Skip to main content

Improved bounds of Mitrinović–Adamović-type inequalities by using two-parameter functions

Abstract

This paper provides improved bounds of inequalities of Mitrinović–Adamović type by using two-parameter functions. It achieves a much better approximation effect than those bounds of prevailing methods. A new method based on the Páde interpolation is used to prove the new bounds, which can also be applied for proving the results of prevailing methods and their much more generalized results.

1 Introduction

The following inequalities

$$ \biggl( \frac{\sin x}{x} \biggr)^{3} > \cos x, \quad 0< x< \frac{\pi }{2} $$
(1)

are known as Mitrinović–Adamović inequalities (see [13]). Many references [423] have discussed the problems related to Eq. (1), such as the following power exponential inequality obtained by Nishizawa in [4]

$$ \biggl( \frac{\sin x}{x} \biggr)^{3} < (\cos x)^{1-2x/ \pi}, \quad 0< x< \frac{\pi }{2} $$
(2)

and similar ones in [5] as follows

$$\begin{aligned}& (\cos x)^{1-a x^{2}} < \biggl( \frac{\sin x}{x} \biggr)^{3} < (\cos x)^{1-b x^{2}}, \quad 0< x< \frac{\pi }{2}, \end{aligned}$$
(3)
$$\begin{aligned}& (\cos x)^{1-2/15 x^{2}-c x^{4}} < \biggl( \frac{\sin x}{x} \biggr)^{3} < (\cos x)^{1-2/15 x^{2}-d x^{4}}, \quad 0< x< \frac{\pi }{2}, \end{aligned}$$
(4)

where \(a=2/15\), \(b=4/\pi ^{2}\), \(c=19/945\), and \(d=8(30-\pi ^{2})/(15 \pi ^{4})\) are the best constants in Eq. (3) and Eq. (4). It is obvious that the bounds of Eq. (3) and Eq. (4) are stronger than those bounds of Eq. (1) and Eq. (2).

Exponential-type bounds can be found in [7, 19, 2426]. In [25], Bhayo and Sandor obtained the following inequalities

$$ \begin{gathered} \frac{1+\cos x}{2- \frac{x^{2}}{6}} < \frac{\sin (x)}{x} < \frac{1+\cos x }{2- \frac{2(4-\pi )}{\pi ^{2}} x^{2}}, \\ \frac{2- ( \frac{x}{\pi } )^{3}+\cos x}{3} < \frac{\sin (x)}{x} < \frac{2- ( \frac{x}{\pi } )^{4}+\cos x}{3}, \end{gathered} $$
(5)

for \(0< x< \frac{\pi }{2}\), while Zhu [27] and Yang [28] proved

$$ \biggl( \frac{2}{3}+ \frac{2}{3}\cos ^{p} x \biggr)^{ \frac{3}{p}} < \biggl( \frac{\sin (x)}{x} \biggr)^{3} < \biggl( \frac{2}{3}+ \frac{2}{3}\cos ^{q} x \biggr)^{ \frac{3}{q}} $$
(6)

holds if and only if \(p \leq \frac{4}{5}\) and \(q \geq \frac{\log 3-\log 2}{\log \pi -\log 2}\).

Nishizawa [24] found the following inequalities

$$ \begin{aligned} \biggl( \frac{2}{\pi }+ \frac{\pi -2}{\pi ^{3}} \bigl( \pi ^{2}-4x^{2}\bigr) \biggr)^{\pi ^{3}/(24(\pi -2))} &< \frac{\sin (x)}{x} \\ & < \biggl( \frac{2}{\pi }+ \frac{1}{\pi ^{3}} \bigl(\pi ^{2}-4x^{2}\bigr) \biggr)^{4x^{2}/\pi ^{2}} , \quad 0< x< \frac{\pi }{2}. \end{aligned} $$
(7)

Recently, Zhu and Zhang [29] provided the following improved bounds

$$\begin{aligned}& Z_{1}(x) \triangleq \lambda _{1} x^{3} \sin x < F(x) < \lambda _{2} x^{3} \sin x \triangleq Z_{2}(x), \quad 0< x< \frac{\pi }{2}, \end{aligned}$$
(8)
$$\begin{aligned}& Z_{3}(x) \triangleq \lambda _{3} x^{4} \biggl( \frac{\sin x}{x} \biggr)^{\frac{23}{21}} < F(x) < \lambda _{4} x^{4} \biggl( \frac{\sin x}{x} \biggr)^{\frac{23}{21}} \triangleq Z_{4}(x), \quad 0< x< \frac{\pi }{2}, \end{aligned}$$
(9)

where

$$ F(x) = \biggl( \frac{\sin x}{x} \biggr)^{3} - \cos x, $$

\(\lambda _{1} \approx 0.06593\), \(\lambda _{2}=1/15\), \(\lambda _{3}=1/15\), and \(\lambda _{4}= (2/\pi )^{124/21}\) are the best constants in Eq. (8) and Eq. (9). Other bounds related to \(\frac{\sin x}{x}\) can be found in [26, 3056] and the references therein.

This paper aims to present new bounds for \(F(x)\) by using two functions \(G_{1}\) and \(G_{2}\) in the form of two parameters as

$$\begin{aligned}& G_{1}(x,\alpha )= \frac{64 x^{3} \sin (\alpha x)}{\pi ^{6} \sin ( \frac{\pi \alpha }{2})}, \end{aligned}$$
(10)
$$\begin{aligned}& G_{2}(x,\alpha )= \frac{1}{15} x^{4} \biggl( \frac{\sin (\alpha x)}{\alpha x} \biggr)^{ \frac{23}{21 \alpha ^{2}}}. \end{aligned}$$
(11)

Let \(D_{i}(x)=F(x)-G_{i}(x,\alpha )\), \(i=1,2\). It can be verified that

$$ \begin{gathered} D_{1}(0)=D_{1}^{\prime }(0)= D_{1}^{\prime \prime }(0) =D_{1}^{\prime \prime \prime }(0)=0, \qquad D_{1}(\pi /2)=0, \\ D_{1}^{(4)}(0)= \frac{(8 \pi ^{6} \sin (\pi \alpha /2)-7680 \alpha )}{5 \pi ^{6} \sin (\pi \alpha /2)} \triangleq g_{1}(\alpha ), \\ D_{1}^{\prime }(\pi /2)= \frac{(\pi ^{4}-96) \sin (\pi \alpha /2)-8 \pi \alpha \cos (\pi \alpha /2)}{\pi ^{4} \sin (\pi \alpha /2)} \triangleq g_{2}(\alpha ), \\ D_{2}(0)=D_{2}^{\prime }(0)=\cdots = D_{2}^{(7)}(0) =0, \\ D_{2}^{(8)}(0)= \frac{736 \alpha ^{2}}{45} - \frac{992}{945} \triangleq g_{3}(\alpha ), \\ D_{2}(\pi /2) = \frac{1920 -\pi ^{7} ( \frac{\sin (\alpha \pi /2)}{\alpha \pi /2} )^{ \frac{23}{21 \alpha ^{2}}}}{240 \pi ^{3}} \triangleq g_{4}(\alpha ), \end{gathered} $$
(12)

where \(g_{i}(\alpha )\) has a unique root \(\alpha _{i} \in [0,1.5]\) satisfying

$$ \begin{gathered} \alpha _{1} \approx 1.00144, \qquad \alpha _{2} \approx 0.962976, \\ \alpha _{3}= \frac{\sqrt{14{,}973}}{483} \approx 0.253342, \qquad \alpha _{4} \approx 0.264986. \end{gathered} $$
(13)

By using suitable values of \(\alpha _{i}\), we obtain the following main results, and also provide a new method for proving these results.

Theorem 1

For \(0< x<\pi /2\), one has

$$\begin{aligned} G_{1}(x, \alpha _{2}) < F(x) < G_{1}(x,\alpha _{1}), \end{aligned}$$
(14)

where \(\alpha _{2}\) and \(\alpha _{1}\) determined by Eq. (13) are the maximum and the minimum constants within [0,1.5] satisfying Eq. (14).

Theorem 2

For \(0< x<\pi /2\), one has

$$\begin{aligned} G_{2}(x, \alpha _{4}) < F(x) < G_{2}(x,\alpha _{3}), \end{aligned}$$
(15)

where \(\alpha _{4}\) and \(\alpha _{3}\) determined by Eq. (13) are the maximum and the minimum constants within \([0,1.5]\) satisfying Eq. (15).

2 Lemmas

Given a function \(g(x)\), let \(\varphi _{g,n}(x)\) and \(\psi _{g,n}(x)\) be the polynomials of degree n satisfying

$$ \begin{gathered} g(0)^{(i)}=\varphi _{g,n}^{(i)}(0), \quad i=0,1,\ldots ,n-1,\quad \text{and}\quad g\biggl( \frac{\pi}{2}\biggr)= \varphi _{g,n}\biggl(\frac{\pi}{2}\biggr), \\ g(0)^{(i)}=\psi _{g,n}^{(i)}(0) \quad \text{and}\quad g^{(j)}\biggl(\frac{\pi}{2}\biggr)= \psi ^{(j)}_{g,n} \biggl(\frac{\pi}{2}\biggr), \quad i=0,1,\ldots ,n-2, j=0,1. \end{gathered} $$
(16)

Let \(D_{g,n}(x)=g(x)-\varphi _{g,n}(x)\) and \(E_{g,n}(x)=g(x)-\psi _{g,n}(x)\). From Theorem 3.5.1 on page 67, Sect. 3.5 of [57], combining with Eq. (12), for \(\forall x \in [0,\pi /2]\), there exists \(\bar{\xi}_{i}(x) \in [0,\pi /2]\), \(i=1,2\), such that

$$ \begin{gathered} D_{g,n}(x)= \frac{D_{g,n}^{(n+1)}(\bar{\xi }_{1}(x))}{(n+1)!} x^{n} (x-\pi /2), \quad x \in [0,\pi /2], \\ E_{g,n}(x)= \frac{D_{g,n}^{(n+1)}(\bar{\xi }_{2}(x))}{(n+1)!} x^{n-1} (x-\pi /2)^{2}, \quad x \in [0,\pi /2]. \end{gathered} $$
(17)

We take \(g_{1,\beta}(x)=\cos (\beta x)\) and \(g_{2,\beta}(x)=\sin (\beta x)\), \(\beta \in [0,4]\) as examples, for finding their bounding polynomials in the form of \(\varphi _{g,n}(x)\) and \(\psi _{g,n}(x)\). It can be verified that

$$ \begin{gathered} \varphi _{g_{1,\beta},2k}(x)=1 + \sum _{i=1}^{k-1}{ (-1)^{i} \frac{(\beta x)^{2i}}{(2i)!}} + \lambda _{1,2k} x^{2k}, \\ \varphi _{g_{2,\beta},2k-1}(x)= \sum_{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta x)^{2i-1}}{(2i-1)!}} + \lambda _{2,2k-1} x^{2k-1}, \\ \psi _{g_{1,\beta},2k}(x)=1 + \sum_{i=1}^{k-2}{ (-1)^{i} \frac{(\beta x)^{2i}}{(2i)!}}+ \gamma _{1,2k} x^{2k-1} + \gamma _{2,2k} x^{2k}, \\ \psi _{g_{2,\beta},2k-1}(x)= \sum_{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta x)^{2i-1}}{(2i-1)!}} + \gamma _{3,2k-1} x^{2k-2} + \gamma _{4,2k-1} x^{2k-1}, \end{gathered} $$
(18)

where \(\lambda _{i,n}\) and \(\gamma _{j,n}\) satisfy

$$\begin{aligned}& \lambda _{1,2k} = \Biggl(\cos (\beta \pi /2) - 1 - \sum _{i=1}^{k-1}{ (-1)^{i} \frac{(\beta \pi /2)^{2i}}{(2i)!}} \Biggr) \biggl( \frac{\pi }{2}\biggr)^{-2k}, \\& \lambda _{2,2k-1} = \Biggl( \sin (\beta \pi /2)- \sum _{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta \pi /2)^{2i-1}}{(2i-1)!}} \Biggr) \biggl( \frac{\pi }{2}\biggr)^{1-2k}, \\& \begin{aligned} \gamma _{1,2k} &= k \cdot 2^{2k} \Biggl(\cos ( \beta \pi /2)- \sum_{i=1}^{k-1}{ (-1)^{i} \frac{(\beta \pi /2)^{2i}}{(2i)!}}-1 \Biggr) { \pi ^{1-2k}} \\ &\quad {} + 2^{2k-2} \Biggl(\beta \sin (\beta \pi /2)+ \sum _{i=1}^{k-1}{ (-1)^{i} \frac{(\beta \pi /2)^{2i-1}}{(2i-1)!}} \Biggr) {\pi ^{2-2k}}, \end{aligned} \\& \begin{aligned} \gamma _{2,2k}&= \Biggl(\cos (\beta \pi /2)- \sum _{i=1}^{k-1}{ (-1)^{i} \frac{(\beta \pi /2)^{2i}}{(2i)!}}-1 \Biggr) (4k-2)\pi ^{-2k} \\ &\quad {} - 2^{2k-1} \Biggl(\beta \sin (\beta \pi /2)+ \sum _{i=1}^{k-1}{ (-1)^{i} \frac{(\beta \pi /2)^{2i-1}}{(2i-1)!}} \Biggr) \pi ^{1-2k}, \end{aligned} \\& \begin{aligned} \gamma _{3,2k-1}&= (2k-1) \Biggl(\sin (\beta \pi /2)- \sum_{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta \pi /2)^{2i-1}}{(2i-1)!}} \Biggr) 2^{2 k-2} \pi ^{2-2 k} \\ &\quad {} - 2^{2k-3} \pi ^{3-2 k} \Biggl(\beta \cos (\beta \pi /2)- \sum_{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta \pi /2)^{2i-2}}{(2i-2)!}} \Biggr), \end{aligned} \\& \begin{aligned} \gamma _{4,2k-1}&= -2^{2k} \Biggl( \sin (\beta \pi /2)- \sum_{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta \pi /2)^{2i-1}}{(2i-1)!}} \Biggr) (k-1) \pi ^{-2 k+1} \\ &\quad {} +2^{2 k-2} \pi ^{2-2 k} \Biggl(\beta \cos ( \beta \pi /2)- \sum_{i=1}^{k-1}{ (-1)^{i+1} \frac{(\beta \pi /2)^{2i-2}}{(2i-2)!}} \Biggr). \end{aligned} \end{aligned}$$

One has the following lemmas.

Lemma 1

For \(\forall 0< \beta < 2\) and \(\forall x \in (0,\pi /2)\), \(k \geq 1\), we have

$$ \begin{gathered} \varphi _{g_{1,\beta},4k}(x) < \cos (\beta x) \triangleq g_{1,\beta}(x) < \varphi _{g_{1,\beta},4k+2}(x), \\ \varphi _{g_{2,\beta},4k+1}(x) < \sin (\beta x) \triangleq g_{2,\beta}(x) < \varphi _{g_{2,\beta},4k-1}(x), \\ \psi _{g_{1,\beta},4k}(x) > \cos (\beta x) > \psi _{g_{1,\beta},4k+2}(x), \\ \psi _{g_{2,\beta},4k+1}(x) > \sin (\beta x) > \psi _{g_{2,\beta},4k-1}(x). \end{gathered} $$
(19)

Proof

Let

$$ \begin{gathered} H_{1,\beta}(x)= \varphi _{g_{1,\beta},4k}(x) - \cos (\beta x), \qquad H_{2, \beta}(x)= \varphi _{g_{1,\beta},4k+2}(x) - \cos ( \beta x), \\ H_{3,\beta}(x)= \varphi _{g_{2,\beta},4k+1}(x) - \sin (\beta x), \qquad H_{4, \beta}(x)= \varphi _{g_{2,\beta},4k-1}(x) - \sin (\beta x), \\ H_{5,\beta}(x)= \psi _{g_{1,\beta},4k}(x) - \cos (\beta x), \qquad H_{6, \beta}(x)= \psi _{g_{1,\beta},4k+2}(x) - \cos (\beta x), \\ H_{7,\beta}(x)= \psi _{g_{2,\beta},4k+1}(x) - \sin (\beta x), \qquad H_{8, \beta}(x)= \psi _{g_{2,\beta},4k-1}(x) - \sin (\beta x). \end{gathered} $$
(20)

Combining Eq. (20) with Eq. (17), for \(x \in (0,\pi /2)\), there exists \(\xi _{i}(x) \in (0,\pi /2)\), \(i=1,2,\ldots ,8\), such that

$$ \begin{gathered} H_{1,\beta}(x)= \frac{H_{1,\beta }^{(4k+1)}(\xi _{1}(x))}{(4k+1)!} x^{4k} \biggl(x- \frac{\pi }{2}\biggr) = \frac{\beta ^{4k+1} \sin (\beta \xi _{1}(x))}{(2k+1)!} x^{4k} \biggl(x- \frac{\pi }{2}\biggr), \\ H_{2,\beta}(x)= \frac{H_{2,\beta }^{(4k+3)}(\xi _{2}(x))}{(4k+3)!} x^{4k+2} \biggl(x- \frac{\pi }{2}\biggr) = \frac{- \beta ^{4k+3} \sin (\beta \xi _{2}(x))}{(4k+3)!} x^{4k+2} \biggl(x- \frac{\pi }{2}\biggr), \\ H_{3,\beta}(x)= \frac{H_{3,\beta }^{(4k+2)}(\xi _{3}(x))}{(4k+2)!} x^{4k+1} \biggl(x- \frac{\pi }{2}\biggr) = \frac{\beta ^{4k+2} \sin (\beta \xi _{3}(x))}{(4k+2)!} x^{4k+1} \biggl(x- \frac{\pi }{2}\biggr), \\ H_{4,\beta}(x)= \frac{H_{4,\beta }^{(4k)}(\xi _{4}(x))}{4k!} x^{4k-1} \biggl(x- \frac{\pi }{2}\biggr) = \frac{- \beta ^{4k} \sin (\beta \xi _{4}(x))}{4k!} x^{4k-1} \biggl(x- \frac{\pi }{2}\biggr), \\ H_{5,\beta}(x)= \frac{H_{5,\beta }^{(4k+1)}(\xi _{5}(x))}{(4k+1)!} x^{4k-1} \biggl(x- \frac{\pi }{2}\biggr)^{2} = \frac{\beta ^{4k+1} \sin (\beta \xi _{5}(x))}{(2k+1)!} x^{4k-1} \biggl(x- \frac{\pi }{2}\biggr)^{2}, \\ H_{6,\beta}(x)= \frac{H_{6,\beta }^{(4k+3)}(\xi _{6}(x))}{(4k+3)!} x^{4k+1} \biggl(x- \frac{\pi }{2}\biggr)^{2} = \frac{- \beta ^{4k+3} \sin (\beta \xi _{6}(x))}{(4k+3)!} x^{4k+1} \biggl(x- \frac{\pi }{2}\biggr)^{2}, \\ H_{7,\beta}(x)= \frac{H_{7,\beta }^{(4k+2)}(\xi _{7}(x))}{(4k+2)!} x^{4k} \biggl(x- \frac{\pi }{2}\biggr)^{2} = \frac{\beta ^{4k+2} \sin (\beta \xi _{7}(x))}{(4k+2)!} x^{4k} \biggl(x- \frac{\pi }{2}\biggr)^{2}, \\ H_{8,\beta}(x)= \frac{H_{8,\beta }^{(4k)}(\xi _{8}(x))}{4k!} x^{4k-2} \biggl(x- \frac{\pi }{2}\biggr)^{2} = \frac{- \beta ^{4k} \sin (\beta \xi _{8}(x))}{4k!} x^{4k-2} \biggl(x- \frac{\pi }{2}\biggr)^{2}. \end{gathered} $$
(21)

For \(\beta \in (0,2)\) and \(x \in (0,\pi /2)\), one has \(\beta \xi _{i}(x) \in (0,\pi )\) and \(\sin (\beta \xi _{i}(x))>0\). By combining with Eq. (21), one obtains

$$ \begin{gathered} H_{1,\beta}(x)< 0,\qquad H_{2,\beta}(x) >0,\qquad H_{3,\beta}(x)< 0 \quad \text{and}\quad H_{4, \beta}(x) >0, \quad \forall x \in (0,\pi /2), \\ H_{5,\beta}(x)>0,\qquad H_{6,\beta}(x) < 0,\qquad H_{7,\beta}(x)>0 \quad \text{and}\quad H_{8, \beta}(x) < 0, \quad \forall x \in (0,\pi /2). \end{gathered} $$
(22)

Thus, the proof has been completed. □

Lemma 2

For \(\beta _{1}=3\) and \(\forall x \in (0,\pi /2)\), we have

$$ \psi _{g_{2,\beta _{1}},11}(x) < \sin (3 x) < \psi _{g_{2,\beta _{1}},13}(x). $$
(23)

Proof

Let \(H_{9}(x)=\psi _{g_{2,\beta _{1}},13}(x)-\sin (3 x)\) and \(H_{10}(x)= \psi _{g_{2,\beta _{1}},11}(x) - \sin (3 x)\). This is equivalent to proving the following inequalities

$$ H_{9}(x) > 0 >H_{10}(x), \quad \forall x \in \biggl(0, \frac{\pi }{2}\biggr). $$
(24)

It can be verified that

$$ \begin{gathered} H_{9}^{(i)}(0)=0, \quad i=0,1, \ldots ,11,\qquad H_{9}^{(j)}\biggl( \frac{\pi }{2} \biggr)=0, \quad j=0,1, \\ H_{9}^{(12)}(0)= \frac{12!}{\pi ^{12}} \biggl( \frac{2187}{123{,}200} \pi ^{11}- \frac{243}{140} \pi ^{9}+ \frac{ 2916}{35} \pi ^{7}- \frac{10{,}368}{5} \pi ^{5} \\ \hphantom{H_{9}^{(12)}(0)=}{} + 23{,}040 \pi ^{3}- 73{,}728 \pi -53{,}248\biggr) \\ \hphantom{H_{9}^{(12)}(0)}\approx 34{,}694.4 >0, \\ H_{9}^{\prime \prime }\biggl( \frac{\pi }{2}\biggr)= \biggl(- \frac{531{,}441}{12!\cdot 64} \pi ^{9}+ \frac{59{,}049}{9! \cdot 32} \pi ^{7}- \frac{10{,}935}{5! \cdot 224} \pi ^{5}+ \frac{1701}{5!} \pi ^{3} \\ \hphantom{H_{9}^{\prime \prime }\biggl( \frac{\pi }{2}\biggr)=}{}- \frac{405}{2} \pi -9 + \frac{792}{\pi } + \frac{ 624}{ \pi ^{2}}\biggr)\\ \hphantom{H_{9}^{\prime \prime }\biggl( \frac{\pi }{2}\biggr)} \approx 0.017>0, \\ H_{10}^{(i)}(0)=0, \quad i=0,1,\ldots ,9,\qquad H_{10}^{(j)}\biggl( \frac{\pi }{2}\biggr)=0, \quad j=0,1, \\ H_{10}^{(10)}(0)= \frac{10!}{\pi ^{10}} \biggl( - \frac{243}{1120} \pi ^{9}+ \frac{486}{35} \pi ^{7}- \frac{1944}{5} \pi ^{5} \\ \hphantom{H_{10}^{(10)}(0)=}{} + 4608 \pi ^{3}- 15{,}360 \pi - 11{,}264 \biggr)\\ \hphantom{H_{10}^{(10)}(0)} \approx -5850.1< 0, \\ H_{10}^{\prime \prime }\biggl( \frac{\pi }{2}\biggr)= \biggl(-8! \cdot \frac{2187}{64} \pi ^{7} - \frac{6561}{8!} \pi ^{5} + \frac{243}{32} \pi ^{3} \\ \hphantom{H_{10}^{\prime \prime }\biggl( \frac{\pi }{2}\biggr)=}{} -126 \pi -9 + \frac{540}{\pi } + \frac{ 440}{ \pi ^{2}}\biggr) \\ \hphantom{H_{10}^{\prime \prime }\biggl( \frac{\pi }{2}\biggr)}\approx -0.154< 0. \end{gathered} $$
(25)

By combining Eq. (25) with Eq. (21), one obtains Eq. (24). Thus, the proof has been completed. □

Remark 1

In principle, Eq. (25) can be manually verified. On the other hand, it is very helpful to use Maple software to verify the corresponding equations with much higher efficiency than manual verification.

Lemma 3

Let \(\beta _{1}=3\), \(\beta _{2}=3-\alpha _{3}\), \(\beta _{3}=3+\alpha _{3}\), \(\beta _{4}=3-\alpha _{4}\), \(\beta _{5}=3+\alpha _{4}\). For \(\beta =\beta _{i}\), \(i=1,2,\ldots ,5\), and \(\forall x \in (0,\pi /2)\), we have

$$ \begin{gathered} \varphi _{g_{1,\beta},20}(x) < \cos (\beta x) < \varphi _{g_{1,\beta},18}(x), \\ \varphi _{g_{2,\beta},17}(x) < \sin (\beta x) < \varphi _{g_{2,\beta},15}(x). \end{gathered} $$
(26)

Proof

Equation (26) is equivalent to the following inequalities, where \(i=1,2,\ldots ,5\).

$$ \begin{gathered} \bar{H}_{1,\beta _{i}}(x)= \varphi _{g_{1,\beta},20}(x) - \cos ( \beta x) < 0 , \\ \bar{H}_{2,\beta _{i}}(x) = \varphi _{g_{1,\beta},18}(x) - \cos ( \beta x) >0, \\ \bar{H}_{3,\beta _{i}}(x)=\varphi _{g_{2,\beta},17}(x) - \sin (\beta x) < 0 , \\ \bar{H}_{4,\beta _{i}}(x)=\varphi _{g_{2,\beta},15}(x) - \sin (\beta x) >0. \end{gathered} $$
(27)

First, by using Maple software, it can be verified that

$$\begin{aligned}& \begin{gathered} H_{1}^{(i)}(0)=0, \quad i=0,1,\ldots ,19, \\ H_{1}^{(20)}(0)= \frac{20!}{\pi ^{20}} \biggl( 1{,}048{,}576 \biggl( \cos \biggl( \frac{\beta \pi }{2}\biggr)-1\biggr) \\ \hphantom{H_{1}^{(20)}(0)=}{} + 131{,}072 (\beta \pi )^{2}- \frac{8192 (\beta \pi )^{4}}{3}+ \frac{1024 (\beta \pi )^{6}}{45}- \frac{32 (\beta \pi )^{8}}{315} + \frac{ 512 (\beta \pi )^{10}}{5\cdot 9!} \\ \hphantom{H_{1}^{(20)}(0)=}{} - \frac{ 64 (\beta \pi )^{12}}{3 \cdot 11!} + \frac{ 32 (\beta \pi )^{14}}{7 \cdot 13!} - \frac{ (\beta \pi )^{16}}{15!} + \frac{ 2 (\beta \pi )^{18}}{9\cdot 17!} - \frac{ (\beta \pi )^{20}}{20 \cdot 19!} \biggr), \\ H_{1}\biggl( \frac{\pi }{2}\biggr)=0, \\ H_{1}^{\prime }\biggl( \frac{\pi }{2}\biggr)= \frac{1}{65{,}536 \pi \cdot 18!} \biggl(18! \cdot \biggl(2{,}621{,}440 \biggl(\cos \biggl( \frac{\beta \pi }{2}\biggr)-1\biggr) \\ \hphantom{H_{1}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{} +65{,}536 \alpha \pi \sin \biggl( \frac{\beta \pi }{2}\biggr) \biggr)+ 18! \cdot 294{,}912 (\beta \pi )^{2} -16! \cdot 1{,}671{,}168 (\beta \pi )^{4} \\ \hphantom{H_{1}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{} +14! \cdot 2{,}924{,}544 (\beta \pi )^{6} -12! \cdot 2{,}036{,}736 (\beta \pi )^{8} + 10! \cdot 622{,}336 (\beta \pi )^{10} \\ \hphantom{H_{1}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{} -8! \cdot 84{,}864 (\beta \pi )^{12}+ 3{,}525{,}120 (\beta \pi )^{14} -2448 (\beta \pi )^{16} +(\beta \pi )^{18} \biggr), \end{gathered} \end{aligned}$$
(28)
$$\begin{aligned}& \textstyle\begin{cases} \bar{H}_{1,\beta _{1}}^{(20)}(0)\approx -1.610 \cdot 10^{8}< 0,\qquad \bar{H}_{1,\beta _{1}}^{\prime }( \frac{\pi }{2})\approx 6.7 \cdot 10^{-7}>0, \\ \bar{H}_{1,\beta _{2}}^{(20)}(0)\approx -2.32\cdot 10^{7}< 0,\qquad \bar{H}_{1,\beta _{2}}^{\prime }( \frac{\pi }{2})\approx 9.85 \cdot 10^{-8}>0, \\ \bar{H}_{1,\beta _{3}}^{(20)}(0)\approx -9.52 \cdot 10^{8}< 0,\qquad \bar{H}_{1,\beta _{3}}^{\prime }( \frac{\pi }{2})\approx 3.97 \cdot 10^{-6} > 0, \\ \bar{H}_{1,\beta _{4}}^{(20)}(0)\approx -2.12 \cdot 10^{7}< 0,\qquad \bar{H}_{1,\beta _{4}}^{\prime }( \frac{\pi }{2})\approx 8.97 \cdot 10^{-8}> 0, \\ \bar{H}_{1,\beta _{5}}^{(20)}(0)\approx -1.02 \cdot 10^{9} < 0,\qquad \bar{H}_{1,\beta _{5}}^{\prime }( \frac{\pi }{2})\approx 4.29 \cdot 10^{-6}>0. \end{cases}\displaystyle \end{aligned}$$
(29)

Combining Eq. (21) and Eq. (28) with Eq. (29), we obtain

$$ \bar{H}_{1,\beta _{i}}(x)< 0, \quad i=1,2,\ldots ,5. $$
(30)

Secondly, it can be verified that

$$\begin{aligned}& \begin{gathered} \bar{H}_{2,\beta}^{(i)}(0)=0, \quad i=0,1,\ldots ,17, \\ \bar{H}_{2,\beta}^{(18)}(0)= \frac{18!}{\pi ^{18}} \biggl( \frac{\beta ^{18}}{18!}- \frac{\beta ^{16}}{15!\cdot 4 \pi ^{2}} \\ \hphantom{\bar{H}_{2,\beta}^{(18)}(0)=}{}+ \frac{16 \beta ^{14}}{14!\cdot \pi ^{4}} - \frac{16 \beta ^{12}}{10!\cdot 33 \pi ^{6}} + \frac{256 \beta ^{10}}{10!\cdot \pi ^{8}} - \frac{8 \beta ^{8}}{315 \pi ^{10}} + \frac{256 \beta ^{6}}{45 \pi ^{12}} - \frac{2048 \beta ^{4}}{3 \pi ^{14}} \\ \hphantom{\bar{H}_{2,\beta}^{(18)}(0)=}{} + \frac{32{,}768 \beta ^{2}}{\pi ^{16}} + \frac{9!\cdot 2048 \cos ( \frac{\beta \pi }{2})}{ 2835\pi ^{18}}- \frac{9!\cdot 2048}{2835 \pi ^{18}} \biggr), \\ \bar{H}_{2,\beta}\biggl( \frac{\pi }{2}\biggr)=0, \\ \bar{H}_{2,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)= - \frac{\beta ^{16} \pi ^{15} }{16!\cdot 16{,}384} + \frac{\beta ^{14} \pi ^{13}}{2048 \cdot 14!}- \frac{273 \beta ^{12} \pi ^{11}}{14\cdot 512} \\ \hphantom{\bar{H}_{2,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{}+ \frac{\beta ^{10} \pi ^{9}}{10!\cdot 64} - \frac{5 \beta ^{8} \pi ^{7}}{8!\cdot 64}+ \frac{\beta ^{6} \pi ^{5}}{1920} - \frac{7 \beta ^{4} \pi ^{3}}{96}+ 4 \pi \beta ^{2}+ \beta \sin \biggl( \frac{\beta \pi }{2}\biggr) \\ \hphantom{\bar{H}_{2,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{}+ \frac{36 \cos ( \frac{\beta \pi }{2})}{\pi }- \frac{36}{\pi }, \end{gathered} \end{aligned}$$
(31)
$$\begin{aligned}& \textstyle\begin{cases} \bar{H}_{2,\beta _{1}}^{(18)}(0)\approx 2.15 \cdot 10^{7}>0,\qquad \bar{H}_{2,\beta _{1}}^{\prime }( \frac{\pi }{2})\approx -0.13 \cdot 10^{-4}< 0, \\ \bar{H}_{2,\beta _{2}}^{(18)}(0)\approx 3.72 \cdot 10^{6} >0,\qquad \bar{H}_{2,\beta _{2}}^{\prime }( \frac{\pi }{2})\approx -2.41 \cdot 10^{-6}< 0, \\ \bar{H}_{2,\beta _{3}}^{(18)}(0)\approx 1.08 \cdot 10^{8}>0,\qquad \bar{H}_{2,\beta _{3}}^{\prime }( \frac{\pi }{2})\approx -0.69 \cdot 10^{-4} < 0, \\ \bar{H}_{2,\beta _{4}}^{(18)}(0)\approx 3.42 \cdot 10^{6}>0,\qquad \bar{H}_{2,\beta _{4}}^{\prime }( \frac{\pi }{2})\approx -2.21 \cdot 10^{-6}< 0, \\ \bar{H}_{2,\beta _{5}}^{(18)}(0)\approx 1.16 \cdot 10^{8}>0,\qquad \bar{H}_{2,\beta _{5}}^{\prime }( \frac{\pi }{2})\approx -0.74 \cdot 10^{-4}< 0. \end{cases}\displaystyle \end{aligned}$$
(32)

Combining Eq. (21) and Eq. (31) with Eq. (32), we obtain

$$ \bar{H}_{2,\beta _{i}}(x)>0, \quad i=1,2,\ldots ,5. $$
(33)

Thirdly, it can be verified that

$$\begin{aligned}& \bar{H}_{3,\beta}^{(i)}(0)=0, \quad i=0,1,\ldots ,16, \\& \bar{H}_{3,\beta}^{(17)}(0)= -\beta ^{17}+ \frac{1088 \beta ^{15}}{\pi ^{2}}- \frac{8! \cdot 68 \beta ^{13}}{3 \pi ^{4}} \\& \hphantom{\bar{H}_{3,\beta}^{(17)}(0)=}{} + \frac{8!\cdot 14{,}144 \beta ^{11}}{\pi ^{6}}- \frac{13! \cdot 1088 \beta ^{9}}{27\pi ^{8}}+ \frac{16!\cdot 1088 \beta ^{7}}{315\pi ^{10}} - \frac{18! \cdot 256 \beta ^{5}}{135 \pi ^{12}} \\& \hphantom{\bar{H}_{3,\beta}^{(17)}(0)=}{} + \frac{18!\cdot 4096 \beta ^{3}}{27 \pi ^{14}} - \frac{17!\cdot 65{,}536 \beta }{\pi ^{16}}+ \frac{17! \cdot 131{,}072 \sin ( \frac{\beta \pi }{2})}{\pi ^{17}}, \end{aligned}$$
(34)
$$\begin{aligned}& \bar{H}_{3,\beta}\biggl( \frac{\pi }{2}\biggr)=0, \\& \bar{H}_{3,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)= \frac{\beta ^{15} \pi ^{14}}{16!\cdot 512}- \frac{105 \beta ^{13 }\pi ^{12}}{16! \cdot 32} + \frac{117 \beta ^{11} \pi ^{10}}{13!\cdot 128}- \frac{\beta ^{9} \pi ^{8}}{9!\cdot 32} \\& \hphantom{\bar{H}_{3,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{} + \frac{5 \beta ^{7} \pi ^{6}}{8!\cdot 4}- \frac{\beta ^{5} \pi ^{4}}{160} + \frac{7 \pi ^{2} \beta ^{3}}{12} -\beta \cos \biggl( \frac{ \beta \pi }{2}\biggr) -16 \beta + \frac{34 \sin ( \frac{ \beta \pi }{2})}{\pi } , \\& \textstyle\begin{cases} \bar{H}_{3,\beta _{1}}^{(17)}(0)\approx -7.9\cdot 10^{6}< 0,\qquad \bar{H}_{3, \beta _{1}}^{\prime }( \frac{\pi }{2})\approx 5.8 \cdot 10^{-5}>0, \\ \bar{H}_{3,\beta _{2}}^{(17)}(0)\approx -1.5 \cdot 10^{6} < 0,\qquad \bar{H}_{3,\beta _{2}}^{\prime }( \frac{\pi }{2})\approx 1.1 \cdot 10^{-5}>0, \\ \bar{H}_{3,\beta _{3}}^{(17)}(0)\approx -3.6 \cdot 10^{7}< 0,\qquad \bar{H}_{3,\beta _{3}}^{\prime }( \frac{\pi }{2})\approx 2.6 \cdot 10^{-4} > 0, \\ \bar{H}_{3,\beta _{4}}^{(17)}(0)\approx -1.3 \cdot 10^{6}< 0,\qquad \bar{H}_{3,\beta _{4}}^{\prime }( \frac{\pi }{2})\approx 1.0 \cdot 10^{-5}> 0, \\ \bar{H}_{3,\beta _{5}}^{(17)}(0)\approx -3.9 \cdot 10^{7}< 0,\qquad \bar{H}_{3,\beta _{5}}^{\prime }( \frac{\pi }{2})\approx 2.8 \cdot 10^{-4}>0. \end{cases}\displaystyle \end{aligned}$$
(35)

Combining Eq. (21) and Eq. (34) with Eq. (35), we obtain

$$ \bar{H}_{3,\beta _{i}}(x)< 0, \quad i=1,2,\ldots ,5. $$
(36)

Finally, it can be verified that

$$\begin{aligned}& \begin{gathered} \bar{H}_{4,\beta}^{(i)}(0)=0, \quad i=0,1,\ldots ,14, \\ \bar{H}_{4,\beta}^{(15)}(0)= \beta ^{1}5- \frac{ 840 \beta ^{13}}{\pi ^{2}}+ \frac{ 8!\cdot 13 \beta ^{11}}{\pi ^{4}} - \frac{12!\cdot 13 \beta ^{9}}{27 \pi ^{6}}+ \frac{13!\cdot 32 \beta ^{7}}{3 \pi ^{8}} \\ \hphantom{\bar{H}_{4,\beta}^{(15)}(0)=}{}- \frac{14!\cdot 128 \beta ^{5}}{\pi ^{10}}+ \frac{ 16!\cdot 128 \beta ^{3}}{3\pi ^{12}} - \frac{ 16!\cdot 1024 \beta }{\pi ^{14}}+ \frac{16!\cdot 2048 \sin ( \frac{ \beta \pi }{2})}{\pi ^{15}}, \end{gathered} \end{aligned}$$
(37)
$$\begin{aligned}& \begin{gathered} \bar{H}_{4,\beta}\biggl( \frac{\pi }{2} \biggr)=0, \\ \bar{H}_{4,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)= - \frac{ 105 \beta ^{13} \pi ^{12}}{16!\cdot 64} + \frac{ \beta ^{11} \pi ^{10}}{11!\cdot 256}- \frac{15 \beta ^{9} \pi ^{8}}{10!\cdot 64} + \frac{ \beta ^{7} \pi ^{6}}{8!} \\ \hphantom{\bar{H}_{4,\beta}^{\prime }\biggl( \frac{\pi }{2}\biggr)=}{} - \frac{ \beta ^{5} \pi ^{4}}{192}+ \frac{ \pi ^{2} \beta ^{3}}{2}-\beta \cos \biggl( \frac{ \beta \pi }{2}\biggr) -14 \beta + \frac{ 30 \sin ( \frac{ \beta \pi }{2})}{\pi }, \end{gathered} \end{aligned}$$
(38)
$$\begin{aligned}& \textstyle\begin{cases} \bar{H}_{4,\beta _{1}}^{(19)}(0)\approx 1.0 \cdot 10^{6}>0,\qquad \bar{H}_{4, \beta _{1}}^{\prime }( \frac{\pi }{2})\approx -8.7 \cdot 10^{-4}< 0, \\ \bar{H}_{4,\beta _{2}}^{(19)}(0)\approx 2.4\cdot 10^{5} >0,\qquad \bar{H}_{4, \beta _{2}}^{\prime }( \frac{\pi }{2})\approx -1.9\cdot 10^{-4}< 0, \\ \bar{H}_{4,\beta _{3}}^{(19)}(0)\approx 4.3 \cdot 10^{6} >0,\qquad \bar{H}_{4,\beta _{3}}^{\prime }( \frac{\pi }{2})\approx -3.4 \cdot 10^{-3} < 0, \\ \bar{H}_{4,\beta _{4}}^{(19)}(0)\approx 2.3 \cdot 10^{5}>0,\qquad \bar{H}_{4, \beta _{4}}^{\prime }( \frac{\pi }{2})\approx -1.8 \cdot 10^{-4}< 0, \\ \bar{H}_{4,\beta _{5}}^{(19)}(0)\approx 4.5 \cdot 10^{6}>0,\qquad \bar{H}_{4, \beta _{5}}^{\prime }( \frac{\pi }{2})\approx - 3.6 \cdot 10^{-3} < 0. \end{cases}\displaystyle \end{aligned}$$
(39)

Combining Eq. (21), Eq. (37), and Eq. (38) with Eq. (39), we obtain

$$ \bar{H}_{4,\beta _{i}}(x)>0, \quad i=1,2,\ldots ,5. $$
(40)

Combining Eq. (30), Eq. (33), and Eq. (36) with Eq. (40), one obtains Eq. (23), and the proof is completed. □

3 Proof of Theorem 1

This is equivalent to proving Eq. (14) in Theorem 1. It can be verified that

$$ \begin{aligned} R_{1}(x,\alpha )&=\bigl(F(x)-G_{1}(x, \alpha )\bigr) \cdot x^{3} \sin \biggl( \frac{\alpha \pi }{2}\biggr) \pi ^{6}\\ & = - x^{3} \sin \biggl( \frac{\alpha \pi }{2}\biggr) \pi ^{6} \cos (x) \\ &\quad {} +\bigl(-\sin (3 x)+3 \sin (x) \bigr) \frac{ \sin ( \frac{\alpha \pi }{2}) \pi ^{6}}{4}-64 x^{6} \sin ( \alpha x). \end{aligned} $$
(41)

Combining with Eq. (41), Eq. (14) is equivalent to

$$ R_{1}(x,\alpha _{2}) > 0 > R_{1}(x,\alpha _{1}), \quad x \in \biggl(0, \frac{\pi }{2}\biggr). $$
(42)

From Lemmas 1 and 2, for \(\forall x \in (0, \frac{\pi }{2})\) and \(\beta \in (0,2)\), one has the following lower and upper bounds

$$ \begin{gathered} L_{c,1}(x) \triangleq \psi _{g_{1,1},14}(x)< \cos (x)< \psi _{g_{1,1},16}(x) \triangleq U_{c,1}(x), \\ L_{s,1}(x) \triangleq \psi _{g_{1,1},11}(x)< \sin (x)< \psi _{g_{1,1},13}(x) \triangleq U_{s,1}(x), \\ L_{s,3}(x) \triangleq \psi _{g_{2,\beta _{1}},11}(x) < \sin (3 x) < \psi _{g_{2,\beta _{1}},13}(x) \triangleq U_{s,3}(x), \\ L_{s,\beta}(x) \triangleq \psi _{g_{1,\beta},11}(x)< \sin ( \beta x)< \psi _{g_{1,\beta},13}(x) \triangleq U_{s,\beta}(x). \end{gathered} $$
(43)

Let \(B_{n,i}(x)=C_{i}^{n} ( \frac{\pi }{2}-x )^{n-i} x^{i}\) satisfying \(B_{n,i}(x)>0\) for \(x \in (0, \frac{\pi }{2})\), and

$$\begin{aligned}& \rho _{0} = \bigl(\pi ^{4}-96\bigr) \approx 1.4 >0, \qquad \rho _{i} = \sin \biggl( \frac{\alpha _{i} \pi }{2}\biggr),\qquad \rho _{2+i}=\cos \biggl( \frac{\alpha _{i} \pi }{2}\biggr), \quad i=1,2, \\& \mu _{1,0} = \frac{32 \pi ^{5} \alpha _{2} }{15} \rho _{4} - \frac{256 \rho _{0} \alpha _{2}}{\pi ^{2}} \approx 1.34 > 0, \\& \mu _{1,1} = \frac{64 \pi ^{5} \alpha _{2} \rho _{4} }{25} - \frac{1536 \rho _{0} \alpha _{2}}{(5 \pi ^{2})} \approx 1.61 > 0, \\& \mu _{1,2} = - \frac{4 \pi ^{5} (23 \pi ^{2}-33{,}264) \alpha _{2} \rho _{4} }{42{,}525}+ \frac{32 \rho _{0} (\pi ^{2} \alpha _{2}^{2}-1584) \alpha _{2}}{135 \pi ^{2}} \approx 1.90 > 0, \\& \begin{aligned} \mu _{1,3} &= - \frac{\alpha _{2} \rho _{4}}{10! \cdot \pi ^{2}} \biggl(29{,}441 \pi ^{9}- \frac{6!\cdot 98{,}564}{5} \pi ^{7}+145{,}152 \pi ^{5}-8! \cdot 384 \pi ^{3}+10! \cdot 128 \pi \\ &\quad {} - \frac{12! \cdot 32}{15}\biggr) + \frac{8 \rho _{0} (\pi ^{2} \alpha _{2}^{2}-528) \alpha _{2}}{9 \pi ^{2}} \\ &\approx 2.21> 0, \end{aligned} \\& \begin{aligned} \mu _{1,4} &= \frac{ \alpha _{2} \rho _{4}}{11!\cdot 140 \pi ^{2}} \biggl(57{,}729 \pi ^{11}-116{,}589{,}880 \pi ^{9}\\ &\quad {}+ \frac{11! \cdot 73{,}931}{105} \pi ^{7}- \frac{11! \cdot 392}{15} \pi ^{5}+ \frac{13! \cdot 160}{9} \pi ^{3} \\ &\quad {} -12! \cdot 6912 \pi +11! \cdot 182{,}272\biggr) - \frac{\rho _{0} (\pi ^{4} \alpha _{2}^{4}-3600 \pi ^{2} \alpha _{2}^{2}+950{,}400) \alpha _{2}}{1575 \pi ^{2}} \\ &\approx 2.52 > 0, \end{aligned} \\& \begin{aligned} \mu _{1,5} &= \frac{ \alpha _{2} \rho _{4}}{12! \cdot 7 \pi ^{2}} \biggl(171{,}867 \pi ^{11}-149{,}683{,}600 \pi ^{9}\\ &\quad {}+ \frac{11!\cdot 58{,}427}{105} \pi ^{7} + \frac{13! \cdot 472}{585} \pi ^{5}+ \frac{12! \cdot 2272}{9} \pi ^{3} \\ &\quad {}-12! \cdot 11{,}776 \pi + \frac{12! \cdot 246{,}016}{9} \biggr) - \frac{4 \rho _{0} (\pi ^{4} \alpha _{2}^{4}-1200 \pi ^{2} \alpha _{2}^{2}+190{,}080) \alpha _{2}}{945 \pi ^{2}} \\ &\approx 2.84> 0, \end{aligned} \\& \begin{aligned} \mu _{1,6} &= \frac{\alpha _{2} \rho _{4}}{10! \cdot 420 \pi ^{2}} \biggl(\pi ^{13}+ \frac{2{,}546{,}325}{11} \pi ^{11}-128{,}711{,}400 \pi ^{9}\\ &\quad {}+ \frac{13! \cdot 9929}{4620} \pi ^{7}+10!\cdot 5768 \pi ^{5}-10! \cdot 9344 \pi ^{3} \\ &\quad {}- \frac{15! \cdot 13{,}184}{3003} \pi +10!\cdot 4{,}118{,}528\biggr) + \frac{\alpha _{2} \rho _{0} }{264{,}600 \pi ^{2}} \biggl(\pi ^{6} \alpha _{2}^{6}-4704 \pi ^{4} \alpha _{2}^{4} \\ &\quad {} +8! \cdot 70 \pi ^{2} \alpha _{2}^{2}- \frac{10! \cdot 1232}{15}\biggr) \\ & \approx 3.15> 0, \end{aligned} \\& \begin{aligned} \mu _{1,7} &= \frac{\alpha _{2} \rho _{4}}{10! \cdot 40 \pi ^{2}} \biggl(\pi ^{13}+ \frac{553{,}530}{11} \pi ^{11}-21{,}018{,}920 \pi ^{9}+ \frac{11! \cdot 47{,}528}{1155} \pi ^{7}+ \frac{10! \cdot 7784}{3} \pi ^{5} \\ &\quad {} -8!\cdot 1{,}512{,}960 \pi ^{3}-10! \cdot 291{,}840 \pi +10! \cdot 914{,}432\biggr) + \frac{\alpha _{2} \rho _{0} }{25{,}200 \pi ^{2}} \biggl(\pi ^{6} \alpha _{2}^{6} \\ &\quad {} -1568 \pi ^{4} \alpha _{2}^{4}+ 8!\cdot 14 \pi ^{2} \alpha _{2}^{2}- \frac{10! \cdot 176}{15} \biggr) \\ &\approx 3.43> 0, \end{aligned} \\& \begin{aligned} \mu _{1,8} &= - \frac{ \alpha _{2} \rho _{4}}{12!\cdot 360 \pi ^{2}} \biggl( \pi ^{15}-7920 \pi ^{13}-6!\cdot 158{,}667 \pi ^{11}\\ &\quad {}+ \frac{11!\cdot 613{,}367}{630} \pi ^{9}- \frac{14!\cdot 82{,}426}{3185} \pi ^{7}- \frac{14!\cdot 31{,}472}{65} \pi ^{5} \\ &\quad {}+13!\cdot 55{,}808 \pi ^{3}+12! \cdot 4{,}608{,}000 \pi -12!\cdot 19{,}111{,}936\biggr) - \frac{\rho _{0} \alpha _{2}}{9!\cdot 45 \pi ^{2}} \\ &\quad {} \cdot \bigl(\pi ^{8} \alpha _{2}^{8} -4320 \pi ^{6} \alpha _{2}^{6}+8! \cdot 84 \pi ^{4} \alpha _{2}^{4}-10!\cdot 224 \pi ^{2} \alpha _{2}^{2}+12! \cdot 96\bigr) \\ &\approx 3.68> 0, \end{aligned} \\& \begin{aligned} \mu _{1,9} &= - \frac{\alpha _{2} \rho _{4}}{12!\cdot 20 \pi ^{2}}\biggl(\pi ^{15}-2640 \pi ^{13}- \frac{9!\cdot 46{,}729}{1680} \pi ^{11}+ \frac{13!\cdot 437}{945} \pi ^{9}\\ &\quad {}- \frac{13!\cdot 1426}{105} \pi ^{7}- \frac{14!\cdot 6352}{65} \pi ^{5} +12!\cdot 160{,}000 \pi ^{3} \\ &\quad {}+12!\cdot 417{,}792 \pi -12!\cdot 2{,}676{,}736\biggr) - \frac{4 \rho _{0} \alpha _{2}}{ 10! \cdot \pi ^{2}} \biggl( \pi ^{8} \alpha _{2}^{8}-1440 \pi ^{6} \alpha _{2}^{6} \\ &\quad {} + \frac{8!\cdot 84}{5} \pi ^{4} \alpha _{2}^{4}-10! \cdot 32 \pi ^{2} \alpha _{2}^{2}+11!\cdot 128 \biggr) \\ &\approx 3.88> 0, \end{aligned} \\& \begin{aligned} \mu _{1,10} &= \frac{ \alpha _{2} \rho _{4}}{14!\cdot 32 \pi ^{2}}\biggl(\pi ^{17}-4368 \pi ^{15}+8!\cdot 143 \pi ^{13}+ \frac{9!\cdot 95{,}719}{15} \pi ^{11}\\ &\quad {}- \frac{14!\cdot 1825}{378} \pi ^{9}- \frac{16!\cdot 839}{175} \pi ^{7} + \frac{16!\cdot 40{,}216}{75} \pi ^{5}-14!\cdot 1{,}193{,}984 \pi ^{3} \\ &\quad {}-14!\cdot 1{,}032{,}192 \pi +14!\cdot 14{,}450{,}688\biggr) + \frac{\rho _{0} \alpha _{2}}{11!\cdot 4 \pi ^{2}} \biggl(\pi ^{10} \alpha _{2}^{10} \\ &\quad {} -2640 \pi ^{8} \alpha _{2}^{8}+ \frac{11!}{21} \pi ^{6} \alpha _{2}^{6}- \frac{11!\cdot 224}{15} \pi ^{4} \alpha _{2}^{4}+12! \cdot 160 \pi ^{2} \alpha _{2}^{2}-12!\cdot 5632 \biggr) \\ &\approx 4.02> 0, \end{aligned} \\& \mu _{2,0} = \frac{64 \alpha _{1} }{63 \pi } \bigl(21 \alpha _{1}^{2}-23 \bigr) \approx -0.62 < 0, \\& \begin{aligned} \mu _{2,1} &= \frac{\alpha _{1}}{882 \pi ^{10}} \biggl(21{,}504 \pi ^{9} \alpha _{1}^{2}-16{,}991 \pi ^{9}- \frac{9!\cdot 81}{70} \pi ^{7}+ \frac{10!\cdot 81}{25} \pi ^{5}-9!\cdot 384 \pi ^{3} \\ &\quad {} +10!\cdot 128 \pi +8!\cdot 8448\biggr) \\ &\approx -0.66< 0, \end{aligned} \\& \begin{aligned} \mu _{2,2} &= - \frac{120 \alpha _{1}}{11!\cdot 7 \pi ^{10}} \biggl(29{,}568 \pi ^{11} \alpha _{1}^{4}+1321 \pi ^{11}- \frac{9!\cdot 224}{135} \pi ^{9} \alpha _{1}^{2}+35{,}011{,}240 \pi ^{9} \\ &\quad {}+ \frac{11!\cdot 405}{7} \pi ^{7} - \frac{12!\cdot 666}{5} \pi ^{5}+12!\cdot 1568 \pi ^{3}-11! \cdot 62{,}464 \pi - \frac{13!\cdot 34{,}304}{117} \biggr) \\ &\approx -0.69 < 0, \end{aligned} \\& \begin{aligned} \mu _{2,3} &= - \frac{ 288 \alpha _{1} }{11!\cdot 7 \pi ^{10}}\biggl( \frac{8!\cdot 11}{10} \pi ^{11} \alpha _{1}^{4}+1981 \pi ^{11}- \frac{11!\cdot 112}{135} \pi ^{9} \alpha _{1}^{2}+ \frac{11!\cdot 2923}{11{,}340} \pi ^{9} \\ &\quad {}+ \frac{11!\cdot 4009}{105} \pi ^{7}- \frac{12!\cdot 3884}{45} \pi ^{5}+ \frac{12!\cdot 8992}{9} \pi ^{3}-12!\cdot 3072 \pi -11! \cdot 35{,}840\biggr) \\ &\approx -0.73 < 0, \end{aligned} \\& \begin{aligned} \mu _{2,4} &= \frac{24 \alpha _{1}}{11!\cdot 7 \pi ^{10}} \biggl(528 \pi ^{1}3 \alpha _{1}^{6}- \frac{11!}{30} \pi ^{11} \alpha _{1}^{4}+11 \pi ^{1}3-59{,}418 \pi ^{11}\\ &\quad {}+ \frac{11!\cdot 112}{9} \pi ^{9} \alpha _{1}^{2}-67{,}745{,}040 \pi ^{9}- \frac{12!\cdot 989}{18} \pi ^{7} \\ &\quad {}+ \frac{12!\cdot 7268}{5} \pi ^{5}-11!\cdot 196{,}352 \pi ^{3}+12!\cdot 42{,}496 \pi +11!\cdot 806{,}912\biggr) \\ &\approx -0.78 < 0, \end{aligned} \\& \begin{aligned} \mu _{2,5} &= \frac{16 \alpha _{1}}{9!\cdot 77\pi ^{10}} \biggl(528 \pi ^{1}3 \alpha _{1}^{6}-8!\cdot 11 \pi ^{11} \alpha _{1}^{4}+11 \pi ^{1}3-19{,}803 \pi ^{11}\\ &\quad {}+8!\cdot 2464 \pi ^{9} \alpha _{1}^{2}-562{,}980 \pi ^{9}- \frac{12!\cdot 1457}{126} \pi ^{7} \\ &\quad {}+ \frac{12!\cdot 4429}{15} \pi ^{5}- \frac{13!\cdot 736}{3} \pi ^{3}+12!\cdot 6016 \pi +11! \cdot 220{,}672\biggr) \\ &\approx -0.83< 0, \end{aligned} \\& \begin{aligned} \mu _{2,6} &= - \frac{\alpha _{1}}{9!\cdot 308 \pi ^{10}} \biggl(88 \pi ^{15} \alpha _{1}^{8}- \frac{9!\cdot 44}{105} \pi ^{13} \alpha _{1}^{6}+\pi ^{15}+ \frac{11!\cdot 8}{5} \pi ^{11} \alpha _{1}^{4}-3168 \pi ^{13} \\ &\quad {} +2{,}851{,}344 \pi ^{11}- \frac{12!\cdot 896}{45} \pi ^{9} \alpha _{1}^{2}- \frac{12!\cdot 4087}{2520} \pi ^{9}+ \frac{14!\cdot 18{,}934}{3185} \pi ^{7} \\ &\quad {}- \frac{16!\cdot 4093}{6825} \pi ^{5} +12!\cdot 266{,}752 \pi ^{3}-12!\cdot 258{,}048 \pi -12!\cdot 2{,}088{,}960\biggr) \\ &\approx -0.89 < 0, \end{aligned} \\& \mu _{2,7} = \frac{512 \rho _{3} \pi ^{7} \alpha _{1}-61{,}440 \pi ^{4} \alpha _{1}+5{,}898{,}240 \alpha _{1}}{\pi ^{10}} \approx -0.96 < 0. \end{aligned}$$

Note that \(\mu _{1,i}<0\) and \(\mu _{2,j}>0\), \(i=0,1,\ldots ,10\), \(j=0,1,\ldots ,7\), combining Lemmas 1 and 2 with Eq. (41), for \(x \in (0, \frac{\pi }{2})\), one obtains

$$ \begin{gathered} R_{1}(x,\alpha _{2}) > - x^{3} \sin \biggl( \frac{\alpha _{2} \pi }{2}\biggr) \pi ^{6} U_{c,1}(x) + \bigl(- U_{s,3}(x)+3 L_{s,1}(x) \bigr) \\ \hphantom{R_{1}(x,\alpha _{2}) >}{} \cdot \frac{ \sin ( \frac{\alpha _{2} \pi }{2}) \pi ^{6}}{4}-64 x^{6} U_{s,\alpha _{2}}( x) \\ \hphantom{R_{1}(x,\alpha _{2}) }= \frac{x^{7} ( \frac{\pi }{2}-x)^{2} }{\rho _{0}} \Biggl( \sum _{i=0}^{10}{\mu _{1,i} B_{10,i}(x) }\Biggr)>0, \\ R_{1}(x,\alpha _{1}) < - x^{3} \sin \biggl( \frac{\alpha _{1} \pi }{2}\biggr) \pi ^{6} L_{c,1}(x) +\bigl(- L_{s,3}(x)+3 U_{s,1}(x) \bigr) \\ \hphantom{R_{1}(x,\alpha _{1}) < }{} \cdot \frac{ \sin ( \frac{\alpha _{1} \pi }{2}) \pi ^{6}}{4}-64 x^{6} L_{s,\alpha _{1}}( x) \\ \hphantom{R_{1}(x,\alpha _{1}) }= \frac{x^{9} ( \frac{\pi }{2}-x) }{\pi ^{10}} \Biggl( \sum _{i=0}^{7}{\mu _{2,i} B_{7,i}(x) }\Biggr)< 0, \end{gathered} $$
(44)

which leads to Eq. (42). Thus, the proof is completed.

4 Proof of Theorem 2

This is equivalent to proving Eq. (15) in Theorem 2. Let

$$\begin{aligned}& R_{2}(x,\alpha )=\ln \bigl(F(x)\bigr)-\ln \bigl(G_{2}(x,\alpha )\bigr), \\& p_{1} \triangleq p_{1}(\alpha )=- \frac{x (336 \alpha ^{2} x^{2}-92 x^{2})}{168 \alpha ^{2}}, \qquad q_{1} \triangleq q_{1}(\alpha ) = - \frac{x (63 \alpha ^{2}+69 \alpha )}{168 \alpha ^{2}}, \\& p_{2} \triangleq p_{2}(\alpha ) = \frac{x (336 \alpha ^{2} x^{2}-92 x^{2})}{168 \alpha ^{2}}, \qquad q_{2} \triangleq q_{2}(\alpha ) = \frac{x (63 \alpha ^{2}-69 \alpha )}{168 \alpha ^{2}}, \\& p_{3} \triangleq p_{3}(\alpha ) = \frac{23 x}{168 \alpha }- \frac{3 x }{8}, \qquad q_{3}= 0, \\& p_{4} \triangleq p_{4}(\alpha ) = \frac{23 x}{168 \alpha }+ \frac{3 x}{8}, \qquad q_{4}=0, \\& p_{5} \triangleq p_{5}(\alpha ) =- \frac{147 \alpha ^{2}-23}{168 \alpha ^{2}}, \qquad q_{5}=0, \\& p_{6} = 0, \qquad q_{6} \triangleq q_{6}(\alpha ) = \frac{147 \alpha ^{2}-23}{168 \alpha ^{2}}, \\& p_{7}\triangleq p_{7}(\alpha ) = \frac{23 x^{4}}{42 \alpha }+ \frac{x^{4}}{2}- \frac{147 \alpha ^{2}-23}{56 \alpha ^{2}}, \qquad q_{7}=0, \\& p_{8} \triangleq p_{8}(\alpha ) = \frac{23 x^{4}}{42 \alpha }- \frac{x^{4}}{2},\qquad q_{8} \triangleq q_{8}(\alpha ) = \frac{147 \alpha ^{2}-23}{56 \alpha ^{2}}, \\& R_{3}(x,\alpha )=p_{1} \sin (x-\alpha x) + q_{1} \sin (x-\alpha x) + p_{2} \sin (x+\alpha x) + q_{2} \sin (x+ \alpha x) \\& \hphantom{R_{3}(x,\alpha )=}{} +p_{3} \sin (3x+\alpha x) + q_{3} \sin (3x+\alpha x) +p_{4} \sin (3x- \alpha x) + q_{4} \sin (3x- \alpha x) \\& \hphantom{R_{3}(x,\alpha )=}{} +p_{5} \cos (3x+\alpha x) + q_{5} \cos (3x+\alpha x)+p_{6} \cos (3x- \alpha x) + q_{6} \cos (3x- \alpha x) \\& \hphantom{R_{3}(x,\alpha )=}{} + p_{7} \cos (x-\alpha x) + q_{7} \cos (x-\alpha x) + p_{8} \cos (x+ \alpha x) + q_{8} \cos (x+ \alpha x) . \end{aligned}$$
(45)

It can be verified that

$$ \begin{gathered} p_{i}(\alpha _{j}) \geq 0, \qquad q_{i}(\alpha _{j})\leq 0, \quad i=1,2, \ldots ,8, j=3,4, \\ R_{2}'(x,\alpha )= \frac{\partial }{\partial x} R_{2}(x, \alpha ) = \frac{R_{3}(x,\alpha )}{(\sin (x)^{3}-\cos (x) x^{3}) x \sin (\alpha x)}. \end{gathered} $$
(46)

4.1 Proof of \(F(x)< G_{2}(x,\alpha _{3})\)

Let \(\beta _{6}=1-\alpha _{3}\), \(\beta _{7}=1+\alpha _{3}\), \(\beta _{8}=1-\alpha _{4}\), and \(\beta _{9}=1+\alpha _{4}\). Combining Eq. (19) with Eq. (26) in Lemmas 1 and 3, for \(i=2,3,\ldots ,9\), one has

$$ \begin{gathered} \bar{L}_{c,\beta _{i}}(x) \triangleq \varphi _{g_{1,\beta},20}(x) < \cos (\beta _{i} x) < \varphi _{g_{1,\beta _{i}},18}(x) \triangleq \bar{U}_{c,\beta _{i}}(x), \\ \bar{L}_{s,\beta _{i}}(x) \triangleq \varphi _{g_{2,\beta},17}(x) < \sin (\beta _{i} x) < \varphi _{g_{2,\beta _{i}},15}(x) \triangleq \bar{U}_{s,\beta _{i}}(x). \end{gathered} $$
(47)

Let

$$\begin{aligned}& \rho _{5} = \cos \biggl(\frac{\pi \beta _{6}}{2}\biggr),\qquad \rho _{6} = \cos \biggl( \frac{\pi \beta _{7}}{2}\biggr),\qquad \rho _{7} = \cos \biggl(\frac{\pi \beta _{2}}{2}\biggr),\qquad \rho _{8} = \cos \biggl(\frac{\pi \beta _{3}}{2}\biggr), \\& \rho _{9} = \sin \biggl(\frac{\pi \beta _{6}}{2}\biggr),\qquad \rho _{10} = \sin \biggl( \frac{\pi \beta _{7}}{2}\biggr),\qquad \rho _{11} = \sin \biggl( \frac{\pi \beta _{2}}{2}\biggr),\qquad \rho _{12} = \sin \biggl( \frac{\pi \beta _{3}}{2}\biggr), \\& \mu _{3,0}= -\frac{52{,}952 \sqrt{14{,}973} }{5{,}347{,}211{,}336{,}775} \approx -1.21173 \cdot 10^{-6} < 0, \\& \begin{aligned} \mu _{3,1}&= \biggl(\frac{12{,}288 \rho _{11}}{\pi ^{15}}- \frac{12{,}288 \rho _{12}}{\pi ^{15}}\biggr)+ \biggl( \frac{14{,}16{,}929{,}895{,}971{,}358{,}499{,}998{,}076}{19{,}542{,}816{,}039{,}671{,}484{,}181{,}468{,}017{,}546{,}375} \\ &\quad {}- \frac{117{,}523{,}114{,}907{,}613{,}501{,}032}{18{,}349{,}803{,}561{,}143{,}724{,}906{,}661{,}425 \pi ^{2}} \\ &\quad {}+ \frac{1{,}781{,}368{,}211{,}358{,}673{,}664}{4{,}091{,}372{,}031{,}470{,}172{,}777{,}405 \pi ^{4}} \\ &\quad {} -\frac{16{,}534{,}606{,}530{,}917{,}824}{770{,}068{,}140{,}687{,}026{,}685 \pi ^{6}} + \frac{4{,}677{,}807{,}501{,}824}{6{,}561{,}086{,}323{,}365 \pi ^{8}}\\ &\quad {}- \frac{49{,}541{,}496{,}832}{3{,}493{,}036{,}197 \pi ^{10}} + \frac{995{,}086{,}336}{7{,}231{,}959 \pi ^{12}} \\ &\quad {} -\frac{2{,}039{,}808}{4991 \pi ^{14}}+ \frac{94{,}208 \rho _{11}}{651 \pi ^{15}} + \frac{94{,}208 \rho _{12}}{651 \pi ^{15}} \biggr) \sqrt{14{,}973} \\ &\approx 7.938427 \cdot 10^{-7} >0, \end{aligned} \\& \begin{aligned} \mu _{3,2}&= \biggl( \frac{13{,}860{,}984{,}407{,}679{,}042{,}511{,}241{,}872}{80{,}794{,}101{,}399{,}478{,}769{,}763{,}709{,}372{,}232{,}703}\\ &\quad {}+ \frac{389{,}773{,}948{,}131{,}949{,}713{,}869{,}312}{207{,}493{,}932{,}576{,}009{,}812{,}406{,}094{,}575 \pi ^{4}} \\ &\quad {} -\frac{40{,}894{,}464}{31 \pi ^{18}} - \frac{6{,}635{,}520 \rho _{10}}{31 \pi ^{15}} + \frac{6{,}635{,}520 \rho _{9}}{31 \pi ^{15}}+ \frac{49{,}152 \rho _{10}}{\pi ^{17}} -\frac{49{,}152 \rho _{9}}{\pi ^{17}} \\ &\quad {} +\frac{30{,}670{,}848 \rho _{5}}{31 \pi ^{18}}+ \frac{10{,}223{,}616 \rho _{8}}{31 \pi ^{18}}+ \frac{2{,}521{,}825{,}280}{4991 \pi ^{16}}\\ &\quad {}+ \frac{5{,}375{,}227{,}967{,}872{,}815{,}104}{770{,}068{,}140{,}687{,}026{,}685 \pi ^{8}}- \frac{44{,}736{,}004{,}993{,}052{,}672}{177{,}149{,}330{,}730{,}855 \pi ^{10}} \\ &\quad {} + \frac{305{,}099{,}932{,}893{,}184}{52{,}395{,}542{,}955 \pi ^{12}} - \frac{550{,}535{,}757{,}824}{7{,}231{,}959 \pi ^{14}} \\ &\quad {}- \frac{979{,}671{,}812{,}418{,}224{,}756{,}622{,}224}{48{,}493{,}340{,}048{,}812{,}615{,}834{,}908{,}232{,}125 \pi ^{2}}\\ &\quad {} -\frac{8{,}202{,}708{,}703{,}446{,}794{,}527{,}744}{61{,}370{,}580{,}472{,}052{,}591{,}661{,}075 \pi ^{6}}\biggr) \\ &\quad {} +\biggl(-\frac{1{,}665{,}837{,}617{,}047{,}196{,}295{,}904}{1{,}302{,}854{,}402{,}644{,}765{,}612{,}097{,}867{,}836{,}425} \\ &\quad {}- \frac{2{,}810{,}863{,}942{,}243{,}212{,}203{,}024{,}368}{19{,}542{,}816{,}039{,}671{,}484{,}181{,}468{,}017{,}546{,}375 \pi ^{2}} \\ &\quad {} +\frac{32{,}693{,}850{,}502{,}844{,}788{,}384}{2{,}621{,}400{,}508{,}734{,}817{,}843{,}808{,}775 \pi ^{4}}- \frac{3{,}142{,}228{,}027{,}482{,}915{,}584}{4{,}091{,}372{,}031{,}470{,}172{,}777{,}405 \pi ^{6}} \\ &\quad {} + \frac{20{,}431{,}505{,}586{,}135{,}808}{770{,}068{,}140{,}687{,}026{,}685 \pi ^{8}} + \frac{4{,}692{,}888{,}387{,}584}{59{,}049{,}776{,}910{,}285 \pi ^{10}}- \frac{117{,}304{,}573{,}952}{3{,}493{,}036{,}197 \pi ^{12}} \\ &\quad {} +\frac{1{,}440{,}382{,}976}{7{,}231{,}959 \pi ^{14}}+ \frac{8{,}159{,}232}{4991 \pi ^{16}}- \frac{376{,}832 \rho _{9}}{217 \pi ^{17}}- \frac{376{,}832 \rho _{10}}{217 \pi ^{17}} \biggr) \sqrt{14{,}973} \\ &\approx -2.91 \cdot 10^{-7} < 0, \end{aligned} \\& \mu _{3,3}=\biggl(- \frac{55{,}443{,}937{,}630{,}716{,}170{,}044{,}967{,}488}{80{,}794{,}101{,}399{,}478{,}769{,}763{,}709{,}372{,}232{,}703 \pi ^{2}}\\& \hphantom{\mu _{3,3}=}{}+ \frac{3{,}918{,}687{,}249{,}672{,}899{,}026{,}488{,}896}{48{,}493{,}340{,}048{,}812{,}615{,}834{,}908{,}232{,}125 \pi ^{4}} \\& \hphantom{\mu _{3,3}=}{}- \frac{1{,}559{,}095{,}792{,}527{,}798{,}855{,}477{,}248}{207{,}493{,}932{,}576{,}009{,}812{,}406{,}094{,}575 \pi ^{6}}\\& \hphantom{\mu _{3,3}=}{}+ \frac{32{,}810{,}834{,}813{,}787{,}178{,}110{,}976}{61{,}370{,}580{,}472{,}052{,}591{,}661{,}075 \pi ^{8}} - \frac{21{,}500{,}911{,}871{,}491{,}260{,}416}{770{,}068{,}140{,}687{,}026{,}685 \pi ^{10}} \\& \hphantom{\mu _{3,3}=}{}+ \frac{178{,}944{,}019{,}972{,}210{,}688}{177{,}149{,}330{,}730{,}855 \pi ^{12}} - \frac{1{,}220{,}399{,}731{,}572{,}736}{52{,}395{,}542{,}955 \pi ^{14}}\\& \hphantom{\mu _{3,3}=}{}+ \frac{2{,}202{,}143{,}031{,}296}{7{,}231{,}959 \pi ^{16}}- \frac{10{,}087{,}301{,}120}{4991 \pi ^{18}} \\& \hphantom{\mu _{3,3}=}{} -\frac{122{,}683{,}392 \rho _{6}}{31 \pi ^{20}}- \frac{40{,}894{,}464 \rho _{7}}{31 \pi ^{20}}+ \frac{163{,}577{,}856}{31 \pi ^{20}}\biggr) \\& \hphantom{\mu _{3,3}=}{}+\biggl( \frac{29{,}639{,}010{,}266{,}103{,}867{,}934}{1{,}231{,}197{,}410{,}499{,}303{,}503{,}432{,}485{,}105{,}421{,}625} \\& \hphantom{\mu _{3,3}=}{} + \frac{139{,}388{,}160{,}789{,}931{,}088{,}576}{27{,}332{,}609{,}845{,}694{,}383{,}470{,}584{,}639{,}925 \pi ^{2}} \\& \hphantom{\mu _{3,3}=}{}- \frac{85{,}650{,}627{,}306{,}371{,}917{,}376}{148{,}209{,}951{,}840{,}007{,}008{,}861{,}496{,}125 \pi ^{4}} \\& \hphantom{\mu _{3,3}=}{} +\frac{1{,}041{,}424{,}249{,}904{,}576{,}512}{20{,}456{,}860{,}157{,}350{,}863{,}887{,}025 \pi ^{6}} - \frac{2{,}584{,}322{,}860{,}261{,}376}{770{,}068{,}140{,}687{,}026{,}685 \pi ^{8}} \\& \hphantom{\mu _{3,3}=}{} +\frac{27{,}847{,}335{,}952{,}384}{177{,}149{,}330{,}730{,}855 \pi ^{10}}- \frac{84{,}756{,}119{,}552}{17{,}465{,}180{,}985 \pi ^{12}}+ \frac{630{,}456{,}320}{7{,}231{,}959 \pi ^{14}} \\& \hphantom{\mu _{3,3}=}{} - \frac{3{,}407{,}872}{4991 \pi ^{16}} \biggr) \sqrt{14{,}973} \\& \hphantom{\mu _{3,3}}\approx -2.9 \cdot 10^{-10} < 0, \\& \begin{aligned} \mu _{3,4}&= \biggl(\frac{131{,}072 \rho _{5}}{\pi ^{18}}- \frac{131{,}072 \rho _{6}}{\pi ^{18}}\biggr)\\ &\quad {}+ \biggl(- \frac{118{,}556{,}041{,}064{,}415{,}471{,}736}{1{,}231{,}197{,}410{,}499{,}303{,}503{,}432{,}485{,}105{,}421{,}625 \pi ^{2}} \\ &\quad {} + \frac{2{,}001{,}544{,}751{,}520{,}343{,}808}{33{,}987{,}506{,}155{,}950{,}407{,}272{,}118{,}291{,}385 \pi ^{4}}\\ &\quad {} - \frac{105{,}738{,}640{,}249{,}509{,}632}{3{,}866{,}346{,}569{,}739{,}313{,}274{,}647{,}725 \pi ^{6}} \\ &\quad {} +\frac{2{,}242{,}738{,}829{,}640{,}704}{242{,}571{,}464{,}316{,}413{,}405{,}775 \pi ^{8}} - \frac{4{,}806{,}306{,}467{,}840}{2{,}232{,}081{,}567{,}208{,}773 \pi ^{10}} \\ &\quad {} + \frac{1{,}059{,}206{,}610{,}944}{3{,}300{,}919{,}206{,}165 \pi ^{12}}- \frac{12{,}524{,}683{,}264}{455{,}613{,}417 \pi ^{14}} + \frac{344{,}719{,}360}{314{,}433 \pi ^{16}}+ \frac{3{,}014{,}656 \rho _{5}}{651 \pi ^{18}} \\ &\quad {} +\frac{3{,}014{,}656 \rho _{6}}{651 \pi ^{18}}- \frac{6{,}029{,}312}{651 \pi ^{18}} \biggr) \sqrt{14{,}973} \\ &\approx -1.4 \cdot 10^{-14} < 0. \end{aligned} \end{aligned}$$

Note that \(2 \sqrt{ \mu _{3,0} \mu _{3,2}}-\mu _{3,1} \approx 1.9 \cdot 10^{-6}>0\), \(\mu _{3,i}<0\), \(i\neq 1\) and \(\mu _{3,1}>0\), combining Eq. (47) with Eq. (46), for \(x \in (0, \frac{\pi }{2})\), one obtains

$$ \begin{aligned} R_{3}(x,\alpha _{3})&< p_{1} \bar{U}_{s,\beta _{6}}(x) + q_{1} \bar{L}_{s, \beta _{6}}(x) + p_{2} \bar{U}_{s,\beta _{7}}(x) + q_{2} \bar{L}_{s, \beta _{7}}(x) \\ &\quad {} +p_{3} \bar{U}_{s,\beta _{3}}(x) + q_{3} \bar{L}_{s,\beta _{3}}(x) +p_{4} \bar{U}_{s,\beta _{2}}(x) + q_{4} \bar{L}_{s,\beta _{2}}(x) \\ &\quad {} +p_{5} \bar{U}_{c,\beta _{3}}(x) + q_{5} \bar{L}_{c,\beta _{3}}(x) +p_{6} \bar{U}_{c,\beta _{2}}(x) + q_{6} \bar{L}_{c,\beta _{2}}(x) \\ &\quad {} + p_{7} \bar{U}_{c,\beta _{6}}(x) + q_{7} \bar{L}_{c,\beta _{6}}(x) + p_{8} \bar{U}_{c,\beta _{7}}(x) + q_{8} \bar{L}_{c,\beta _{7}}(x) \\ &=x^{14}\bigl(\mu _{3,0}+\mu _{3,1} x^{2} +\mu _{3,2} x^{4} +\mu _{3,3} x^{6} +\mu _{3,4} x^{8}\bigr) < 0. \end{aligned} $$
(48)

Combining Eq. (45) and Eq. (46) with Eq. (48), \(\forall x \in (0, \frac{\pi }{2})\), one has

$$ R_{2}'(x,\alpha _{3})< 0\quad \text{and}\quad R_{2}(x,\alpha _{3}) < R_{2}(0, \alpha _{3})=0 \quad \text{and}\quad F(x)< G_{2}(x,\alpha _{3}). $$
(49)

4.2 Proof of \(F(x)>G_{2}(x,\alpha _{4})\)

First, we prove

$$ R_{3}(x,\alpha _{4}) > 0, \quad \forall x \in \biggl(0, \frac{5}{4}\biggr). $$
(50)

Let \(\theta = \frac{5}{4}\) and \(\theta _{2}=\theta ^{2}= \frac{25}{16}\), \(\bar{B}_{6,i}(x)=C_{i}^{6}(\theta _{2}-x^{2})^{6-i} x^{2i}\) such that \(\bar{B}_{6,i}(x)>0\) for \(\forall x \in (0,\theta )\). By using Maple software, for \(\forall x \in (0,\theta )\), it can be verified that

$$ \begin{aligned} R_{3}(x,\alpha _{4})&> p_{1} \bar{L}_{s,\beta _{8}}(x) + q_{1} \bar{U}_{s, \beta _{8}}(x) + p_{2} \bar{L}_{s,\beta _{9}}(x) + q_{2} \bar{U}_{s, \beta _{9}}(x) \\ &\quad {} +p_{3} \bar{L}_{s,\beta _{5}}(x) + q_{3} \bar{U}_{s,\beta _{5}}(x) +p_{4} \bar{L}_{s,\beta _{4}}(x) + q_{4} \bar{U}_{s,\beta _{4}}(x) \\ &\quad {} +p_{5} \bar{L}_{c,\beta _{5}}(x) + q_{5} \bar{U}_{c,\beta _{5}}(x) +p_{6} \bar{L}_{c,\beta _{4}}(x) + q_{6} \bar{U}_{c,\beta _{4}}(x) \\ &\quad {} + p_{7} \bar{L}_{c,\beta _{8}}(x) + q_{7} \bar{U}_{c,\beta _{8}}(x) + p_{8} \bar{L}_{c,\beta _{9}}(x) + q_{8} \bar{U}_{c,\beta _{9}}(x) \\ &=x^{12}\Biggl(\sum_{i=0}^{6}{ \mu _{4,i} \bar{B}_{6,i}(x)}\Biggr) >0, \end{aligned} $$
(51)

where \(\mu _{4,0} \approx 2.5 \cdot 10^{-6}>0\), \(\mu _{4,1} \approx 2.1\cdot 10^{-6}>0\), \(\mu _{4,2} \approx 1.7 \cdot 10^{-6}>0\), \(\mu _{4,3} \approx 1.2 \cdot 10^{-6} >0\), \(\mu _{4,4} \approx 8.8 \cdot 10^{-7} >0\), \(\mu _{4,5} \approx 5.0 \cdot 10^{-7} >0\), \(\mu _{4,6} \approx 1.3 \cdot 10^{-7} >0\).

Secondly, let \(\theta _{3}= \frac{\pi ^{2}}{4}\), \(\hat{B}_{6,i}(x)= \frac{C_{i}^{6}(\theta _{3}-x^{2})^{6-i} (x^{2}-\theta _{2})^{i}}{(\theta _{3}-\theta _{2})^{6}}\) such that \(\hat{B}_{6,i}(x)>0\) for \(\forall x \in (\theta , \frac{\pi }{2})\), and

$$ \begin{gathered} \bar{p}_{1} \triangleq \bar{p}_{1}(\alpha )= \frac{x^{2} (23-84 \alpha ^{2})}{14 \alpha ^{2}}, \\ \bar{q}_{1} \triangleq \bar{q}_{1}(\alpha ) = \frac{ x^{4} (21 \alpha ^{2}+2 \alpha -23)}{42 \alpha} + \frac{ (-147 \alpha ^{3}+126 \alpha ^{2}-23)}{(56 \alpha ^{2})}, \\ \bar{p}_{2} \triangleq \bar{p}_{2}(\alpha ) = \frac{ (-147 \alpha ^{3}-126 \alpha ^{2}+23)}{56 \alpha ^{2}}, \\ \bar{q}_{2}\triangleq \bar{q}_{2}(\alpha ) = \frac{ (252 \alpha ^{2}-69) x^{2}}{42 \alpha ^{2}}+ \frac{ (21 \alpha ^{3}-2 \alpha ^{2}-23 \alpha ) x^{4}}{42 \alpha ^{2}} , \\ \bar{p}_{3} \triangleq \bar{p}_{3}(\alpha ) = 0, \qquad \bar{q}_{3} \triangleq \bar{q}_{3}(\alpha ) = \frac{ (49 \alpha ^{3}+126 \alpha ^{2}-23)}{56 \alpha ^{2}}, \\ \bar{p}_{4}\triangleq \bar{p}_{4}(\alpha ) = \frac{ (49 \alpha ^{3}-126 \alpha ^{2}+23)}{56 \alpha ^{2}}, \qquad \bar{q}_{4}=0, \\ \bar{p}_{5} \triangleq \bar{p}_{5}(\alpha ) = \frac{ x (3+\alpha ) (23-63 \alpha )}{168 \alpha}, \qquad \bar{q}_{5}=0, \qquad \\ \bar{p}_{6} \triangleq \bar{p}_{6}(\alpha ) = \frac{ -x (\alpha -3) (23+63 \alpha )}{168 \alpha}, \qquad \bar{q}_{6} =0, \\ \bar{p}_{7}\triangleq \bar{p}_{7}(\alpha ) = \frac{ x^{3} (84 \alpha ^{3}+69 \alpha +23)}{42 \alpha ^{2}}, \quad \bar{q}_{7} \triangleq \bar{q}_{7}( \alpha )= \frac{x (21 \alpha ^{2}+2 \alpha -23)}{56\alpha}, \\ \bar{p}_{8} \triangleq \bar{p}_{8}(\alpha ) = 0, \\ \bar{q}_{8} \triangleq \bar{q}_{8}(\alpha ) = \frac{(63 \alpha ^{3}-6 \alpha ^{2}-69 \alpha ) x}{168 \alpha ^{2}} + \frac{(336 \alpha ^{3}+276 \alpha -92) x^{3}}{168 \alpha ^{2}}. \end{gathered} $$
(52)

By using Maple software, for \(\forall x \in ( \frac{5}{4}, \frac{\pi }{2})\), it can be verified that

$$\begin{aligned} R_{4}(x,\alpha )&=R_{3}'(x, \alpha ) =\bar{p}_{1} \sin (x-\alpha x) + \bar{q}_{1} \sin (x-\alpha x) \\ &\quad {} + \bar{p}_{2} \sin (x+\alpha x) + \bar{q}_{2} \sin (x+\alpha x) + \bar{p}_{3} \sin (3x+\alpha x) \\ &\quad {} + \bar{q}_{3} \sin (3x+\alpha x) +\bar{p}_{4} \sin (3x-\alpha x) + \bar{q}_{4} \sin (3x-\alpha x) \\ &\quad {} +\bar{p}_{5} \cos (3x+\alpha x) + \bar{q}_{5} \cos (3x+\alpha x)+ \bar{p}_{6} \cos (3x-\alpha x) \\ &\quad {} + \bar{q}_{6} \cos (3x-\alpha x) + \bar{p}_{7} \cos (x-\alpha x) + \bar{q}_{7} \cos (x-\alpha x) \\ &\quad {} + \bar{p}_{8} \cos (x+\alpha x) + \bar{q}_{8} \cos (x+\alpha x) \\ &< p_{1} \bar{U}_{s,\beta _{8}}(x) + q_{1} \bar{L}_{s,\beta _{8}}(x) + p_{2} \bar{U}_{s,\beta _{9}}(x) + q_{2} \bar{L}_{s,\beta _{9}}(x) \\ &\quad {} +p_{3} \bar{U}_{s,\beta _{5}}(x) + q_{3} \bar{L}_{s,\beta _{5}}(x) +p_{4} \bar{U}_{s,\beta _{4}}(x) + q_{4} \bar{L}_{s,\beta _{4}}(x) \\ &\quad {} +p_{5} \bar{U}_{c,\beta _{5}}(x) + q_{5} \bar{L}_{c,\beta _{5}}(x) +p_{6} \bar{U}_{c,\beta _{4}}(x) + q_{6} \bar{L}_{c,\beta _{4}}(x) \\ &\quad {} + p_{7} \bar{U}_{c,\beta _{8}}(x) + q_{7} \bar{L}_{c,\beta _{8}}(x) + p_{8} \bar{U}_{c,\beta _{9}}(x) + q_{8} \bar{L}_{c,\beta _{9}}(x) \\ &=x^{11}\Biggl(\sum_{i=0}^{6}{ \mu _{5,i} \bar{B}_{6,i}(x)}\Biggr) < 0, \end{aligned}$$
(53)

where \(\mu _{5,0} \approx -0.12 \cdot 10^{-4}<0\), \(\mu _{5,1} \approx -0.15 \cdot 10^{-4}<0\), \(\mu _{5,2} \approx -0.17\cdot 10^{-4}<0\), \(\mu _{5,3} \approx -0.19\cdot 10^{-4}<0\), \(\mu _{5,4} \approx -0.20\cdot 10^{-4}<0\), \(\mu _{5,5} \approx -0.19 \cdot 10^{-4}<0\), \(\mu _{5,6} \approx -0.17 \cdot 10^{-4}<0\).

Note that \(R_{3}( \frac{5}{4},\alpha _{4})\approx 2.4 \cdot 10^{-6}>0\) and \(R_{3}( \frac{\pi }{2},\alpha _{4})\approx -2.2 \cdot 10^{-4}<0\), combining Eq. (46) and Eq. (52) with Eq. (53), there exists \(x_{0} \in ( \frac{5}{4}, \frac{\pi }{2})\) such that

$$ \textstyle\begin{cases} R_{3}(x,\alpha _{4}) > 0 \quad \text{and}\quad R_{2}'(x,\alpha _{4})>0,\quad \forall x \in (0,x_{0}), \\ R_{3}(x,\alpha _{4}) < 0 \quad \text{and}\quad R_{2}'(x,\alpha _{4})< 0,\quad \forall x \in (x_{0}, \frac{\pi }{2}). \end{cases} $$
(54)

Combining with Eq. (54), one obtains

$$ {\textstyle\begin{cases} R_{2}(x_{0},\alpha _{4}) > R_{2}(x,\alpha _{4}) > R_{2}(0,\alpha _{4})=0, \quad \forall x \in (0,x_{0}), \\ R_{2}(x_{0},\alpha _{4}) > R_{2}(x,\alpha _{4}) > R_{2}( \frac{\pi }{2},\alpha _{4})=0, \quad \forall x \in (x_{0}, \frac{\pi }{2}), \end{cases}\displaystyle } $$
(55)

which leads to

$$ R_{2}(x,\alpha _{4}) > 0, \quad \forall x \in \biggl(0, \frac{\pi }{2}\biggr). $$
(56)

From Eq. (56), we obtain

$$ F(x) > G_{2}(x,\alpha _{4}), \quad \forall x \in \biggl(0, \frac{\pi }{2}\biggr). $$
(57)

Combining Eq. (57) with Eq. (49), one obtains Eq. (15), and the proof is completed.

5 Discussions and conclusions

Figure 1 shows the error plots of different bounds, i.e., \(F(x)-Z_{i}(x)\) from Eq. (8) (in solid black) and \(F(x)-G_{1}(x,\alpha _{i})\) from Eq. (14) (in dashed red), \(i=1,2\). the maximum errors of lower bounds \(F(x)-Z_{1}(x)\) and \(F(x)-G_{1}(x,\alpha _{2})\) are ≈0.0024817 and ≈0.0008217, while \(F(x) \leq G_{1}(x,\alpha _{1}) \leq Z_{2}(x)\), which means the approximation effect from Eq. (14) is much better than that from Eq. (8). Similarly, Fig. 2 shows the error plots of different bounds, i.e., \(F(x)-Z_{i+2}(x)\) from Eq. (9) (in solid black) and \(F(x)-G_{2}(x,\alpha _{i})\) from Eq. (15) (in dashed red), \(i=1,2\). Again, it shows that the approximation effect from Eq. (15) is much better than that from Eq. (9).

Figure 1
figure 1

Error plots of (a) bounds from Eq. (8) (in solid black) and Eq. (14) (in dashed red), and (b\(Z_{2}(x)-G_{1}(x,\alpha _{1})\) in dotted blue

Figure 2
figure 2

Error plots of bounds from Eq. (9) and Eq. (15)

This paper provides new bounds of Mitrinović–Adamović inequalities, which achieve much better approximation accuracy. It also proposes a new method for proving the inequalities by combining the classical mathematical method with Maple software, the corresponding idea is coincident with those in [6, 23], which tends to automatically prove the inequalities on mixed trigonometric polynomial functions. In principle,for a positive integer number n and \(x \in [0,\frac{\pi}{2n}]\), \(\cos (n x)\) and \(\sin (n x)\) can be bounded by using two polynomials that satisfy arbitrary precision, which can be proved in a similar way to Lemma 1. Thus, any mixed trigonometric polynomial function can be bounded by piecewise polynomials. Note that there are many methods for proving inequalities in polynomial form, it is promising to extend the idea in this paper to automatically prove inequalities on mixed trigonometric polynomial functions, which will be one of our future studies.

Availability of data and materials

Not applicable.

References

  1. Mitrinović, D.S., Adamović, D.D.: Sur une inegalite elementaire ou interviennent des fonctions trigonometriques. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 149, 23–34 (1965)

    MATH  Google Scholar 

  2. Mitrinović, D.S., Adamović, D.D.: Complement a l’article sur une inegalite elementaire ou interviennent des fonctions trigonometriques. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 166, 31–32 (1966)

    MATH  Google Scholar 

  3. Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  4. Nishizawa, Y.: Sharp exponential approximate inequalities for trigonometric functions. Results Math. 71, 609–621 (2017). https://doi.org/10.1007/s00025-016-0566-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, L., Nenezic, M.: New approximation inequalities for circular functions. J. Inequal. Appl. 2018, 313 (2018). https://doi.org/10.1186/s13660-018-1910-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Malešević, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10(3), 849–876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Malešević, B., Lutovac, T., Banjac, B.: A proof of an open problem of Yusuke Nishizawa for a power-exponential function. J. Math. Inequal. 12(2), 473–485 (2018). https://doi.org/10.7153/jmi-2018-12-35

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.D., Ma, J.Y., Li, Y.X.: Approximating trigonometric functions by using exponential inequalities. J. Inequal. Appl. 2019, 53 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X.D., Wang, H., Yang, K., Xie, J.: New bounds of Wilker- and Huygens-type inequalities for inverse trigonometric functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115(1), Paper No. 36, 14 (2021). https://doi.org/10.1007/s13398-020-00969-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Song, Y.Q., Qian, W.M., Chu, Y.M.: Optimal bounds for Neuman mean using arithmetic and centroidal means. J. Funct. Spaces 2016, Article ID 5131907 7 (2016). https://doi.org/10.1155/2016/5131907

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, B., Luo, C.L., Li, S.H., Chu, Y.M.: Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(1), Paper No. 7, 10 (2020). https://doi.org/10.1007/s13398-019-00734-0

    Article  MATH  Google Scholar 

  12. Xia, W., Chu, Y.M.: Optimal inequalities between Neuman-Sándor, centroidal and harmonic means. J. Math. Inequal. 7(4), 593–600 (2013). https://doi.org/10.7153/jmi-07-56

    Article  MathSciNet  MATH  Google Scholar 

  13. He, X.H., Qian, W.M., Xu, H.Z., Chu, Y.M.: Sharp power mean bounds for two Sándor-Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019). https://doi.org/10.1007/s13398-019-00643-2

    Article  MathSciNet  MATH  Google Scholar 

  14. He, Z.Y., Wang, M.K., Jiang, Y.P., Chu, Y.M.: Bounds for the perimeter of an ellipse in terms of power means. J. Math. Inequal. 14(3), 887–899 (2020). https://doi.org/10.7153/jmi-2020-14-58

    Article  MathSciNet  MATH  Google Scholar 

  15. Qian, W.M., He, Z.Y., Zhang, H.W., Chu, Y.M.: Sharp bounds for Neuman means interms of two parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Paper No. 168, 13 (2019). https://doi.org/10.1186/s13660-019-2124-5

    Article  MATH  Google Scholar 

  16. Bagul, Y.J., Chesneau, C., Kostić, M.: On the Cusa-Huygens inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115(1), Paper No. 29, 12 (2021). https://doi.org/10.1007/s13398-020-00978-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Bagul, Y.J., Chesneau, C.: Some new simple inequalities involving exponential, trigonometric and hyperbolic functions. CUBO 21, 21–35 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qian, C., Chen, X.D., Malešević, B.: Tighter bounds for the inequalities of Sinc function based on reparameterization. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 116, Paper No. 29 (2022). https://doi.org/10.1007/s13398-021-01170-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, X.D., Qian, C., Zhu, P., Pan, X.H.: Monotonous two-parameter functions for asymptoticly approximating the inequalities involving the inverse tangent functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 116(1), Paper No. 16 (2022). https://doi.org/10.1007/s13398-021-01152-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, X.D., Wang, H., Yu, J.L., Cheng, Z.L., Zhu, P.: New bounds of Sinc function by using a family of exponential functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 116(1), Paper No. 16 (2022). https://doi.org/10.1007/s13398-021-01133-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, W., Chen, X.D., Ma, X.Y., Chen, L.Q.: New inequalities for hyperbolic functions based on reparameterization. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115, Paper No. 3 (2021). https://doi.org/10.1007/s13398-020-00941-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Malešević, B., Rašajski, M., Lutovac, T.: Refinements and generalizations of some inequalities of Shafer–Fink’s type for the inverse sine function. J. Inequal. Appl. 2017, 275 (2017). https://doi.org/10.1186/s13660-017-1554-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Banjac, B., Makragic, M., Malešević, B.: Some notes on a method for proving inequalities by computer. Results Math. 69(1), 161–176 (2016). https://doi.org/10.1007/s00025-015-0485-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Nishizawa, Y.: Sharpening of Jordan’s type and Shafer–Fink’s type inequalities with exponential approximations. Appl. Math. Comput. 269, 146–154 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Bhayo, B.A., Sandor, J.: On Jordan’s, Redheffer’s and Wilker’s inequality. Math. Inequal. Appl. 19(3), 823–839 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Zhu, L.: Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(2), Paper No. 81, 17 pp. (2020). https://doi.org/10.1007/s13398-020-00811-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, L.: A source of inequalities for circular functions. Comput. Math. Appl. 58(10), 1998–2004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Z.-H.: Sharp bounds for Seiffert mean in terms of weighted power means of arithmetic mean and geometric mean. Math. Inequal. Appl. 17(2), 499–514 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, L., Zhang, R.J.: New inequalities of Mitrinović–Adamović type. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 116, Paper No. 34 (2022). https://doi.org/10.1007/s13398-021-01174-5

    Article  MATH  Google Scholar 

  30. Wu, S.H., Li, S.G.: Sharpened versions of Mitrinovic–Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688–2696 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, L.: Sharpening Redheffer–type inequalities for circular functions. Appl. Math. Lett. 22, 743–748 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, L., Sun, J.J.: Six new Redheffer–type inequalities for circular and hyperbolic functions. Appl. Math. Lett. 56, 522–529 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Zhu, L.: An unity of Mitrinovic–Adamovic and Cusa–Huygens inequalities and the analogue for hyperbolic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(4), 3399–3412 (2019). https://doi.org/10.1007/s13398-019-00706-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Lv, Y., Wang, G., Chu, Y.: A note on Jordan type inequalities for hyperbolic functions. Appl. Math. Lett. 25(3), 505–508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, X.D., Shi, J.R., Wang, Y.G., Xiang, P.: A new method for sharpening the bounds of several special functions. Results Math. 72(1–2), 695–702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177–1198 (2015). https://doi.org/10.1016/j.amc.2015.07.025

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, Z.-H., Chu, Y.-M.: A sharp double inequality involving trigonometric functions and its applications. J. Math. Inequal. 10(2), 423–432 (2016). https://doi.org/10.7153/jmi-10-33

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi, F., Niu, D.-W., Guo, B.-N.: Refinements, generalizations, and applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, Article ID 271923 (2009). https://doi.org/10.1155/2009/271923

    Article  MathSciNet  MATH  Google Scholar 

  39. Qi, F.: A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 351, 1–5 (2019). https://doi.org/10.1016/j.cam.2018.10.049

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, Z.-H., Tian, J.-F.: Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 364, Article ID 112359 (2020). https://doi.org/10.1016/j.cam.2019.11235

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, T.R., Tan, S.Y., Ma, X.Y., Chu, Y.M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018(1), 239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bercu, G.: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016(1), 99 (2016)

    Article  MATH  Google Scholar 

  43. Gupta, V., Agrawal, G.: Approximation formodification of exponential type operators connected with \(x(x+1)^{2}\). Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(3), Paper No. 158, 14 pp. (2020). https://doi.org/10.1007/s13398-020-00889-1

    Article  MATH  Google Scholar 

  44. Zhu, L.: New Mitrinovic–Adamovic type inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(3), Paper No. 119, 14 pp. (2020). https://doi.org/10.1007/s13398-020-00848-w

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhu, L., Malešević, B.: Natural approximation of Masjed–Jamei’s inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(1), Paper No. 25, 11 pp. (2020). https://doi.org/10.1007/s13398-019-00735-z

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, L.: Sharp inequalities of Mitrinovic–Adamovic type. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(2), 957–968 (2019). https://doi.org/10.1007/s13398-018-0521-0

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu, L.: Natural approachs of Young’s inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(1), Paper No. 24, 11 pp. (2020). https://doi.org/10.1007/s13398-019-00770-w

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, L.: New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(2), Paper No. 83 (2020). https://doi.org/10.1007/s13398-020-00814-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Bercu, G.: The natural approach of trigonometric inequalities—Pade approximant. J. Math. Inequal. 11(1), 181–191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Debnath, L., Zhao, C.J.: New strengthened Jordan’s inequality and its applications. Math. Inequal. Appl. 16(4), 557–560 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Nenezic, M., Zhu, L.: Some improvements of Jordan–Steckin and Becker–Stark inequalities. Appl. Anal. Discrete Math. 12, 244–256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Qiu, Y.Y., Zhu, L.: The best approximation of the Sinc function by a polynomial of degree n with the square norm. J. Inequal. Appl. 2010, 12 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Ren, Y.H.: Some results of Young-type inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(3), Paper No. 143, 10 pp. (2020). https://doi.org/10.1007/s13398-020-00880-w

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu, S.H., Debnath, L.: A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality. Appl. Math. Lett. 19, 1378–1384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, L.: A general refinement of Jordan’s inequalities and its applications. Math. Inequal. Appl. 11(4), 655–665 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Zhu, L.: An extended Jordan’s inequality in exponential type. Appl. Math. Lett. 24, 1870–1873 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Davis, P.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their valuable suggestions and comments that helped us to improve this paper greatly.

Funding

This research work was partially supported by the National Natural Science Foundation of China (61972120), the Zhejiang Basic Public Welfare Research Project (Grant No. LGG20F020001) and the Key Lab of Film and TV Media Technology of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Contributions

QG deduced the conclusions in Theorems 1 and 2; both QG and CX verified and proved these two theorems. All authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Diao Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, G., Chen, XD. Improved bounds of Mitrinović–Adamović-type inequalities by using two-parameter functions. J Inequal Appl 2023, 25 (2023). https://doi.org/10.1186/s13660-023-02940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02940-2

MSC

Keywords