- Research
- Open access
- Published:
Formation of singularity of solution to a nonlinear shallow water equation
Journal of Inequalities and Applications volume 2023, Article number: 37 (2023)
Abstract
This paper is mainly concerned with behaviors of solution to the Cauchy problem for a generalized shallow water equation with dispersive term and dissipative term in the Besov space. It is shown that the problem of nonlinear shallow water equation is locally well posed. The \(H^{1}(\mathbb{R})\) norm of solution to the problem is bounded under certain assumption on the initial value. Several blow-up criteria of solution are presented. The solution has compact support provided that the initial value has compact support. More specifically, the solution exponentially decays at infinity if the initial value exponentially decays at infinity. Our main new contribution is that the effects of coefficients λ and β on solution are illustrated. To the best of our knowledge, the results in Theorems 1.1–1.7 are new.
1 Introduction
The main aim of the present work is to consider the following Cauchy problem of a generalized shallow water equation:
Here, \(v(t,x)\) is the velocity of shallow water wave, \(\beta (v_{x}-v_{xxx}) (\beta \in \mathbb{R})\) is the dispersive term, \(\lambda (v-v_{xx}) (\lambda >0)\) is the dissipative term. The initial value satisfies \(v_{0}\in B_{p,r}^{s}(\mathbb{R})(s>\operatorname{max} ( \frac{3}{2},1+\frac{1}{p}))\).
It is worthwhile pointing out that problem (1.1) and the Camassa–Holm (CH) equation
are special equations of the following shallow water model:
which is investigated in [1]. In recent decades, local well-posedness for the Cauchy problem of the CH equation in \(H^{s}(\mathbb{R} )\) and \(B_{p,r}^{s}(\mathbb{R})\) has attracted a lot of attention (see detailed instructions in [2–14]). Zhou and Chen [14] discovered that the solution v to problem (1.1) could be regarded as a perturbation around β by investigating asymptotic behavior of solution. The Cauchy problem of the CH equation with dissipative term and dispersion term was considered (see [9]). Finite time blow-up result and existence of global solution were obtained. Cui and Han [2] studied the asymptotic behavior of solution to a generalized CH equation. Gao et al. [3] established the dispersive regularization for a modified CH equation in one space dimension. Huang and Yu [4] derived the soliton and peakon solution to a generalized CH equation. Gui et al. [15] considered the nonlocal shallow water equation in two space dimensions by employing the asymptotic perturbation method. Local well-posedness and blow-up dynamics of solution to the Cauchy problem were demonstrated in the Sobolev space. Li and Zhang [7] discovered the generic regularity of conservative solution to a CH type equation by making use of the Thom transversality lemma. Silva and Freire [10] studied local well-posedness and traveling waves for the Cauchy problem of CH equation. Meanwhile, existence and uniqueness of solution were derived by applying the Kato approach. Mi et al. [8] demonstrated that the generalized CH equation is locally well posed in the Sobolev spaces \(H^{s} (s>\frac{3}{2})\) in periodic and nonperiodic cases. Local well-posedness for the Cauchy problem of the periodic shallow water equation was proved in \(H^{s}(\mathbb{T}) (s>-n+\frac{3}{2}, n\geq 2)\) (see [12]). Zhang [13] investigated local well-posedness for the Cauchy problem of rotation CH equation on the torus \(\mathbb{T}\). Peakon solutions to the μ-CH equation in \(H^{s}(\mathbb{S})(s > \frac{7}{2})\) were discovered (see [11]). In terms of other dynamic properties of the generalized CH models, the readers are referred to [16–25] for more details.
There has been increasing interest in the other two shallow water models, namely, the Degasperis–Procesi (DP) equation
and the Novikov equation
The wave breaking phenomena of solution to the DP equation were considered (see [26]). Constantin and Ivanov [27] investigated soliton solution to the DP equation by utilizing the dressing method. Molinet [28] established asymptotic stability of the DP peakon. Cai et al. [29] considered the Lipschitz metric for the Novikov equation. Himonas et al. [30] obtained the construction of two-peakon solution for the Novikov equation. Zheng and Yin [31] established the wave breaking and solitary wave solution for a generalized Novikov equation. Blow-up mechanisms of solution to a degenerated Novikov equation in \(H^{s}(\mathbb{R})(s>\frac{5}{2})\) were analyzed (see [32]).
Motivated by the previous works [2, 9, 21, 33, 34], we are devoted to investigating local well-posedness and several blow-up results of solution to the Cauchy problem of generalized shallow water Eq. (1.1). We observe that Li and Yin [21] have obtained local well-posedness and blow-up dynamics of solution to the Cauchy problem of the Camassa–Holm equation, which is a special case of problem (1.1) in the case \(\lambda =\beta =0\). The approaches were based on the transport equation and Littlewood–Paley theory in the Besov space. Constantin [35] investigated finite propagation speed for the Camassa–Holm equation. It was shown that classical solution to the Camassa–Holm equation has compact support if its initial data has compact support. Henry [36] considered infinite propagation speed for the Degasperis–Procesi equation. Himonas et al. [37] demonstrated persistence properties of solution to the Camassa–Holm equation. The results indicated that a solution to the Camassa–Holm equation decays exponentially when the initial value decays exponentially. The asymptotic behaviors of solution to a generalized CH equation were discussed (see [2]). More precisely, the solution does not have compact support in the framework of compactly supported initial value. In this work, it is shown that the Cauchy problem of generalized shallow water equation with dispersive term and dissipative term is locally well posed in the Besov space. The \(H^{1}(\mathbb{R})\) norm of solution to the problem is bounded under certain assumption on the initial value. Meanwhile, we establish several blow-up criteria of solution to problem (1.1). We recognize that the solution has compact support provided that the initial value has compact support. The solution exponentially decays at infinity if the initial value exponentially decays at infinity. The advantage of the present paper is to derive the effects of dispersive term \(\beta (v-v_{xxx})\) and dissipative term \(\lambda (v-v_{xx})\) on behaviors of solution to problem (1.1). In addition, we extend parts of results in [2, 21]. To the best of authors’ knowledge, the results in Theorems 1.1–1.7 are new.
Let \(s\in \mathbb{R}, T>0, p\in [1,\infty ]\), \(r\in [1,\infty ]\). Here, we set the framework of space
Assume \(w_{0}(x)=(1-\partial _{x})v_{0}(x)\) and \(w(t,x)=(1-\partial _{x})v(t,x)\). Therefore, problem (1.1) is reformulated as
or
We summarize our results as follows.
Theorem 1.1
Assume \(1\leq p, r\leq \infty \), \(v_{0} \in B_{p,r}^{s}(\mathbb{R}) (s>\operatorname{max}(\frac{3}{2},1+ \frac{1}{p}))\). Then there exists a unique solution \(v \in E_{p,r}^{s}(T) \) to problem (1.1) for a suitable positive constant T.
Theorem 1.2
Let \(1\leq p, r\leq \infty \), \(v_{0} \in B_{p,r}^{s} (\mathbb{R})(s>\operatorname{max}(\frac{3}{2},1+ \frac{1}{p}))\). Then a solution v to problem (1.1) satisfies
Theorem 1.3
Let \(1\leq p, r\leq \infty \), \(v_{0} \in B_{p,r}^{s} (\mathbb{R})(\operatorname{max}(\frac{3}{2},1+ \frac{1}{p}) < s<2)\), \(t\in [0,T]\). Then a solution v to problem (1.1) blows up if and only if
Theorem 1.4
Assume \(v_{0} \in H^{s}(\mathbb{R}) (s> \frac{3}{2})\) and \(t\in [0,T]\). Then a solution v to problem (1.1) blows up if and only if
Theorem 1.5
Let \(1 \leq p\), \(r \leq \infty \), \(v_{0} \in B_{p,r}^{s} (\mathbb{R})(s>\operatorname{max}(\frac{3}{2},1+ \frac{1}{p})) \), \(v_{0}\) is compactly supported in the interval \([ a_{u_{0}}, b_{u_{0}} ]\). Assume \(w_{0}= v_{0}-v_{0,x}\geq 0\). \(T > 0\) is the maximal existence time of the corresponding solution v to problem (1.1). Then the solution v is compactly supported in \([ p(t,a_{u_{0}}), p(t,b_{u_{0}}) ]\) for all \(t \in [0, T)\).
Theorem 1.6
Let \(v_{0}\in H^{s}(\mathbb{R})( s > \frac{3}{2}) \), \(w_{0}=v_{0}-v_{0,x}\geq 0\). Assume that \(v_{0}(v_{0} - v_{0,x})(x_{0}) >2\lambda + \Vert v_{0}\Vert _{H^{1}}^{2}\), where \(x_{0}\) is defined as \(v_{0} (v_{0} - v_{0, x})(x_{0})=\sup_{x\in \mathbb{R}}[v_{0} (v_{0} - v_{ 0,x})]\). Then a solution v to problem (1.1) blows up in finite time.
Theorem 1.7
Suppose that \(v_{0} \in H^{s}(\mathbb{R}) (s>\frac{5}{2})\) and v is the corresponding solution to problem (1.1). Let \(t\in [0,T]\) and \(\theta \in (0,1)\). Assume that \(v_{0} \) satisfies
Then it holds that
uniformly on \([0,T]\).
Remark 1.1
Problem (1.1) is locally well posed in \(B_{p,r}^{s}(\mathbb{R}) (s>\operatorname{max}(\frac{3}{2},1+\frac{1}{p}))\). We obtain that \(\Vert v(t) \Vert _{H^{1}(\mathbb{R})}\) is bounded. Blow-up criterion of solution in the Besov space is shown in Theorem 1.3. It is illustrated in Theorem 1.4 that the wave breaking of solution u occurs in the case that vw is unbounded in finite time. Theorems 1.3, 1.4, and 1.6 indicate that the dissipative coefficient λ is related to the blow-up of solution. From Theorem 1.5, we observe that the solution has compact support provided that the initial value has compact support. From Theorem 1.7, we deduce that the solution exponentially decays at infinity if the initial value exponentially decays at infinity. Parts of the results in [2, 21] are extended.
2 Proof of Theorem 1.1
First of all, we show the proof in five steps. We note that \(w_{0} \in B_{p,r}^{s} (s>\max ( \frac{1}{p},\frac{1}{2}))\) in (1.2).
Step one: Let \(w^{0} =0\) for all \(t>0, x\in \mathbb{R}\). We assume that a sequence of smooth functions \((w^{i}) _{i\in \mathbb{N}}\in C(\mathbb{R}^{+};B_{p,r}^{\infty})\) satisfies
and
We observe that \(S_{i+1}w_{0} \in B_{p,r}^{\infty}\). Taking advantage of Lemma 2.5 in [38], we derive that \(w^{i}\in C(\mathbb{R}^{+};B_{p,r}^{\infty}) \) is global for all \(i\in \mathbb{N}\).
Step two: It is deduced from Lemma 2.4 in [38] that
Making use of \(v^{i}=(1-\partial _{x}^{2})^{-1}(1+\partial _{x})w^{i}\), we obtain
which results in
Applying (2.3), (2.4), and (2.5), we have
Let the positive constant T satisfy \(4C_{2}^{3}(1+\lambda +\Vert w_{0} \Vert _{B_{p,r}^{s}} )^{2} T<1\) and
Thus, we calculate from (2.6) and (2.7) that
This implies that \((w^{i})_{i\in \mathbb{N}}\) is uniformly bounded in \(E_{p,r}^{s}(T)\).
Step three: We set \(i, j\in \mathbb{N}\). From (2.1), we observe
Employing Lemma 2.14 in [39] yields
We note that the initial values satisfy
We recognize that there exists a positive constant \(C_{ 1}\) independent of i such that
We arrive at the desired result.
Step four: Similar to the discussions in Step 4 in Sect. 3 in [38], we derive that the solution \(w \in E_{p,r}^{s}(T) \) is continuous.
Step five: We are in the position to present the uniqueness of solution.
Let \((p,r)\in [1,\infty ]^{2}, s>\operatorname{max}( \frac{1}{p},\frac{1}{2})\), \(w_{0}^{1}, w_{0}^{2} \in B_{p,r}^{s} \). \(w^{1} \) and \(w^{2} \) satisfy (1.2). \(w^{1},w^{2}\in L^{\infty}([0,T]; B_{p,r}^{s})\cap C([0,T];B_{p,r}^{s-1})\). We assume \(w^{12}=w^{1}-w^{2}\) and
which satisfies
and
Utilizing Lemma 2.14 in [39], we achieve
It holds that
This completes the proof of Theorem 1.1.
Remark 2.1
We note that \((1-\partial _{x})^{-1}=(1-\partial _{x}^{2})^{-1}(1+\partial _{x})\) is \(S^{-1}\) multiplier. That is
3 Proofs of Theorems 1.2, 1.3, 1.4, and 1.5
3.1 Proof of Theorem 1.2
We assume that \(f(x)\in C_{c}^{\infty}(\mathbb{R})\) is the nonnegative mollifier. It holds that \(\int _{\mathbb{R}} f(x)\,dx=1\), \(f^{j}(x)=jf(jx)\), \(v_{0}^{j}=f^{j}\ast v_{0}\), and \(\Vert f^{j}\Vert _{L^{1}}=1\). \(v^{j}\) is the solution to problem (1.1) with initial value \(v_{0}^{j}\). \(\Delta _{q}(f^{j}\ast v_{0})=f^{j}\ast \Delta _{q} v_{0}\). That is,
It follows that \(v_{0}^{j}\in H^{3}\). From (1.1), we conclude
where \(T= \frac{C_{3}}{\Vert v\Vert _{L^{\infty}([0,T];B_{p,r}^{s})}}\). The sequence \((v^{j})_{j\in \mathbb{N}}\in E_{p,r}^{s}(T)\) is bounded.
It is deduced from (1.2) that
Equivalently, we have
It is equal to check that
Sending \(j\rightarrow \infty \) in (3.2), we come to the estimate
The proof of Theorem 1.2 is finished.
3.2 Proof of Theorem 1.3
We present a lemma that is applied in the proof.
Lemma 3.1
([40])
Let \(1\leq p, r\leq \infty \), and \(0< s<1\). There exists a positive constant C, which is independent of \(w, g\) such that
Applying the operator \(\Delta _{q} \) to (1.2) yields
where
If \(\frac{1}{2}< s<1\), then taking advantage of Lemma 3.1, we acquire
A straightforward computation gives rise to
and
A simple calculation shows
which results in
That is,
Employing (3.10) leads to
If
then we derive that \(\Vert w(T^{\ast})\Vert _{B_{p,r}^{s }}\) is bounded, where \(T^{\ast}<\infty \) is the maximal existence time. This yields a contradiction. This finishes the proof of Theorem 1.3.
3.3 Proof of Theorem 1.4
Based on the density argument, we need to illustrate the proof of Theorem 1.4 with \(s\geq 2\). Therefore, we calculate \(\Vert w\Vert _{ H^{1}}\) for simplicity.
According to (1.2), we come to
We suppose that the positive constant M satisfies \(vw\leq M\), \(t\in [0,T]\), \(T<\infty \). We then conclude that
which contradicts that \(T<\infty \) is the maximal existence time. The proof of Theorem 1.4 is completed.
3.4 Proof of Theorem 1.5
We consider the problem
The solution \(p\in C^{1}([0,T], \mathbb{R})\) to problem (3.14) is unique. We recognize that
We deduce
Thus, we achieve
An application of (3.15) gives rise to
If \(u_{0}\) is compactly supported in \([a_{u_{0}},b_{u_{0}} ]\), then \(w_{0}\) is compactly supported in \([p(t, a_{u_{0}} ), p(t, b_{u_{0}} )]\). We deduce from (3.17) that \(w(t,x)\) has its support in the interval \([p(t, a_{u_{0}} ), p(t, b_{u_{0}} )]\). From (2.12), we acquire that \(u(t,x)\) is compactly supported in \([p(t, a_{u_{0}} ), p(t, b_{u_{0}} )]\). This completes the proof of Theorem 1.5.
3.5 Proof of Theorem 1.6
First of all, we illustrate a useful lemma.
Lemma 3.2
([41])
Let \(v\in C^{1}([0,T);H^{3}(\mathbb{R}))\) and \(n=v(v-v_{x})\). Then, for all \(t\in [0,T)\), there exists at least one point \(\xi (t)\in \mathbb{R}\) with
The function \(n (t)\) is absolutely continuous on \((0,T)\) with
Here, we set \(s=2\) in view of the density argument. We observe
It is deduced by a straightforward computation that
Eventually, we derive \(\sup_{\xi \geq x}[e^{-\xi}v(t,\xi )]=e^{-x}v(t,x)\). It follows from Theorem 1.2 that
Utilizing (3.17), (3.18), and (3.19), we arrive at
where \(\lambda _{1}=2\lambda +\Vert v_{0}\Vert _{H^{1}}^{2}\).
Let \(n(t)=\sup_{x\in \mathbb{R}}[v w(t,p(t,x))]\). Making use of Lemma 3.2, we acquire that there exists \(\xi (t)\) with \(t\in [0,T)\) such that
This in turn implies that \(n_{x}(t,\xi (t))=0\) for all \(t\in [0,T)\).
On the other hand, since \(p(t,\cdot ):\mathbb{R}\rightarrow \mathbb{R}\) is a diffeomorphism for all \(t\in [0,T)\), there exists \(x_{1}(t)\in \mathbb{R}\) such that \(p(t,x_{1}(t))=\xi (t) \) for all \(t\in [0,T)\).
Applying (3.22) gives rise to
Setting \(n_{2}(t)= -(n(t)-\frac{\lambda _{1}}{2})\), we have
where \(K=\frac{\lambda _{1}^{2}}{4}\).
Employing the assumption \(n_{0}(x_{0})> \lambda _{1}\) with the point \(x_{0}\) defined by \(n(x_{0})=\sup_{x\in \mathbb{R}}n_{0 }(x)\) in Theorem 1.6 and letting \(\xi (0)=x_{0}\), we deduce
We choose \(\delta \in (0,1)\) to satisfy \(-\sqrt{\delta} n_{2}(0) =\sqrt{ K}\).
We observe that \(n_{2}(0)= -(n(0) -\frac{\lambda _{1}}{2}) <-\sqrt{ K}\) and \(n_{2}(t)\) decreases on \([0,T)\). We set \(-\sqrt{\delta} n_{2}(0) =\sqrt{ K}\), where \(\delta \in (0,1)\). Direct calculations show
We arrive at \(n_{2}(t)<0\), \(t\in [0,T)\), \(T\leq \frac{-1}{(1-\delta )n_{2}(0)}<\infty \), and \(n_{2}(0)=-(n(0)-\frac{\lambda _{1}}{2})<0\). As a consequence, we obtain
The proof of Theorem 1.6 is finished.
4 Proof of Theorem 1.7
Let \(M=\sup_{t\in [0,T]}\Vert v (t)\Vert _{H^{s} } >0\) with \(s>\frac{5}{2}\). We derive
We observe that the weight function
satisfies \(0\leq (\varphi _{N}(x))_{x}\leq \varphi _{N}(x)\), where \(N\in \mathbb{N}^{\ast}\) and \(\theta \in (0,1)\). There exists a positive constant \(M_{0}\), which depends on θ such that
We rewrite the first equation in problem (1.1) in the form
where
Multiplying both sides of (4.2) by \(v^{2n-1}\varphi _{N}^{2n}\) with respect to the variable x over \(\mathbb{R}\) leads to
We then conclude that
Sending \(n\rightarrow \infty \) in (4.4) gives rise to the estimate
A direct computation shows
Taking advantage of the Gronwall inequality yields
We achieve
Therefore, we deduce
uniformly on \([0,T]\). The proof of Theorem 1.7 is completed.
Availability of data and materials
Not applicable.
References
Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)
Cui, W.J., Han, L.J.: Infinite propagation speed and asymptotic behavior for a generalized Camassa–Holm equation with cubic nonlinearity. Appl. Math. Lett. 77, 13–20 (2018)
Gao, Y., Li, L., Liu, J.G.: A dispersive regularization for the modified Camassa–Holm equation. SIAM J. Math. Anal. 50, 2807–2838 (2018)
Huang, Y.Z., Yu, X.: Solitons and peakons of a nonautonomous Camassa–Holm equation. Appl. Math. Lett. 98, 385–391 (2019)
Li, J.L., Deng, W., Li, M.: Non-uniform dependence for higher dimensional Camassa–Holm equations in Besov spaces. Nonlinear Anal., Real World Appl. 63, 103420 (2022)
Li, J.L., Yu, Y.H., Zhu, W.P.: Ill-posedness for the CamassaHolm and related equations in Besov spaces. J. Differ. Equ. 306, 403–417 (2022)
Li, M.G., Zhang, Q.T.: Generic regularity of conservative solutions to Camassa–Holm type equations. SIAM J. Math. Anal. 49, 2920–2949 (2017)
Mi, Y.S., Liu, Y., Guo, B.L., Luo, T.: The Cauchy problem for a generalized Camassa–Holm equation. J. Differ. Equ. 266, 6739–6770 (2019)
Novruzova, E., Hagverdiyevb, A.: On the behavior of the solution of the dissipative Camassa–Holm equation with the arbitrary dispersion coefficient. J. Differ. Equ. 257, 4525–4541 (2014)
Silva, P.L., Freire, I.L.: Well-posedness, traveling waves and geometrical aspects of generalizations of the Camassa–Holm equation. J. Differ. Equ. 267, 5318–5369 (2019)
Wang, F., Li, F.Q., Qiao, Z.J.: Well-posedness and peakons for a higher order μ-Camassa–Holm equation. Nonlinear Anal. 175, 210–236 (2018)
Yan, W., Li, Y.S., Zhai, X.P., Zhang, Y.M.: The Cauchy problem for higher-order modified Camassa–Holm equations on the circle. Nonlinear Anal. 187, 397–433 (2019)
Zhang, L.: Non-uniform dependence and well-posedness for the rotation-Camassa–Holm equation on the torus. J. Differ. Equ. 267, 5049–5083 (2019)
Zhou, Y., Chen, H.P.: Wave breaking and propagation speed for the Camassa–Holm equation with \(k\neq 0\). Nonlinear Anal., Real World Appl. 12, 1875–1882 (2011)
Gui, G.L., Liu, Y., Luo, W., Yin, Z.Y.: On a two dimensional nonlocal shallow water model. Adv. Math. 392, 108021 (2021)
Alejo, M.A., Cortez, M.F., Kwak, C., Munoz, C.: On the dynamics of zero-speed solutions for Camassa–Holm-type equations. Int. Math. Res. Not. 2021(9), 6543–6585 (2021)
Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50(2), 321–362 (2000)
Freire, I.L., Filho, N.S., Souza, L.C., Toffoli, C.E.: Invariants and wave breaking analysis of a Camassa–Holm type equation with quadratic and cubic nonlinearities. J. Differ. Equ. 269, 56–77 (2020)
Guo, Z.G., Li, X.G., Yu, C.: Some properties of solutions to the Camassa–Holm-type equation with higher order nonlinearities. J. Nonlinear Sci. 28, 1901–1914 (2018)
Ji, S.G., Zhou, Y.H.: Wave breaking and global solutions of the weakly dissipative periodic Camassa–Holm type equation. J. Differ. Equ. 306, 439–455 (2022)
Li, M., Yin, Z.Y.: Blow-up phenomena and local well-posedness for a generalized Camassa–Holm equation with cubic nonlinearity. Nonlinear Anal. 151, 208–226 (2017)
Madiyeva, A., Pelinovsky, D.E.: Growth of perturbations to the peaked periodic waves in the Camassa–Holm equation. SIAM J. Math. Anal. 53(3), 3016–3039 (2021)
Molinet, L.: A Liouville property with application to asymptotic stability for the Camassa–Holm equation. Arch. Ration. Mech. Anal. 230, 185–230 (2018)
Qiu, H.M., Zhong, L.Y., Shen, J.H.: Traveling waves in a generalized Camassa–Holm equation involving dual power law nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 106, 106106 (2022)
Silva, P.L., Freire, I.L.: Integrability, existence of global solutions and wave breaking criteria for a generalization of the Camassa–Holm equation. Stud. Appl. Math. 145(3), 537–562 (2020)
Wu, X.: On the finite time singularities for a class of Degasperis–Procesi equations. Nonlinear Anal., Real World Appl. 44, 1–17 (2018)
Constantin, A., Ivanov, R.: Dressing method for the Degasperis–Procesi equation. Stud. Appl. Math. 138, 205–226 (2017)
Molinet, L.: A rigidity result for the Holm–Staley b-family of equations with application to the asymptotic stability of the Degasperis–Procesi peakon. Nonlinear Anal., Real World Appl. 50, 675–705 (2019)
Cai, H., Chen, G., Chen, R.M., Shen, T.N.: Lipschitz metric for the Novikov equation. Arch. Ration. Mech. Anal. 229, 1091–1137 (2018)
Himonas, A., Holliman, C., Kenig, C.: Construction of two-peakon solutions and ill-posedness for the Novikov equation. SIAM J. Math. Anal. 50, 2968–3006 (2018)
Zhang, R.D., Yin, Z.Y.: Wave breaking and solitary wave solutions for a generalized Novikov equation. Appl. Math. Lett. 100, 106014 (2020)
Fu, Y., Qu, C.Z.: Well-posedness and wave breaking of the degenerate Novikov equation. J. Differ. Equ. 263, 4634–4657 (2017)
Constantin, A., Kolev, B.: Integrability of invariant metrics on the diffeomorphism group of the circle. J. Nonlinear Sci. 16(2), 109–122 (2006)
Kolev, B.: Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos. Trans. R. Soc. Lond. A 365(1858), 2333–2357 (2007)
Constantin, A.: Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. 46(2), 023506 (2005)
Henry, D.: Infinite propagation speed for the Degasperis–Procesi equation. J. Math. Anal. Appl. 311(2), 755–759 (2005)
Himonas, A.A., Misiolek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271(2), 511–522 (2007)
Ming, S., Lai, S.Y., Su, Y.Q.: The Cauchy problem of a weakly dissipative shallow water equation. Appl. Anal. 98, 1387–1402 (2019)
Luo, W., Yin, Z.Y.: Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space. Nonlinear Anal. 122, 1–22 (2015)
Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grun. Math., vol. 343. Springer, Heidelberg (2011)
Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Acknowledgements
The authors would like to express their gratitude to Professors Shaoyong Lai and Han Yang for their useful suggestions and comments.
Funding
The project is supported by Science Foundation of North University of China (No. 11013241-2021), Natural Science Foundation of Shanxi Province of China (No. 201901D211276), Fundamental Research Program of Shanxi Province (No. 20210302123045, No. 202103021223182), National Natural Science Foundation of P. R. China (No. 11601446).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ming, S., Du, J., Ma, Y. et al. Formation of singularity of solution to a nonlinear shallow water equation. J Inequal Appl 2023, 37 (2023). https://doi.org/10.1186/s13660-023-02943-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-023-02943-z