2), 497–506 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goginava, U.: Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series. Acta Math. Acad. Paedagog. Nyházi. 21, 169–175 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Goginava, U.: The maximal operator of the \(( C,\alpha ) \) means of the Walsh-Fourier series. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Comput. 26, 127–135 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Goginava, U.: The maximal operator of the \((C,\alpha )\) means of the Walsh-Fourier series. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Comput. 26, 127–135 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Goginava, U.: Maximal operators of logarithmic means of one-dimensional Walsh-Fourier series (English summary). Rend. Circ. Mat. Palermo (2) Suppl. 82, 345–357 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I, Structure of Topological Groups. Integration Theory, Group Representations. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Lukkassen, D., Persson, L.E., Tephnadze, G., Tutberidze, G.: Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series. J. Inequal. Appl. 2020, 79 (2020). https://doi.org/10.1186/s13660-020-02342-8

    Article  MATH  Google Scholar 

  16. Memić, N.: An estimate of the maximal operator of the Nörlund logarithmic means with respect to the character system of the group of 2-adic integers on the Hardy space \(H_{1}\). Bull. Iran. Math. Soc. 48(6), 3381–3391 (2022)

    Article  MATH  Google Scholar 

  17. Móricz, F., Siddiqi, A.: Approximation by Nörlund means of Walsh-Fourier series. J. Approx. Theory 70(3), 375–389 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Persson, L.E., Tephnadze, G.: A sharp boundedness result concerning some maximal operators of Vilenkin-Fejér means. Mediterr. J. Math. 13(4), 1841–1853 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Persson, L.E., Tephnadze, G., Wall, P.: Maximal operators of Vilenkin-Nörlund means. J. Fourier Anal. Appl. 21(1), 76–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Persson, L.E., Tephnadze, G., Wall, P.: On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space \(H_{1}\). Acta Math. Hung. 154(2), 289–301 (2018)

    Article  MATH  Google Scholar 

  21. Persson, L.E., Tephnadze, G., Weisz, F.: Martingale Hardy spaces and summability of one-dimenional Vilenkin-Fourier series. Book manuscript, Birkhäuser/Springer (2023)

  22. Pontryagin, L.: Topological Groups, 2nd edn. Gordon & Breach, New York (1966). Princeton Univ. Press

    Google Scholar 

  23. Rudin, W.: Fourier Analysis on Groups. Wiley Online Library (1962)

    MATH  Google Scholar 

  24. Schipp, F., Wade, W.R., Simon, P., Pál, J.: Walsh Series, an Introduction to Dyadic Harmonic Analysis. Akad. Kiadó, Budapest (1990)

    MATH  Google Scholar 

  25. Simon, P.: Strong convergence theorem for Vilenkin-Fourier series. J. Math. Anal. Appl. 245, 52–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simon, P., Weisz, F.: Weak inequalities for Cesáro and Riesz summability of Walsh-Fourier series. J. Approx. Theory 151(1), 1–19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tangrand, K.: Some new contributions to neural networks and wavelets with applications. PhD thesis, UiT The Arctic University of Norway (2023)

  28. Vilenkin, N.Y.: On a class of complete orthonormal systems. Izv. Akad. Nauk SSSR, Ser. Mat. 11, 363–400 (1947)

    MathSciNet  MATH  Google Scholar 

  29. Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  30. Weisz, F.: Hardy spaces and Cesàro means of two-dimensional Fourier series. In: Bolyai Soc. Math. Studies, pp. 353–367 (1996)

    Google Scholar 

  31. Weisz, F.: \((C,\alpha ) \) summability of Walsh-Fourier series. Anal. Math. 27, 141–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Davit Baramidze was supported by Shota Rustaveli National Science Foundation grant PHDF-21-1702. The publication charges for this article were funded by a grant from the publication fund of UiT The Arctic University of Norway.

We also thank both reviewers for their helpful suggestions that have improved the final version of this paper.

Funding

The publication charges for this manuscript were supported by the publication fund at UiT The Arctic University of Norway under code IN-1096130. Open Access funding provided by UiT The Arctic University of Norway (incl University Hospital of North Norway).

Author information

Authors and Affiliations

Authors

Contributions

DB and GT gave the idea and initiated the writing of this paper. LEP and KT followed up this with some complementary ideas. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kristoffer Tangrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baramidze, D., Persson, LE., Tangrand, K. et al. \((H_{p}-L_{p})\)-Type inequalities for subsequences of Nörlund means of Walsh–Fourier series. J Inequal Appl 2023, 52 (2023). https://doi.org/10.1186/s13660-023-02955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02955-9

MSC

Keywords