Skip to main content

Some weakly singular Volterra integral inequalities with maxima in two variables

Abstract

In this paper, we establish some new weakly singular Volterra type integral inequalities that include the maxima of the unknown function of two variables. We also use the results to research the boundedness of solutions to retarded nonlinear Volterra type integral equations.

1 Introduction

Alongside mathematics development, inequalities have played increasingly important roles in theory and applications. Gronwall–Bellman inequality and Bihari inequality are highly prominent inequalities [13], which provided important tools to study the qualitative properties of differential equations, integral equations, and integro-differential equations such as existence, uniqueness, oscillation, stability, boundedness, invariant manifolds, and other properties. Over the past few decades, various researchers have worked on related issues, and a lot of research results have been obtained, including differential system, difference system, time-scale system [431]. In [712, 29], the Volterra–Fredholm type inequalities were examined. There have also been some results for integral inequalities containing the maxima of the unknown functions [12, 2329]. In recent years, with the rising of fractional order calculation, the study on weak singular inequalities has become a hot topic [1316, 31].

In 1997, Medved [4] discussed the following Henry type integral inequalities:

$$\begin{aligned} u(t)\leq a(t)+b(t) \int _{t_{0}}^{t}(t-s)^{\beta -1}s^{\gamma -1}F(s)u(s) \,ds,\quad t\geq 0. \end{aligned}$$
(1.1)

In 2008, Ma and Pec̆airé [13] investigated some new explicit bounds for weakly singular integral inequalities

$$\begin{aligned} \begin{aligned} u^{p}(t)\leq a(t)+b(t) \int _{t_{0}}^{t}\bigl(t^{\alpha}-s^{ \alpha} \bigr)^{\beta -1}s^{\gamma -1}f(s)u^{q}(s)\,ds,\quad t\geq 0. \end{aligned} \end{aligned}$$
(1.2)

In 2010, Wang and Zheng [31] investigated the nonlinear weakly singular integral inequalities with two variables

$$\begin{aligned} \begin{aligned} u(x,y)\leq{}& a(x,y)\\ &{}+ \int _{0}^{x} \int _{0}^{y}\bigl(x^{\alpha}-s^{ \alpha} \bigr)^{\beta -1}s^{\gamma -1}\bigl(y^{\alpha}-t^{\alpha} \bigr)^{\beta -1}t^{ \gamma -1}f(x,y,s,t)\omega \bigl(u(s,t)\bigr)\,ds\,dt. \end{aligned} \end{aligned}$$
(1.3)

In 2013, Yan [27] investigated the nonlinear Gronwall–Bellman type integral inequalities with maxima of two variables

$$\begin{aligned} &\begin{aligned}&\varphi \bigl(u(x,y)\bigr)\leq a(x,y)+ \sum^{n}_{i=1} \int _{ \alpha _{i}(x_{0})}^{\alpha _{i}(x)} \int _{\beta _{i}(y_{0})}^{\beta _{i}(y)}f_{i}(x,y,s,t) \omega _{i}\bigl(u(s,t)\bigr)\,dt\,ds \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}+\sum^{n+m}_{j=n+1} \int _{\alpha _{j}(x_{0})}^{\alpha _{j}(x)} \int _{ \beta _{j}(y_{0})}^{\beta _{j}(y)}f_{j}(x,y,s,t)\omega _{i} \Bigl( \max_{\xi \in [s-h,s]} g\bigl(u(\xi ,t)\bigr) \Bigr)\,dt\,ds,\\ &\quad (x,y)\in [x_{0},x_{1})\times [y_{0},y_{1}), \end{aligned} \\ &u(x,y)\leq \psi (x,y),\quad (x,y)\in \bigl[\alpha _{\ast}(x_{0})-h,x_{0} \bigr] \times [y_{0},y_{1}). \end{aligned}$$
(1.4)

In 2014, Thiramanus et al. [28] investigated the Henry–Gronwall integral inequalities with maxima

$$\begin{aligned} \begin{aligned} &u(t)\leq r(t)+ \int _{t_{0}}^{t}(t-s)^{\alpha -1} \Bigl[p(s)u(s)+q(s) \max_{\xi \in [\beta s,s]}u(\xi ) \Bigr]\,ds,\quad t\in [t_{0},T), \\ &u(t)\leq \phi (t),\quad t\in [\beta t_{0},t_{0}]. \end{aligned} \end{aligned}$$
(1.5)

In 2015, Yan [23] investigated some new weakly singular Volterra integral inequalities with maxima

$$\begin{aligned} \begin{aligned} & \varphi \bigl(u(t)\bigr)\leq a(t)+\sum ^{m}_{i=1} \int _{b_{i}(t_{0})}^{b_{i}(t)} \bigl(t^{\alpha _{i}}-s^{\alpha _{i}} \bigr)^{k_{i}(\beta _{i}-1)}s^{q_{i}( \gamma _{i}-1)}g_{i}(t,s)\omega _{i} \bigl(u(s)\bigr)\,ds \\ &\phantom{ \varphi \bigl(u(t)\bigr)\leq}{}+\sum^{m+n}_{j=m+1} \int _{b_{j}(t_{0})}^{b_{j}(t)} \bigl(t^{\alpha _{j}}-s^{ \alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)}s^{q_{j}(\gamma _{j}-1)}g_{j}(t,s) \\ &\omega _{j} \Bigl(\max_{\xi \in [c_{j}(s)-h,c_{j}(s)]}f\bigl(u(\xi )\bigr) \Bigr)\,ds, \quad t\in [t_{0},t_{1}), \\ &u(t)\leq \psi (t),\quad t\in \bigl[b^{\ast}(t_{0})-h,t_{0} \bigr].\end{aligned} \end{aligned}$$
(1.6)

In 2017, Xu and Ma [29] investigated some new retarded nonlinear Volterra–Fredholm type integral inequalities with maxima in two variables

$$\begin{aligned} & \varphi \bigl(u(x,y)\bigr)\leq k(x,y)+ \int _{\alpha (x)}^{\infty}a(s,y) \psi \bigl(u(s,y)\bigr)\,ds \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq }{}+ \sum_{i=1}^{l_{1}} \int _{\alpha _{i}(x)}^{\infty} \int _{\beta _{i}(y)}^{\infty} \biggl[b_{i}(s,t,x,y) \varphi _{1}\bigl(u(s,t)\bigr) \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq }{}+ \int _{s}^{\infty} \int _{t}^{\infty}c_{i}(\xi ,\eta ,x,y) \varphi _{2} \Bigl(\max_{\sigma \in [\xi ,h\xi ]}u(\sigma ,\eta ) \Bigr) \,d\xi \,d\eta \biggr]\,ds\,dt \end{aligned}$$
(1.7)
$$\begin{aligned} &\phantom{\varphi \bigl(u(x,y)\bigr)\leq }{}+\sum_{j=1}^{l_{2}} \int _{\alpha _{j}(M)}^{\infty} \int _{\beta _{j}(N)}^{ \infty} \biggl[b_{j}(s,t,x,y) \psi \bigl(u(s,t)\bigr) \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq }{}+ \int _{s}^{\infty} \int _{t}^{\infty}e_{j}(\xi ,\eta ,x,y) \psi \Bigl(\max_{\sigma \in [\xi ,h\xi ]}u(\sigma ,\eta ) \Bigr)\,d \xi \,d\eta \biggr] \,ds\,dt,\quad (x,y)\in \Delta , \\ &\begin{aligned} u(x,y)^{p}\leq {}&k(x,y)+ \int _{\alpha (x)}^{\infty}a(s,y)u^{p}(s,y)\,ds+ \sum _{i=1}^{l_{1}} \int _{\alpha _{i}(x)}^{\infty} \int _{\beta _{i}(y)}^{ \infty} \biggl[b_{i}(s,t,x,y)u^{p}(s,t) \\ &{}+ \int _{s}^{\infty} \int _{t}^{\infty}c_{i}(\xi ,\eta ,x,y) \max _{\sigma \in [\xi ,h\xi ]}u^{r_{i}}(\sigma ,\eta )\,d\xi \,d\eta \biggr]\,ds \,dt \\ &{}+\sum_{j=1}^{l_{2}} \int _{\alpha _{j}(M)}^{\infty} \int _{\beta _{j}(N)}^{ \infty} \biggl[b_{j}(s,t,x,y)u^{\varepsilon _{j}}(s,t) \\ &{}+ \int _{s}^{\infty} \int _{t}^{\infty}e_{j}(\xi ,\eta ,x,y) \max _{\sigma \in [\xi ,h\xi ]}u^{\delta _{j}}(\sigma ,\eta )\,d\xi \,d \eta \biggr] \,ds\,dt,\quad (x,y)\in \Delta . \end{aligned} \end{aligned}$$
(1.8)

In this paper, we are concerned with the following weakly singular Volterra integral inequalities with maxima in two variables:

$$\begin{aligned} \begin{aligned} &\varphi \bigl(u(x,y)\bigr)\leq a(x,y)+ \sum_{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\bigl(x^{\alpha _{i}}-t^{\alpha _{i}} \bigr)^{k_{i}( \beta _{i}-1)}\\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}\times t^{v_{i}(\gamma _{i}-1)}\bigl(y^{\alpha _{i}}-s^{\alpha _{i}} \bigr)^{k_{i}( \beta _{i}-1)}s^{v_{i}(\gamma _{i}-1)} \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}\times g_{i}(x,y,t,s)\omega _{i}\bigl(u(t,s)\bigr)\,dt\,ds \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{ \alpha _{j}}-t^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)} t^{v_{j}(\gamma _{j}-1)}\bigl(y^{ \alpha _{j}}-s^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)}s^{v_{j}(\gamma _{j}-1)} \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}\times g_{j}(x,y,t,s)\omega _{j} \Bigl(\max _{(\xi ,\eta )\in [t-h,t] \times [s-k,s]}f\bigl(u(\xi ,\eta )\bigr) \Bigr)\,dt\,ds,\quad (x,y)\in \Omega , \\ &u(x,y)\leq \psi (x,y),\quad (x,y)\in \Omega _{0}, \end{aligned} \end{aligned}$$
(1.9)

where \(\Omega =[x_{0},x_{1})\times [y_{0},y_{1}), \Omega _{0}=[\alpha _{\ast}(x_{0})-h,x_{0})\times [\beta _{\ast}(y_{0})-k,y_{1}) \cup [x_{0},x_{1})\times [\beta _{\ast}(y_{0})-k,y_{0})\).

2 Main results

In this section, we consider the integral inequality (1.9) with \(x_{0}< x_{1}\) and \(y_{0}< y_{1}\). First, we give the following conditions:

\((A_{1})\) \(b_{i}(x):[x_{0},x_{1})\rightarrow [0,\infty )\ (i=1,2,\ldots ,m+n)\) and \(c_{i}(y):[y_{0},y_{1})\rightarrow [y_{0},y_{1})\ (i=1,2,\ldots ,m+n)\) are differentiable continuously and nondecreasing such that \(b_{i}(x)\leq x\) on \([x_{0},x_{1})\), \(c_{i}(y)\leq y\) on \([y_{0},y_{1})\);

\((A_{2})\) All \(g_{i}\ (i=1,2,\ldots ,m+n)\) are continuous nonnegative functions on \(\Omega \times \Omega _{0}\);

\((A_{3})\) \(f,\varphi :R_{+}\rightarrow R_{+}, \psi :\Omega _{0}\rightarrow R_{+}\) are continuous functions and φ is a strictly increasing function, \(\lim_{t\rightarrow \infty}\varphi (t)=+\infty \);

\((A_{4})\) All \(\omega _{i}:R_{+}\rightarrow R_{+}\ (i=1,2,\ldots ,m+n)\) are continuous functions;

\((A_{5})\) \(a(x,y)\) is a continuous nonnegative function on Ω;

\((A_{6})\) \(k_{i},v_{i}\in [0,1], \alpha _{i}\in (0,1], \beta _{i}\in (0,1), pk_{i}(\beta _{i}-1)+1>0, pv_{i}(\gamma _{i}-1)+1>0\) such that \(\frac{1}{p}+k_{i}\alpha _{i}(\beta _{i}-1)+v_{i}(\gamma _{i}-1)\geq 0 \ (p>1, i=1,2,\ldots ,m+n), h,k \) are positive constants;

\((A_{7})\) \(\alpha _{\ast}(x_{0}):=\min \{\min_{1\leq i\leq m}b_{i}(x_{0}), \min_{m+1\leq j\leq m+n}(b_{j}(x_{0}))\}\), \(\beta _{\ast}(y_{0}):=\min \{\min_{1\leq i\leq m}c_{i}(y_{0}), \min_{m+1 \leq j\leq m+n}(c_{j}(y_{0}))\}\);

\((A_{8})\) \(\max_{(t,s)\in \Omega _{0}}\psi (t,s)\leq \varphi ^{-1}((1+m+n)^{1- \frac{1}{q}}a(x_{0},y))\) and \(u\in C(\Omega _{0},R_{+})\).

For those \(\omega _{i}\) given in \((A_{4})\), we can define \(\tilde{\omega}_{i}(t)\) \((i=1,2,\ldots ,m+n, t>0)\) by

$$\begin{aligned} \begin{aligned} &\tilde{\omega}_{1}(t)=\max _{\tau \in [0,t]} \bigl\{ \bar{\omega}_{1}(\tau ) \bigr\} , \\ &\tilde{\omega}_{i+1}(t)=\max_{\tau \in [0,t]} \biggl\{ \frac{\bar{\omega}_{i+1}(\tau )}{\tilde{\omega}_{i}(\tau )+\varepsilon _{i}} \biggr\} \tilde{\omega}_{i}(t) \end{aligned} \end{aligned}$$
(2.1)

for \(i=1,2,\ldots ,m-1\) and

$$\begin{aligned} \begin{aligned} &\tilde{\omega}_{m+1}(t)=\max _{\tau \in [0,t]} \biggl\{ \frac{\hat{\omega}_{m+1}(\max_{s\in [0,\tau ]}\{f(s)\})}{\tilde{\omega}_{m}(\tau )+\varepsilon _{m}} \biggr\} \tilde{ \omega}_{m}(t), \\ &\tilde{\omega}_{j+1}(t)=\max_{\tau \in [0,t]} \biggl\{ \frac{\hat{\omega}_{j+1}(\max_{s\in [0,\tau ]}\{f(s)\})}{\tilde{\omega}_{j}(\tau )+\varepsilon _{j}} \biggr\} \tilde{\omega}_{j}(t) \end{aligned} \end{aligned}$$
(2.2)

for \(j=m+1,\ldots ,m+n-1\), where

$$\begin{aligned} &\hat{\omega}_{j}(t)=\max_{\tau \in [0,t]}\bigl\{ \bar{ \omega}_{j}(\tau )\bigr\} \quad (j=m+1,\ldots ,m+n),\\ &\bar{\omega}_{i}(t):=\omega _{i}(t)+\varepsilon _{i}\quad (i=1,2,\ldots ,m+n). \end{aligned}$$

\(\varepsilon _{i}>0\) are very small constants.

Remark 1

If f and \(\omega _{i}(u)\ (i=1,2,\ldots ,m)\) given in \((A_{3})\) and \((A_{4})\) are nondecreasing and continuous functions and satisfy

$$\begin{aligned} \omega _{1}\propto \cdots \propto \omega _{m}\propto \omega _{m+1} \circ f\propto \cdots \propto \omega _{m+n}\circ f, \end{aligned}$$

then we define functions \(\tilde{\omega}_{i}(u):=\omega _{i}(u)\ (i=1,\ldots ,m)\), \(\tilde{\omega}_{j}(u):=\omega _{i}(f(u))\ (j=m+1,\ldots ,m+n)\).

To prove our results, we need the following lemmas.

Lemma 1

([27])

Suppose that \((B_{1})\)\((B_{5})\) hold:

\((B_{1})\) \(\alpha _{i}(x):[x_{0},x_{1})\rightarrow [x_{0},x_{1})\ (i=1,2, \ldots ,m+n)\) and \(\beta _{i}(y):[y_{0},y_{1})\rightarrow [y_{0},y_{1})\ (i=1,2, \ldots ,m+n)\) are nondecreasing such that \(\alpha _{i}(x)\leq x\) on \([x_{0},x_{1})\), \(\beta _{i}(y)\leq y\) on \([y_{0},y_{1})\) and \(\beta _{i}(y_{0})=y_{0}\);

\((B_{2})\) All \(f_{i}\ (i=1,2,\ldots ,m+n)\) are continuous nonnegative functions on \(\Lambda \times [\alpha _{\ast}(x_{0}),x_{1})\times [y_{0},y_{1})\);

\((B_{3})\) \(g,\varphi :R_{+}\rightarrow R_{+}, \psi :[\alpha _{\ast}(x_{0})-h,x_{1}) \rightarrow R_{+}\) are continuous and φ is strictly increasing such that \(\lim_{t\rightarrow \infty}\varphi (t)=+\infty \);

\((B_{4})\) All \(\omega _{i}\ (i=1,2,\ldots ,m+n)\) are continuous on \(R_{+}\) and positive on \((0,+\infty )\);

\((B_{5})\) \(a(x,y)\) is a continuous and nonnegative function on Λ.

Thereinto, \(\Lambda :=[x_{0},x_{1}]\times [y_{0},y_{1}], \Omega :=[\alpha _{ \ast}(x_{0}),x_{0})\times [y_{0},y_{1})\), and \(x_{0}< x_{1}, y_{0}< y_{1}\) in \(R_{+}:=[0,\infty )\). \(\max_{s\in [\alpha _{\ast}(x_{0})-h,x_{0}]}\psi (s,y)\leq \varphi ^{-1}(a(x_{0},y))\) for all \(y\in [y_{0},y_{1})\) and \(u\in C(\Omega ,R_{+})\) satisfies the system of inequalities as follows:

$$\begin{aligned} &\varphi \bigl(u(x,y)\bigr)\leq a(x,y)+\sum _{i=1}^{n} \int _{ \alpha _{i}(x_{0})}^{\alpha _{i}(x)} \int _{\beta _{i}(y_{0})}^{\beta _{i}(y)}f_{i}(x,y,s,t) \omega _{i}\bigl(u(s,t)\bigr)\,dt\,ds \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}+\sum_{j=n+1}^{m+n} \int _{\alpha _{j}(x_{0})}^{\alpha _{j}(x)} \int _{ \beta _{j}(y_{0})}^{\beta _{j}(y)}f_{j}(x,y,t,s)\omega _{j} \Bigl( \max_{\xi \in [s-h,s]}g\bigl(u(\xi ,t)\bigr) \Bigr)\,dt\,ds, \\ &\quad (x,y)\in [x_{0},x_{1})\times [y_{0},y_{1}), \\ & u(x,y)\leq \psi (x,y),\quad (x,y)\in \bigl[\alpha _{\ast}(x_{0})-h,x_{0}\bigr] \times [y_{0},y_{1}). \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned} u(x,y)\leq \varphi ^{-1} \bigl(W^{-1}_{m+n} \bigl( \Omega _{m+n}(x,y) \bigr) \bigr) \end{aligned} \end{aligned}$$

for all \((x,y)\in [x_{0},X_{1})\times [y_{0},Y_{1})\), where

$$\begin{aligned} & \Omega _{i}(x,y):=W_{i} \bigl(r_{i}(x,y)\bigr) + \int _{\alpha _{i}(x_{0})}^{ \alpha _{i}(x)} \int _{\beta _{i}(y_{0})}^{\beta _{i}(y)}\max_{( \iota ,\xi )\in [x_{0},x]\times [y_{0},y]}f_{i}( \iota ,\xi ,s,t)\,dt\,ds, \\ & W_{i}(u):= \int ^{u}_{u_{i}} \frac{ds}{\tilde{\omega}_{i}(\varphi ^{-1}(s))},\quad u\geq u_{i}, i=1,2,\ldots ,m+n. \end{aligned}$$

\(u_{i}>0\) are given constants, \(\tilde{\omega}_{i}\) are defined in (2.1) and (2.2), and \(r_{i}(x,y)\) are defined recursively by

$$\begin{aligned} \begin{aligned} &r_{1}(x,y)=\max_{(\iota ,\xi )\in [x_{0},x]\times [y_{0},y]}a( \iota ,\xi ), \\ &r_{i}(x,y)=W^{-1}_{i}\bigl(\Omega _{i}(x,y)\bigr) \end{aligned} \end{aligned}$$

for \(i=1,2,\ldots ,m+n\), and \(X_{1}\in [x_{0},x_{1}), Y_{1}\in [y_{0},y_{1})\) are chosen such that

$$\begin{aligned} \Omega _{i}(X_{1},Y_{1})\leq \int _{u_{i}}^{\infty} \frac{ds}{\tilde{\omega}_{i}(\varphi ^{-1}(s))} \end{aligned}$$

for \(i=1,2,\ldots ,m+n\).

Lemma 2

([14])

\(\alpha ,\beta ,\gamma \), and p are positive constants. Then

$$\begin{aligned} \int _{0}^{t}\bigl(t^{\alpha}-s^{\alpha} \bigr)^{p(\beta -1)}s^{p(\gamma -1)}\,ds= \frac{t^{\theta}}{\alpha}B \biggl[ \frac{p(\gamma -1)+1}{\alpha},p( \beta -1)+1 \biggr],\quad t\in R_{+}, \end{aligned}$$

therein \(B[\xi ,\eta ]=\int ^{1}_{0}s^{\xi -1}(1-s)^{\eta -1}\,ds\ (\mathrm{Re}\xi >0,\mathrm{Re} \eta >0)\) and \(\theta =p[\alpha (\beta -1)+\gamma -1]+1\).

Theorem 2.1

Suppose that \((A_{1})\)\((A_{8})\) hold, \((x,y)\in \Omega \cup \Omega _{0}\), \(u(x,y)\) satisfies the integral inequalities (1.9). Then we have

$$\begin{aligned} \begin{aligned} u(x,y)\leq{}& \varphi ^{-1} \biggl[W_{m+n}^{-1} \biggl(W_{m+n} \bigl(r_{m+n}(x,y) \bigr) \\ &{}+ \int _{b_{m+n}(x_{0})}^{b_{m+n}(x)} \int _{c_{m+n}(y_{0})}^{c_{m+n}(y)} \tilde{g}_{m+n}(x,y,t,s)\,dt\,ds \biggr)^{\frac{1}{q}} \biggr] \end{aligned} \end{aligned}$$
(2.3)

for all \((x,y)\in [x_{0},X_{1})\times [y_{0},Y_{1})\), where \(W_{i}^{-1}\) are the inverse of the functions

$$\begin{aligned} W_{i}(u):= \int _{u_{i}}^{u} \frac{dx}{\tilde{\omega}_{i}^{q}(\varphi ^{-1}(x^{\frac{1}{q}}))},\quad u \geq u_{i}>0, i=1,\ldots ,m+n, \end{aligned}$$
(2.4)

\(u_{i}>0\) are given constants, \(r_{i}(t)\) are defined by

$$\begin{aligned} &r_{1}(x,y):=(1+m+n)^{q-1}\tilde{a}^{q}(x,y), \end{aligned}$$
(2.5)
$$\begin{aligned} &\tilde{a}(x,y):=\max_{(\tau ,\xi )\in [x_{0},x]\times [y_{0},y]}\bigl\{ a( \tau ,\xi ) \bigr\} ,\quad (x,y)\in \Omega , \end{aligned}$$
(2.6)

and

$$\begin{aligned} & r_{i+1}(x,y):=W_{i}^{-1} \biggl(W_{i}\bigl(r_{i}(x,y)\bigr)+ \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\tilde{g}_{i}(x,y,t,s)\,dt\,ds \biggr), \\ &\quad i=1, \ldots ,m+n-1, \end{aligned}$$
(2.7)
$$\begin{aligned} &\tilde{g}_{i}(x,y,t,s):=(1+m+n)^{q-1} \bigl((xy)^{\theta _{i}}M_{i}^{2}\bigr)^{ \frac{q}{p}} \hat{g}_{i}^{q}(x,y,t,s),\quad i=1,2,\ldots ,m+n, \end{aligned}$$
(2.8)
$$\begin{aligned} &\hat{g}_{i}(x,y,t,s):=\max_{(\tau ,\xi )\in \Omega} g_{i}(\tau ,\xi ,t,s),\quad i=1,2,\ldots ,m+n, \end{aligned}$$
(2.9)
$$\begin{aligned} &M_{i}=\frac{1}{\alpha _{i}}B \biggl[ \frac{pv_{i}(\gamma _{i}-1)+1}{\alpha _{i}},pk_{i}(\beta _{i}-1)+1 \biggr], \end{aligned}$$
(2.10)
$$\begin{aligned} &\theta _{i}=p\bigl[\alpha _{i}k_{i}( \beta _{i}-1)+v_{i}(\gamma _{i}-1) \bigr]+1, \end{aligned}$$
(2.11)

\(\frac{1}{p}+\frac{1}{q}=1, p>1\), \(q>0\). \(pv_{i}(\gamma _{i}-1)+1>0, pk_{i}(\beta _{i}-1)+1>0\) and \(\frac{1}{p}+k_{i}\alpha _{i}(\beta _{i}-1)+v_{i}(\gamma _{i}-1)\geq 0\) for \(i=1,2,\ldots,m+n\). \(X_{1}\in [x_{0},x_{1}), Y_{1}\in [y_{0},y_{1})\) are the largest numbers such that

$$\begin{aligned} W_{i}\bigl(r_{i}(X_{1},Y_{1}) \bigr)+ \int _{b_{i}(x_{0})}^{b_{i}(X_{1})} \int _{c_{i}(y_{0})}^{c_{i}(Y_{1})} \max_{(\iota ,\xi )\in [x_{0},X_{1})\times [y_{0},Y_{1})} \tilde{g_{i}}(\iota ,\xi ,t,s)\,dt\,ds \leq \int _{u_{i}}^{\infty} \frac{dx}{\tilde{\omega}_{i}^{q}(\varphi ^{-1}(x^{\frac{1}{q}}))}, \end{aligned}$$

\(i=1,2,\ldots ,m+n\).

Proof

First of all, for those \(f, a(x,y)\) given in \((A_{3})\) and \((A_{5})\), we define \(\tilde{a}(x,y)\) by (2.6) and

$$\begin{aligned} \tilde{f}(u):=\max_{\tau \in [0,u]}\bigl\{ f(\tau )\bigr\} ,\quad u\geq 0. \end{aligned}$$
(2.12)

By \((A_{4})\) and Remark 1, the functions \(W_{i}\) are strictly increasing. Therefore we know that \(W_{i}^{-1}\) are continuous and increasing functions in their domain. The sequence \(\{\tilde{\omega}_{i}(t)\}\) defined by \(\omega _{i}(t)\) is nondecreasing nonnegative functions on \(R_{+}\) and satisfies

$$\begin{aligned} \begin{aligned} &\omega _{i}(t)\leq \tilde{ \omega}_{i}(t),\quad i=1,2,\ldots ,m, \\ &\omega _{i}(t)\leq \hat{\omega}_{i}(t),\quad i=m+1,m+2, \ldots ,m+n, \\ &\hat{\omega}_{i}\bigl(\tilde{f}(t)\bigr)\leq \tilde{ \omega}_{i}(t),\quad i=m+1,m+2,\ldots ,m+n. \end{aligned} \end{aligned}$$
(2.13)

Since the ratios \(\frac{\tilde{\omega}_{i+1}(t)}{\tilde{\omega}_{i}(t)}\ (i=1,2, \ldots ,m+n)\) are all nondecreasing, we have \(\tilde{\omega}_{i}(t)\propto \tilde{\omega}_{i+1}(t)\ (i=1,2,\ldots ,m+n)\).

Furthermore, \(\hat{g}_{i}(x,y,t,s)\) defined by (2.9) are nondecreasing in \(x, y\) for each fixed \(t, s\) and satisfy \(\hat{g}_{i}(x,y,t,s)\geq g_{i}(x,y,t,s)\geq 0\) for all \(i=1,2,\ldots ,m+n\). We have \(\tilde{a}(x,y)\geq a(x,y)\) and \(\hat{g}_{i}(x,y,t,s)\geq g_{i}(x,y,t,s)\), and they are continuous and nondecreasing in \(t, s\). From the monotonicity of \(\tilde{f}(u)\), we obtain the inequality

$$\begin{aligned} \begin{aligned}\max_{(\xi ,\eta )\in [x-h,x]\times [y-k,y]}f\bigl(u(\xi ,\eta )\bigr)&\leq \max _{(\xi ,\eta )\in [x-h,x]\times [y-k,y]}\tilde{f}\bigl(u(\xi ,\eta )\bigr) \\ &\leq \tilde{f} \Bigl( \max_{(\xi ,\eta )\in [x-h,x]\times [y-k,y]}u( \xi ,\eta ) \Bigr) \end{aligned} \end{aligned}$$
(2.14)

for \((x,y)\in \Omega \cup \Omega _{0}\).

From (1.9), (2.6), (2.9), (2.12), (2.13), and (2.14), we obtain

$$\begin{aligned} \begin{aligned} &\varphi \bigl(u(x,y)\bigr)\\ &\quad\leq \tilde{a}(x,y)+\sum_{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\bigl(x^{ \alpha _{i}}-t^{\alpha _{i}} \bigr)^{k_{i}(\beta _{i}-1)} t^{v_{i}(\gamma _{i}-1)}\bigl(y^{ \alpha _{i}}-s^{\alpha _{i}} \bigr)^{k_{i}(\beta _{i}-1)}\\ &\qquad{}\times s^{v_{i}(\gamma _{i}-1)} \hat{g}_{i}(x,y,t,s)\tilde{\omega}_{i}\bigl(u(t,s) \bigr)\,dt\,ds \\ &\qquad{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{ \alpha _{j}}-t^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)} t^{v_{j}(\gamma _{j}-1)}\bigl(y^{ \alpha _{j}}-s^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)}s^{v_{j}(\gamma _{j}-1)} \\ &\qquad{}\times\hat{g}_{j}(x,y,t,s)\hat{\omega}_{j} \Bigl(\tilde{f} \Bigl(\max_{( \xi ,\eta )\in [t-h,t]\times [s-k,s]}u(\xi ,\eta ) \Bigr) \Bigr)\,dt\,ds \\ &\quad\leq \tilde{a}(x,y)+\sum_{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\bigl(x^{\alpha _{i}}-t^{\alpha _{i}} \bigr)^{k_{i}( \beta _{i}-1)} t^{v_{i}(\gamma _{i}-1)}\bigl(y^{\alpha _{i}}-s^{\alpha _{i}} \bigr)^{k_{i}( \beta _{i}-1)}\\ &\qquad{}\times s^{v_{i}(\gamma _{i}-1)} \hat{g}_{i}(x,y,t,s)\tilde{\omega}_{i}\bigl(u(t,s) \bigr)\,dt\,ds \\ &\qquad{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{ \alpha _{j}}-t^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)} t^{v_{j}(\gamma _{j}-1)}\bigl(y^{ \alpha _{j}}-s^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)}s^{v_{j}(\gamma _{j}-1)}\\ &\qquad{}\times \hat{g}_{j}(x,y,t,s)\tilde{\omega}_{j} \Bigl(\max _{(\xi ,\eta )\in [t-h,t] \times [s-k,s]}u(\xi ,\eta ) \Bigr)\,dt\,ds,\quad (x,y)\in \Omega . \end{aligned} \end{aligned}$$
(2.15)

Let \(\frac{1}{p}+\frac{1}{q}=1, p>1\), then \(q>0\). Since \(pv_{i}(\gamma _{i}-1)+1>0, pk_{i}(\beta _{i}-1)+1>0\) and \(\frac{1}{p}+k_{i}\alpha _{i}(\beta _{i}-1)+v_{i}(\gamma _{i}-1)\geq 0\) for \(i=1,2,\ldots,m+n\). By Lemma 2 and Holder’s inequality, we get

$$\begin{aligned} &\varphi \bigl(u(x,y)\bigr) \\ &\quad\leq \tilde{a}(x,y)+\sum_{i=1}^{m} \biggl( \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \bigl(x^{ \alpha _{i}}-t^{\alpha _{i}} \bigr)^{pk_{i}(\beta _{i}-1)} \\ &\qquad{}\times t^{pv_{i}( \gamma _{i}-1)}\bigl(y^{\alpha _{i}}-s^{\alpha _{i}} \bigr)^{pk_{i}(\beta _{i}-1)}s^{pv_{i}( \gamma _{i}-1)}\,dt\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \hat{g}_{i}^{q}(x,y,t,s) \tilde{\omega}_{i}^{q}\bigl(u(t,s)\bigr)\,dt\,ds \biggr)^{ \frac{1}{q}} \\ &\qquad{}+\sum_{j=m+1}^{m+n} \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{ \alpha _{j}}-t^{\alpha _{j}} \bigr)^{pk_{j}(\beta _{j}-1)} \\ &\qquad{}\times t^{pv_{j}( \gamma _{j}-1)}\bigl(y^{\alpha _{j}}-s^{\alpha _{j}} \bigr)^{pk_{j}(\beta _{j}-1)}s^{pv_{j}( \gamma _{j}-1)}\,dt\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \hat{g}_{j}^{q}(x,y,t,s) \tilde{\omega}_{j}^{q} \Bigl(\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u( \xi ,\eta ) \Bigr)\,dt\,ds \biggr)^{ \frac{1}{q}} \\ &\quad\leq \tilde{a}(x,y)+\sum_{i=1}^{m} \biggl( \int _{0}^{x} \int _{0}^{y}\bigl(x^{ \alpha _{i}}-t^{\alpha _{i}} \bigr)^{pk_{i}(\beta _{i}-1)}\\ &\qquad{}\times t^{pv_{i}( \gamma _{i}-1)}\bigl(y^{\alpha _{i}}-s^{\alpha _{i}} \bigr)^{pk_{i}(\beta _{i}-1)}s^{pv_{i}( \gamma _{i}-1)}\,dt\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times\biggl( \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \hat{g}_{i}^{q}(x,y,t,s) \tilde{\omega}_{i}^{q}\bigl(u(t,s)\bigr)\,dt\,ds \biggr)^{ \frac{1}{q}} \\ &\qquad{}+\sum_{j=m+1}^{m+n} \biggl( \int _{0}^{x} \int _{0}^{y}\bigl(x^{\alpha _{j}}-t^{ \alpha _{j}} \bigr)^{pk_{j}(\beta _{j}-1)} t^{pv_{j}(\gamma _{j}-1)}\bigl(y^{ \alpha _{j}}-s^{\alpha _{j}} \bigr)^{pk_{j}(\beta _{j}-1)}s^{pv_{j}(\gamma _{j}-1)}\,dt\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \hat{g}_{j}^{q}(x,y,t,s) \tilde{\omega}_{j}^{q} \Bigl(\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u( \xi ,\eta ) \Bigr)\,dt\,ds \biggr)^{ \frac{1}{q}} \\ &\quad=\tilde{a}(x,y)+\sum_{i=1}^{m} \bigl((xy)^{\theta _{i}}M_{i}^{2}\bigr)^{ \frac{1}{p}} \biggl( \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \hat{g}_{i}^{q}(x,y,t,s) \tilde{\omega}_{i}^{q}\bigl(u(t,s)\bigr)\,dt\,ds \biggr)^{ \frac{1}{q}} \\ &\qquad{}+\sum_{j=m+1}^{m+n} \bigl((xy)^{\theta _{i}}M_{i}^{2} \bigr)^{ \frac{1}{p}} \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \hat{g}_{j}^{q}(x,y,t,s) \tilde{\omega}_{j}^{q} \\ &\qquad{}\times\Bigl(\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u( \xi ,\eta ) \Bigr)\,dt\,ds \biggr)^{ \frac{1}{q}} \end{aligned}$$
(2.16)

for \((x,y)\in \Omega \), where \(M_{i}\) and \(\theta _{i}\) are defined by (2.10) and (2.11), \(i=1,2,\ldots ,m+n\).

By Jensen’s inequality and (2.16), we get for \((x,y)\in \Omega \)

$$\begin{aligned} & \varphi ^{q}\bigl(u(x,y)\bigr) \\ &\quad\leq (1+m+n)^{q-1} \Biggl[\tilde{a}^{q}(x,y) \\ &\qquad{}+ \sum _{i=1}^{m} \bigl((xy)^{\theta _{i}}M_{i}^{2} \bigr)^{ \frac{q}{p}} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \hat{g}_{i}^{q}(x,y,t,s) \tilde{\omega}_{i}^{q}\bigl(u(t,s)\bigr)\,dt\,ds \\ &\qquad{}+\sum_{j=m+1}^{m+n} \bigl((xy)^{\theta _{i}}M_{i}^{2}\bigr)^{ \frac{q}{p}} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \hat{g}_{i}^{q}(x,y,t,s) \tilde{\omega}_{j}^{q} \\ &\qquad{}\times \Bigl(\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u( \xi ,\eta ) \Bigr)\,dt\,ds \Biggr],\quad (x,y)\in \Omega . \end{aligned}$$
(2.17)

By (2.5), (2.8), and (2.17), we have

$$\begin{aligned} &\varphi ^{q}\bigl(u(x,y)\bigr) \leq r_{1}(x,y)+\sum_{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \tilde{g}_{i}(x,y,t,s) \tilde{\omega}_{i}^{q}\bigl(u(t,s)\bigr)\,dt\,ds \\ &\phantom{\varphi ^{q}\bigl(u(x,y)\bigr) \leq }{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \tilde{g}_{i}(x,y,t,s) \\ &\phantom{\varphi ^{q}\bigl(u(x,y)\bigr) \leq }{}\times \tilde{\omega}_{j}^{q} \Bigl(\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u( \xi ,\eta ) \Bigr)\,dt\,ds, \\ & \quad(x,y)\in \Omega , \\ & u(x,y)\leq \psi (x,y),\quad (x,y)\in \Omega _{0}. \end{aligned}$$
(2.18)

Concerning (2.18), we consider the auxiliary system of inequalities

$$\begin{aligned} \begin{aligned} \varphi ^{q}\bigl(u(x,y)\bigr) \leq {}&r_{1}(X,Y)+\sum_{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)} \tilde{g}_{i}(X,Y,t,s) \tilde{\omega}_{i}^{q}\bigl(u(t,s)\bigr)\,dt\,ds \\ &{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \tilde{g}_{j}(X,Y,t,s) \tilde{\omega}_{j}^{q} \Bigl(\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u( \xi ,\eta ) \Bigr)\,dt\,ds \end{aligned} \end{aligned}$$
(2.19)

for all \((x,y)\in [x_{0},X)\times [y_{0},Y)\), where X and Y are chosen arbitrarily such that \(x_{0}\leq X\leq X_{1}, y_{0}\leq Y\leq Y_{1}\).

Since

$$\begin{aligned} \max_{(x,y)\in \Omega _{0}}\psi (x,y)\leq \varphi ^{-1} \bigl((1+m+n)^{ \frac{q-1}{q}}a(x_{0},y_{0}) \bigr)\leq \varphi ^{-1} \bigl(r_{1}^{ \frac{1}{q}}(X,Y) \bigr), \end{aligned}$$

we get

$$\begin{aligned} \max_{(x,y)\in \Omega _{0}}\psi (x,y)\leq \varphi ^{-1} \bigl(r_{1}^{ \frac{1}{q}}(X,Y) \bigr). \end{aligned}$$

Now we can define the function

$$\begin{aligned} z(x,y)=\textstyle\begin{cases} r_{1}(X,Y)+\sum_{i=1}^{m}\int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\tilde{g}_{i}(X,Y,t,s)\tilde{\omega}_{i}^{q}(u(t,s))\,dt\,ds \\ \quad{}+\sum_{j=m+1}^{m+n}\int _{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)} \tilde{g}_{j}(X,Y,t,s) \tilde{\omega}_{j}^{q}\\ \quad{}\times (\max_{(\xi , \eta )\in [t-h,t]\times [s-k,s]}u(\xi ,\eta ) )\,dt\,ds, \\ \qquad (x,y)\in [x_{0},X) \times [y_{0},Y), \\ r_{1}(X,Y), \quad (x,y)\in \Omega _{0}. \end{cases}\displaystyle \end{aligned}$$
(2.20)

Obviously, \(z(x,y)\) is nondecreasing.

By (2.19) and (2.20), we have

$$\begin{aligned} & u(x,y)\leq \varphi ^{-1} \bigl(z^{\frac{1}{q}}(x,y) \bigr),\quad (x,y)\in \bigl[\alpha _{\ast}(x_{0})-h,X\bigr)\times \bigl[\beta _{\ast}(y_{0})-k,Y\bigr), \end{aligned}$$
(2.21)
$$\begin{aligned} \begin{aligned}&\max_{(\xi ,\eta )\in [x-h,x]\times [y-k,y]}u(\xi ,\eta )\leq \max _{( \xi ,\eta )\in [x-h,x]\times [y-k,y]}\varphi ^{-1} \bigl(z^{ \frac{1}{q}}(\xi ,\eta ) \bigr)\\ &\phantom{\max_{(\xi ,\eta )\in [x-h,x]\times [y-k,y]}u(\xi ,\eta )}\leq \varphi ^{-1} \Bigl(\max_{(\xi , \eta )\in [x-h,x]\times [y-k,y]} \bigl(z^{\frac{1}{q}}(\xi ,\eta ) \bigr) \Bigr).\end{aligned} \end{aligned}$$
(2.22)

From (2.21) and (2.22) we have

$$\begin{aligned} & z(x,y) \\ &\quad\leq r_{1}(X,Y)+\sum _{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\tilde{g}_{i}(X,Y,t,s) \tilde{\omega}_{i}^{q}\bigl( \varphi ^{-1} \bigl(z^{\frac{1}{q}}(t,s)\bigr)\bigr)\,dt\,ds \\ &\qquad{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} \tilde{g}_{j}(X,Y,t,s) \tilde {\omega}_{j}^{q} \Bigl(\varphi ^{-1} \Bigl( \max_{(\xi ,\eta )\in [t-h,t]\times [s-k,s]}z^{\frac{1}{q}}( \xi ,\eta ) \Bigr) \Bigr)\,dt\,ds, \\ &\quad (x,y) \in [x_{0},X)\times [y_{0},Y), \\ &z(x,y)\leq r_{1}(x,y),\quad \bigl(x,y\in \bigl[\alpha _{\ast}(x_{0})-h,X \bigr)\times \bigl[\beta _{ \ast}(y_{0})-k,Y\bigr). \end{aligned}$$
(2.23)

Let \(e(z):=\varphi ^{-1}(z^{\frac{1}{q}})\) and \(e(z)\) is a continuous and nondecreasing function on \(R_{+}\). Thus, \(\tilde{w}_{i}(e(z))\) is continuous and nondecreasing on \(R_{+}\ (i=1,2,\ldots ,m+n)\), \(\tilde{w}_{i}(e(z))>0\) for \(z>0\).

Since \(\tilde{w}_{i}(z)\propto \tilde{w}_{i+1}(z)\), we get that \(\frac{\tilde{w}_{i+1}(e(z))}{\tilde{w}_{i}(e(z))}\) is also continuous and nondecreasing on \(R_{+}\). So we obtain \(\tilde{w}_{i}^{q}(e(z))\propto \tilde{w}_{i+1}^{q}(e(z)), i=1,2,3, \ldots ,m+n-1\). By (2.23), we let \(\varphi (u(x,y))=z(x,y), a(x,y)=r_{1}(X,Y), f_{i}(x,y,s,t)= \tilde{g}_{i}(X,Y,t,s), \omega _{i}(u(s,t))=\tilde{\omega}_{i}(e(z))\), applying Lemma 1, we have

$$\begin{aligned} \begin{aligned} z(x,y)\leq{}& W^{-1}_{m+n} \biggl(W_{m+n} \biggl(r_{m+n}(X,Y,x,y)\\ &{}+ \int ^{b_{m+n}(x)}_{b_{m+n}(x_{0})} \int ^{c_{m+n}(y)}_{c_{m+n}(y_{0})} \tilde{g}_{m+n}(X,Y,s,t)\,dt\,ds \biggr) \biggr) \end{aligned} \end{aligned}$$
(2.24)

for all \(x_{0}\leq x\leq \min \{X,X_{2}\}\) and \(y_{0}\leq y\leq \min \{Y,Y_{2}\}\), where \(W_{m+n}\) is defined in (2.4),

$$\begin{aligned} &r_{1}(X,Y,x,y):=r_{1}(X,Y),\\ &r_{i+1}(X,Y,x,y):=W_{i}^{-1} \biggl(W_{i}\bigl(r_{i}(X,Y,x,y)\bigr)+ \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\tilde{g}_{i}(x,y,t,s)\,dt\,ds \biggr),\\ &\quad i=1,2, \ldots ,m+n, \end{aligned}$$

\(X_{2}\leq x_{1}, Y_{2}\leq y_{1}\) are the largest numbers such that

$$\begin{aligned} &W_{i}\bigl(r_{i}(X,Y,X_{2},Y_{2}) \bigr)\\ &\qquad{}+ \int _{b_{i}(x_{0})}^{b_{i}(X_{1})} \int _{c_{i}(y_{0})}^{c_{i}(Y_{1})}\max_{(\iota ,\xi )\in [x_{0},X_{1}) \times [y_{0},Y_{1})}f(\iota ,\xi ,t,s)\,dt\,ds \\ &\quad\leq \int _{u_{i}}^{ \infty} \frac{dx}{\tilde{\omega}_{i}^{q}(\varphi ^{-1}(x^{\frac{1}{q}}))}, \end{aligned}$$

\(i=1,2,\ldots ,m+n\).

It follows from (2.21) and (2.24) that we have

$$\begin{aligned} \begin{aligned} u(x,y)\leq{}& \varphi ^{-1} \biggl(W^{-1}_{m+n} \biggl(W_{m+n} \biggl(r_{m+n}(X,Y,x,y)\\ &{} + \int ^{b_{m+n}(x)}_{b_{m+n}(x_{0})} \int ^{c_{m+n}(y)}_{c_{m+n}(y_{0})} \tilde{g}_{m+n}(X,Y,s,t)\,dt\,ds \biggr) \biggr)^{\frac{1}{q}} \biggr) \end{aligned} \end{aligned}$$
(2.25)

for all \(x_{0}\leq x\leq \min \{X,X_{2}\}\) and \(y_{0}\leq y\leq \min \{Y,Y_{2}\}\).

Let \(x=X, y=Y, X_{2}=X_{1}, Y_{2}=Y_{1}\), we have

$$\begin{aligned} \begin{aligned} u(X,Y)\leq{}& \varphi ^{-1} \biggl(W^{-1}_{m+n} \biggl(W_{m+n} \biggl(r_{m+n}(X,Y,X,Y) \\ &{}+ \int ^{b_{m+n}(x)}_{b_{m+n}(x_{0})} \int ^{c_{m+n}(y)}_{c_{m+n}(y_{0})} \tilde{g}_{m+n}(X,Y,s,t)\,dt\,ds \biggr) \biggr)^{\frac{1}{q}} \biggr) \end{aligned} \end{aligned}$$
(2.26)

for all \(x_{0}\leq X\leq X_{1}\) and \(y_{0}\leq Y\leq Y_{1}\).

It is easy to obtain \(r_{m+n}(X,Y,X,Y)=r_{m+n}(X,Y)\). So (2.26) can be restated as

$$\begin{aligned} \begin{aligned} u(X,Y)\leq{}& \varphi ^{-1} \biggl(W^{-1}_{m+n} \biggl(W_{m+n} \biggl(r_{m+n}(X,Y)\\ &{} + \int ^{b_{m+n}(x)}_{b_{m+n}(x_{0})} \int ^{c_{m+n}(y)}_{c_{m+n}(y_{0})} \tilde{g}_{m+n}(X,Y,s,t)\,dt\,ds \biggr) \biggr)^{\frac{1}{q}} \biggr). \end{aligned} \end{aligned}$$
(2.27)

Because \(X,Y\) are arbitrary, we can replace X and Y with x and y. Thus we get

$$\begin{aligned} \begin{aligned} u(x,y)\leq{}& \varphi ^{-1} \biggl(W^{-1}_{m+n} \biggl(W_{m+n} \biggl(r_{m+n}(x,y)\\ &{} + \int ^{b_{m+n}(x)}_{b_{m+n}(x_{0})} \int ^{c_{m+n}(y)}_{c_{m+n}(y_{0})} \tilde{g}_{m+n}(x,y,s,t)\,dt\,ds \biggr) \biggr)^{\frac{1}{q}} \biggr) \end{aligned} \end{aligned}$$
(2.28)

for all \((x,y)\in [x_{0},X_{1})\times [y_{0},Y_{1})\).

The proof is complete. □

Corollary 2.1

Suppose that \((A_{1})\)\((A_{8})\) hold if \(u(x,y)\) satisfy the following inequality:

$$\begin{aligned} &\begin{aligned} &\varphi \bigl(u(x,y)\bigr)\\ &\quad\leq c+\sum _{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\bigl(x^{\alpha _{i}}-t^{\alpha _{i}} \bigr)^{k_{i}( \beta _{i}-1)} t^{v_{i}(\gamma _{i}-1)} \\ &\qquad{}\times\bigl(y^{\alpha _{i}}-s^{\alpha _{i}}\bigr)^{k_{i}(\beta _{i}-1)}s^{v_{i}( \gamma _{i}-1)}g_{i}(x,y,t,s) \omega _{i}\bigl(u(t,s)\bigr)\,dt\,ds \\ &\qquad{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{ \alpha _{j}}-t^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)} t^{v_{j}(\gamma _{j}-1)}\bigl(y^{ \alpha _{j}}-s^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)} \\ &\qquad{}\times s^{v_{j}(\gamma _{j}-1)}g_{j}(x,y,t,s)\omega _{j} \Bigl(f \Bigl( \max_{(\xi ,\eta )\in [t-h,t]\times [s-k,s]}u(\xi ,\eta ) \Bigr) \Bigr)\,dt\,ds, \quad (x,y)\in \Omega , \end{aligned} \\ &u(x,y)\leq \psi (x,y),\quad (x,y)\in \Omega _{0}, \end{aligned}$$
(2.29)

where \(u\in C(\Omega \cup \Omega _{0},R_{+})\) and \(c\geq 0\) is a constant. Then

$$\begin{aligned} \begin{aligned} u(x,y)\leq{}& \varphi ^{-1} \biggl(W^{-1}_{m+n} \biggl(W_{m+n} \biggl( \bar{r}_{m+n}(x,y) \\ &{}+ \int ^{b_{m+n}(x)}_{b_{m+n}(x_{0})} \int ^{c_{m+n}(y)}_{c_{m+n}(y_{0})} \tilde{g}_{m+n}(x,y,s,t)\,dt\,ds \biggr) \biggr)^{\frac{1}{q}} \biggr) \end{aligned} \end{aligned}$$
(2.30)

for all \((x,y)\in [x_{0},X_{1})\times [y_{0},Y_{1})\), where \(\bar{r}_{i}(x,y)\) is defined by \(\bar{r}_{1}(x,y):=\varphi ^{q}(M)\) and

$$\begin{aligned} &\begin{aligned}& \bar{r}_{i+1}(x,y):=W^{-1}_{i} \biggl(W_{i}\bigl(\bar{r}_{i}(x,y)\bigr)+ \int ^{b_{i}(x)}_{b_{i}(x_{0})} \int ^{c_{i}(y)}_{c_{i}(y_{0})} \tilde{g}_{m+n}(x,y,s,t)\,dt\,ds \biggr), \\ &\quad i=1,2,\ldots ,m+n-1, \end{aligned} \\ &M:=\max \Bigl[\max_{(s,t)\in \Omega _{0}}\psi (s,t),\varphi ^{-1} \bigl((1+m+n)^{1- \frac{1}{q}}c\bigr) \Bigr], \end{aligned}$$
(2.31)

\(\frac{1}{p}+\frac{1}{q}=1, p>1, q>0\). \(pv_{i}(\gamma _{i}-1)+1>0, pk_{i}(\beta _{i}-1)+1>0\) and \(\frac{1}{p}+k_{i}\alpha _{i}(\beta _{i}-1)+v_{i}(\gamma _{i}-1)\geq 0\) for \(i=1,2,\ldots,m+n. X_{1}< x_{1}\), \(Y_{1}< y_{1}\) are the largest numbers such that

$$\begin{aligned} \begin{aligned}& W_{i}\bigl( \bar{r}_{i}(X_{1},Y_{1})\bigr)+ \int ^{b_{i}(X_{1})}_{b_{i}(x_{0})} \int ^{c_{i}(Y_{1})}_{c_{i}(y_{0})}\tilde{g}_{i}(X_{1},Y_{1},s,t)\,dt\,ds \\ &\quad\leq \int _{u_{i}}^{\infty} \frac{dz}{\tilde{\omega}^{q}_{i}(\varphi ^{-1}(z^{\frac{1}{q}}))},\quad i=1,2, \ldots ,m+n, \end{aligned} \end{aligned}$$
(2.32)

\(W_{i}\) is defined in (2.4) and \(W_{i}^{-1}\) is the inverse of \(W_{i}\). \(\tilde{\omega}_{i}\) is defined in (2.1) and (2.2). \(\tilde{g}_{i}\) is defined in (2.7).

Proof

By (2.29) and the definition of M, we have

$$\begin{aligned} \begin{aligned} &\varphi \bigl(u(x,y)\bigr)\leq (1+m+n)^{\frac{1}{q-1}}\varphi (M) \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}+\sum_{i=1}^{m} \int _{b_{i}(x_{0})}^{b_{i}(x)} \int _{c_{i}(y_{0})}^{c_{i}(y)}\bigl(x^{ \alpha _{i}}-t^{\alpha _{i}} \bigr)^{k_{i}(\beta _{i}-1)} t^{v_{i}(\gamma _{i}-1)}\bigl(y^{ \alpha _{i}}-s^{\alpha _{i}} \bigr)^{k_{i}(\beta _{i}-1)}s^{v_{i}(\gamma _{i}-1)} \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}\times g_{i}(x,y,t,s)\omega _{i}\bigl(u(t,s)\bigr)\,dt\,ds \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}+\sum_{j=m+1}^{m+n} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{ \alpha _{j}}-t^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)} t^{v_{j}(\gamma _{j}-1)}\bigl(y^{ \alpha _{j}}-s^{\alpha _{j}} \bigr)^{k_{j}(\beta _{j}-1)}s^{v_{j}(\gamma _{j}-1)} \\ &\phantom{\varphi \bigl(u(x,y)\bigr)\leq}{}\times g_{i}(x,y,t,s)\omega _{j} \Bigl(f \Bigl(\max _{(\xi ,\eta )\in [t-h,t] \times [s-k,s]}u(\xi ,\eta ) \Bigr) \Bigr)\,dt\,ds,\quad (x,y)\in \Omega , \\ &u(x,y)\leq M,\quad (x,y)\in \Omega _{0}. \end{aligned} \end{aligned}$$
(2.33)

We choose \(a(x,y)=(1+m+n)^{\frac{1}{q-1}}\varphi (M)\), then (2.33) can be converted to (2.30) by Theorem 2.1.

The proof is complete. □

3 Applications

In this section, we apply the results to study the boundedness of the solutions for an integral equation with the maxima.

Example 1

Consider the system of integral equations with maxima.

$$\begin{aligned} \begin{aligned} u(x,y)=\textstyle\begin{cases} a(x,y)+\int ^{x}_{x_{0}}\int ^{y}_{y_{0}}(x-t)^{ \beta _{1}-1}t^{\gamma _{1}-1}(y-s)^{\beta _{1}-1}s^{\gamma _{1}-1}\\ \quad{}\times f_{1}(x,y,t,s,u(x,y))\,dt\,ds \\ \quad{}+\int ^{x}_{x_{0}}\int ^{y}_{y_{0}}(x-t)^{\beta _{2}-1}t^{\gamma _{2}-1}(y-s)^{ \beta _{2}-1}s^{\gamma _{2}-1}\\ \quad{}\times f_{2} (x,y,t,s, \max_{(\eta ,\xi ) \in [\bar{\alpha}(t),\hat{\alpha}(t)]\times [\bar{\beta}(s), \hat{\beta}(s)]}u(\eta ,\xi ) )\,dt\,ds, \\ \qquad (x,y)\in [x_{0},x)\times [y_{0},y), \\ \psi (x,y),\quad (x,y)\in [\hat{\alpha}(x_{0})-h,x_{0})\times [ \hat{\beta}(y_{0})-k,y_{0}), \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(3.1)

\(\psi \in C([\hat{\alpha}(x_{0})-h,x_{0})\times [\hat{\beta}(y_{0})-k,y_{0}),R)\), \(x_{0}\geq 0, y_{0}\geq 0, h>0\).

Suppose that \((C_{1})\) \(|f_{i}(x,y,t,s,u)|\leq g_{i}(x,y,t,s)\omega _{i}(|u|)\), \(\omega _{i}\) are continuous positive and nondecreasing functions on \(R_{+}\ (i=1,2)\), \(\omega _{1}\propto \omega _{2}\), \(g_{i}(x,y,t,s)\) is nondecreasing in \((x,y)\) for each fixed \((t,s)\), \(\beta _{i}\in (0,1), \gamma _{i}>1-\frac{1}{p}, \frac{1}{p}+\beta _{i}+ \gamma _{i}-2\geq 0\ (p>1, i=1,2)\);

\((C_{2})\) \(\bar{\alpha}(x),\hat{\alpha}(x)\in C^{1}([x_{0},\infty ),R_{+}), \bar{\beta}(y),\hat{\beta}(y)\in C^{1}([y_{0},\infty ),R_{+}), \bar{\alpha}(x),\hat{\alpha}(x),\bar{\beta}(y),\hat{\beta}(y)\) are nondecreasing, \(\hat{\alpha}(x)\leq x, \bar{\alpha}(x)\leq x, 0<\hat{\alpha}(x)- \bar{\alpha}(x)\leq h\) for \(x\geq x_{0}\) and \(\bar{\beta}(y)\leq y, \hat{\beta}(y)\leq y, 0<\hat{\beta}(y)- \bar{\beta}(y)\leq k\) for \(y\geq y_{0}\);

\((C_{3})\) \(a(x,y)\) is continuous on \([x_{0},\infty )\times [y_{0},\infty )\);

\((C_{4})\) \(\max_{(\eta ,\xi )\in [\bar{\alpha}(t),\hat{\alpha}(t)]\times [ \bar{\beta}(s),\hat{\beta}(s)]}|\psi (\eta ,\xi )|\leq 3^{1- \frac{1}{q}}|a(x,y)|\).

Then we give an estimate for the solutions of (3.1).

Theorem 3.1

Suppose that \((C_{1})\)\((C_{4})\) hold, then from (3.1) we have

$$\begin{aligned} \begin{aligned} u(x,y)\leq \biggl(W_{2}^{-1} \biggl(W_{2} \biggl(r_{2}(x,y)+c_{2}(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}g_{2}^{q}(x,y,t,s)\,dt\,ds \biggr) \biggr) \biggr)^{\frac{1}{q}} \end{aligned} \end{aligned}$$
(3.2)

for \((x,y)\in [x_{0},X_{1}]\times [y_{0},Y_{1}]\), where

$$\begin{aligned} &r_{1}(x,y):=3^{q-1}\bigl(\tilde{a}^{q}(x,y) \bigr),\\ &r_{2}(x,y):=W_{1}^{-1} \biggl(W_{1} \biggl(r_{1}(x,y)+c_{1}(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}g_{1}^{q}(x,y,t,s)\,dt\,ds \biggr) \biggr),\\ &c_{i}(x,y):=3^{q-1}\bigl(M_{i}^{2}(xy)^{\theta _{i}} \bigr)^{\frac{q}{p}},\\ &M_{i}=B\bigl[p(\gamma _{i}-1)+1,p(\beta _{i}-1)+1\bigr],\qquad \theta _{i}=p[ \beta _{i}+ \gamma _{i}-2]+1,\quad i=1,2, \\ &\tilde{a}(x,y):=\max_{(\tau ,\xi )\in [x_{0},x]\times [y_{0},y]}\bigl\{ \bigl\vert a( \tau ,\xi ) \bigr\vert \bigr\} , \end{aligned}$$

\(\tilde{a}(x,y)\) is a continuous and nondecreasing function on \([x_{0},\infty )\times [y_{0},\infty )\).

\(W_{i}^{-1}\) are the inverse of the functions

$$\begin{aligned} W_{i}(u):= \int ^{u}_{u_{i}} \frac{dx}{\omega ^{q}_{i}(x^{\frac{1}{q}})},\quad u\geq u_{i}>0, i=1,2. \end{aligned}$$

\(X_{1},Y_{1}\) are the largest numbers such that

$$\begin{aligned} &W_{1} \biggl(3^{q-1} \Bigl(\max_{(\tau ,\xi )\in [x_{0},X_{1}]\times [y_{0},Y_{1}]} \bigl\{ \bigl\vert a(\tau ,\xi ) \bigr\vert \bigr\} \Bigr)^{q}+ c_{1}(X_{1},Y_{1}) \int ^{X_{1}}_{x_{0}} \int ^{Y_{1}}_{y_{0}}g_{1}^{q}(X_{1},Y_{1},t,s)\,dt\,ds \biggr)\\ &\quad\leq \int ^{ \infty}_{u_{1}}\frac{dx}{\omega ^{q}_{1}(x^{\frac{1}{q}})},\\ &W_{2} \biggl(r_{2}(X_{1},Y_{1})+c_{2}(X_{1},Y_{1}) \int ^{X_{1}}_{x_{0}} \int ^{Y_{1}}_{y_{0}}g_{2}^{q}(X_{1},Y_{1},t,s)\,dt\,ds \biggr) \leq \int ^{\infty}_{u_{2}}\frac{dx}{\omega ^{q}_{2}(x^{\frac{1}{q}})}. \end{aligned}$$

Proof

From (3.1) and \((C_{1})\), we have

$$\begin{aligned} \begin{aligned} \bigl\vert u(x,y) \bigr\vert \leq{}& \tilde{a}(x,y)+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{ \beta _{1}-1}t^{\gamma _{1}-1}(y-s)^{\beta _{1}-1}s^{\gamma _{1}-1}\\ &{}\times g_{1}(x,y,t,s) \omega _{1}\bigl( \bigl\vert u(x,y) \bigr\vert \bigr)\,dt\,ds \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{\beta _{2}-1}t^{\gamma _{2}-1}(y-s)^{ \beta _{2}-1}s^{\gamma _{2}-1} g_{2}(x,y,t,s)\\ &{}\times \omega _{2} \Bigl( \Bigl\vert \max _{(\eta ,\xi )\in [\bar{\alpha}(t),\hat{\alpha}(t)]\times [ \bar{\beta}(s),\hat{\beta}(s)]}u(\eta ,\xi ) \Bigr\vert \Bigr)\,dt\,ds \\ \leq{}& \tilde{a}(x,y)+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{\beta _{1}-1}t^{ \gamma _{1}-1}(y-s)^{\beta _{1}-1}s^{\gamma _{1}-1}\\ &{}\times g_{1}(x,y,t,s) \omega _{1}\bigl( \bigl\vert u(x,y) \bigr\vert \bigr)\,dt\,ds \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{\beta _{2}-1}t^{\gamma _{2}-1}(y-s)^{ \beta _{2}-1}s^{\gamma _{2}-1} g_{2}(x,y,t,s)\\ &{}\times\omega _{2} \Bigl(\max_{( \eta ,\xi )\in [\bar{\alpha}(t),\hat{\alpha}(t)]\times [\bar{\beta}(s), \hat{\beta}(s)]} \bigl\vert u(\eta ,\xi ) \bigr\vert \Bigr)\,dt\,ds. \end{aligned} \end{aligned}$$
(3.3)

Let \(z(x,y)=|u(x,y)|\) for \((x,y)\in [\hat{\alpha}(x_{0})-h,\infty )\times [\hat{\beta}(y_{0})-k, \infty )\), then we have

$$\begin{aligned} \begin{aligned} z(x,y)\leq{}& \tilde{a}(x,y)+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{ \beta _{1}-1}t^{\gamma _{1}-1}(y-s)^{\beta _{1}-1}s^{\gamma _{1}-1}\\ &{}\times g_{1}(x,y,t,s) \omega _{1}\bigl(z(x,y)\bigr)\,dt\,ds\\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{\beta _{2}-1}t^{\gamma _{2}-1}(y-s)^{ \beta _{2}-1}s^{\gamma _{2}-1} g_{2}(x,y,t,s)\\ &{}\times\omega _{2} \Bigl(\max_{( \eta ,\xi )\in [\bar{\alpha}(t),\hat{\alpha}(t)]\times [\bar{\beta}(s), \hat{\beta}(s)]}z( \eta ,\xi ) \Bigr)\,dt\,ds, \end{aligned} \end{aligned}$$
(3.4)

\(z(x,y)=|\psi (x,y)|, (x,y)\in [\hat{\alpha}(x_{0})-h,x_{0})\times [ \hat{\beta}(y_{0})-k,y_{0})\).

From condition \((C_{2})\), we have

$$\begin{aligned} \max_{(\eta ,\xi )\in [\bar{\alpha}(t),\hat{\alpha}(t)]\times [ \bar{\beta}(s),\hat{\beta}(s)]}z(\eta ,\xi )\leq \max_{(\eta ,\xi ) \in [\hat{\alpha}(t)-h,\hat{\alpha}(t)]\times [\hat{\beta}(s)-k, \hat{\beta}(s)]}z( \eta ,\xi ). \end{aligned}$$

By (3.4), we have

$$\begin{aligned} z(x,y)\leq{}& \tilde{a}(x,y)+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{ \beta _{1}-1}t^{\gamma _{1}-1}(y-s)^{\beta _{1}-1}s^{\gamma _{1}-1} \\ \begin{aligned} &{}\times g_{1}(x,y,t,s) \omega _{1}\bigl(z(x,y)\bigr)\,dt\,ds \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}(x-t)^{\beta _{2}-1}t^{\gamma _{2}-1}(y-s)^{ \beta _{2}-1}s^{\gamma _{2}-1} g_{2}(x,y,t,s) \end{aligned}\\ &{}\times\omega _{2} \Bigl(\max_{( \eta ,\xi )\in [\hat{\alpha}(t)-h,\hat{\alpha}(t)]\times [\hat{\beta}(s)-k, \hat{\beta}(s)]}z( \eta ,\xi ) \Bigr)\,dt\,ds, \end{aligned}$$
(3.5)

\(z(x,y)=|\psi (x,y)|, (x,y)\in [\hat{\alpha}(x_{0})-h,x_{0})\times [ \hat{\beta}(y_{0})-k,y_{0})\).

By condition \((C_{4})\), we can obtain

$$\begin{aligned} \max_{(\eta ,\xi )\in [\hat{\alpha}(x_{0})-h,x_{0})\times [ \hat{\beta}(y_{0})-k,y_{0})} \bigl\vert \psi (\eta ,\xi ) \bigr\vert \leq 3^{1-\frac{1}{q}} \tilde{a}(x,y). \end{aligned}$$

Compare with (1.9), we let \(\psi (u(x,y))=z(x,y), a(x,y)=\tilde{a}(x,y), m=n=1, b_{i}(x)=x\ (i=1,2), c_{i}(y)=y\ (i=1,2), \alpha _{i}=1\ (i=1,2), k_{i},v_{i}=1\ (i=1,2)\), applying Theorem 2.1, from (3.5) we obtain (3.2).

Then the proof is complete. □

Example 2

Consider the system of integral inequations with maxima:

$$\begin{aligned} \begin{aligned} \textstyle\begin{cases} u(x,y)\\ \quad\leq xy+\int ^{x}_{0}\int ^{y}_{0}(x-t)^{- \frac{1}{2}}(y-s)^{-\frac{1}{2}}u(x,y)\,dt\,ds \\ \qquad{}+\int ^{x}_{0}\int ^{y}_{0}(x-t)^{-\frac{1}{2}}(y-s)^{-\frac{1}{2}} \max_{(\xi ,\eta )\in [t-h,t]\times [s-k,s]}e^{u(\xi ,\eta )}\,dt\,ds, (x,y)\in \Omega , \\ u(x,y)\leq \psi (x,y),\quad (x,y)\in \Omega _{0}, \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(3.6)

where

$$\begin{aligned} &\Omega =[0,1)\times [0,1),\\ &\Omega _{0}=[-h,0)\times [-k,1)\cup [0,1)\times [-k,0), \end{aligned}$$

\(h, k\) are constants, \(\psi (x,y)\in C(\Omega _{0},R)\).

Theorem 3.2

\(u(x,y)\) satisfies the integral inequalities (3.6), \((x,y)\in \Omega \cup \Omega _{0}\), we let \(p=\frac{3}{2}, q=3\).

Then we have

$$\begin{aligned} \begin{aligned} u(x,y)\leq \exp \bigl\{ \ln \bigl(9(xy)^{3} \bigr)+(xy)^{ \frac{3}{2}} \bigl(4M^{4}+9M \bigr)\bigr\} ^{\frac{1}{3}} \end{aligned} \end{aligned}$$
(3.7)

for all \((x,y)\in [0,1)\times [0,1)\).

Proof

Compare with (1.9), from (3.6), we let \(\varphi (u)=u, m=n=1, b_{i}(x)=x\ (i=1,2), c_{i}(y)=y\ (i=1,2), \alpha _{i}=1\ (i=1,2), v_{i}=0\ (i=1,2), k_{i}=1\ (i=1,2), \beta _{i}=\frac{1}{2}\ (i=1,2), x_{0}=0,\ y_{0}=0, a(x,y)=xy\).

$$\begin{aligned} &\tilde{a}(x,y):=\max_{(\tau ,\xi )\in [0,x]\times [0,y]}\{\tau \xi \}=xy, \quad (x,y)\in \Omega , \\ &g_{1}(x,y,t,s)=g_{2}(x,y,t,s)=1,\quad \hat{g}_{1}= \hat{g}_{2}=1. \end{aligned}$$

Setting \(p=\frac{3}{2}, q=3\), we get

$$\begin{aligned} &\tilde{g}(x,y,t,s):=3^{2}\bigl((xy)^{\theta}M^{2} \bigr)^{\frac{q}{p}}=9M^{4}(xy)^{ \frac{1}{2}}, \\ &M=B\biggl[1,1-\frac{p}{2}\biggr]=B\biggl[1,\frac{1}{4}\biggr],\qquad \theta =1-\frac{p}{2}= \frac{1}{4}, \\ &\omega _{1}(u)=u,\qquad \omega _{2}(u)=u,\qquad f(u)=e^{u}. \end{aligned}$$

From the definition

$$\begin{aligned} W_{i}(u):= \int ^{u}_{1}\frac{dx}{{\omega}^{q}_{i}(x^{\frac{1}{q}})},\quad u\geq 1, i=1,2, \end{aligned}$$

we have

$$\begin{aligned} & W_{1}(u)= W_{2}(u)=\ln u, \\ &W^{-1}_{1}(u)= W^{-1}_{2}(u)=e^{u}. \\ &r_{1}(x,y):=3^{q-1}a^{q}(x,y)=9(xy)^{3},\\ &r_{2}(x,y):=W_{1}^{-1} \biggl(W_{1}\bigl(r_{1}(x,y)\bigr)+ \int _{x_{0}}^{x} \int _{y_{0}}^{y}\tilde{g}(x,y,t,s)\,dt\,ds \biggr) \\ &\phantom{r_{2}(x,y)}=\exp \bigl\{ \ln \bigl(9(xy)^{3} \bigr)+4M^{4}(xy)^{\frac{3}{2}} \bigr\} =9(xy)^{3} \exp \bigl\{ 4M^{4}(xy)^{\frac{3}{2}}\bigr\} . \end{aligned}$$

Applying Theorem 2.1, we obtain

$$\begin{aligned} \begin{aligned} u(x,y)&\leq W_{2}^{-1} \bigl(W_{2} \bigl(r_{2}(x,y) \bigr)+3^{q-1}M^{\frac{2p}{q}}(xy)^{\frac{\theta q}{p}}(x-x_{0}) (y-y_{0}) \bigr)^{\frac{1}{q}} \\ &=\exp \bigl\{ \ln \bigl(9(xy)^{3}\exp \bigl\{ 4M^{4}(xy)^{\frac{3}{2}} \bigr\} \bigr)+9M(xy)^{ \frac{3}{2}}\bigr\} ^{\frac{1}{3}} \\ &=\exp \bigl\{ \ln \bigl(9(xy)^{3} \bigr)+4M^{4}(xy)^{\frac{3}{2}}+9M(xy)^{ \frac{3}{2}} \bigr\} ^{\frac{1}{3}} \\ &=\exp \bigl\{ \ln \bigl(9(xy)^{3} \bigr)+(xy)^{\frac{3}{2}} \bigl(4M^{4}+9M \bigr)\bigr\} ^{\frac{1}{3}}. \end{aligned} \end{aligned}$$
(3.8)

We have \(\tilde{\omega}_{i}(u)=\omega _{i}(u)=u, i=1,2\). So we obtain

$$\begin{aligned} \begin{aligned} \int ^{\infty}_{1} \frac{dx}{\tilde{\omega}_{i}^{q}(x^{\frac{1}{q}})}= \int ^{\infty}_{1} \frac{dx}{\tilde{\omega}_{i}^{q}(x^{\frac{1}{q}})} = \int ^{\infty}_{1} \frac{dx}{x}=\infty ,\quad i=1,2. \end{aligned} \end{aligned}$$

Then we have (3.8) holds for all \((x,y)\in [0,1)\times [0,1)\).

So the proof is complete. □

More generally, consider the system of differential equations with maxima:

$$\begin{aligned} \begin{aligned} &z(x,y)=a(x,y)+ \int _{x_{0}}^{x} \int _{y_{0}}^{y}F \Bigl(x,y,z(x,y), \max _{(t,s)\in [x-h,x]\times [y-k,y]}z(t,s) \Bigr) \\ &\phantom{z(x,y)=}+ \int _{x_{0}}^{x} \int _{y_{0}}^{y}(x-t)^{-\lambda}(y-s)^{-\lambda}f(t,s)\,dt\,ds,\quad (x,y)\in \Omega , \\ &z(x,y)=\psi (x,y), \quad (x,y)\in \Omega _{0}, \\ &z(x,y_{0})=f(x),\qquad z(x_{0},y)=g(y),\quad x\geq x_{0},y\geq y_{0}, \end{aligned} \end{aligned}$$
(3.9)

where \(\lambda (0<\lambda <1), x_{0}\geq 0, y_{0}\geq 0, h,k>0\) are constants, \(\psi \in C(\Omega _{0},R), F\in C(\Omega \times R^{2},R), f\in C([x_{0},x_{1}),R), g\in C([y_{0},y_{1}),R), f(x_{0})=g(y_{0})\).

System (3.9) is more generalized than system (3.6). By Theorem 2.1, we can estimate solutions for the nonlinear equation. By analogy with the equation considered in Sect. 3, Corollary 3.2 of [23], we can prove that system (3.9) has at most one solution on Ω.

Availability of data and materials

We declare that the data in the paper can be used publicly.

References

  1. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(4), 292–296 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10, 643–647 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bihari, I.: A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hung. 7, 81–94 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Medved, M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214, 349–366 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agarwal, R.P., Ryoo, C.S., Kim, Y.H.: New integral inequalities for iterated integrals with applications. J. Inequal. Appl. 2007, Article ID 024385 (2007)

    Article  MathSciNet  Google Scholar 

  6. Abdeldaim, A.: On some new integral inequalities of Gronwall–Bellman–Pachpatte type. Appl. Math. Comput. 217(20), 7887–7899 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223(3), 444–451 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Ma, Q.H., Pec̆arié, J.: Estimates on solutions of some new nonlinear retarded Volterra–Fredholm type integral inequalities. Nonlinear Anal., Theory Methods Appl. 69(2), 393–407 (2008)

    Article  MathSciNet  Google Scholar 

  9. Hou, Z.Y., Wang, W.S.: A class of nonlinear retarded Volterra–Fredholm type integral inequality and its application. Math. Pract. Theory 44, 21 (2014)

    Google Scholar 

  10. Lu, Y.S., Wang, W.S., Zhou, X.L., Hang, Y.: Generalized nonlinear Volterra–Fredholm type integral inequality with two variables. J. Appl. Math. 2014, Article ID 359280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou, Z.Y., Wang, W.S.: A class of nonlinear Volterra–Fredholm type integral inequality with variable lower limit and its application. J. Southwest China Norm. Univ. 41, 2 (2016)

    Google Scholar 

  12. Huang, C.M., Wang, W.S.: A class of nonlinear Volterra–Fredholm type integral inequality with maxima. J. Sichuan Normal Univ. 39, 3 (2016)

    Google Scholar 

  13. Ma, Q.H., Pec̆arié, J.: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations. J. Math. Anal. Appl. 341, 894–905 (2008)

    Article  MathSciNet  Google Scholar 

  14. Ma, Q.H., Yang, E.H.: Estimates on solutions of some weakly singular Volterra integral inequalities. Acta Math. Appl. Sin. 25(3), 505–515 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Xu, R., Meng, F.W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, Article ID 78 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, R.: Some new nonlinear weakly singular integral inequalities and their applications. J. Math. Inequal. 11(4), 1007–1018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, T.L., Xu, R.: Some integral inequalities in two independent variables on time scales. J. Math. Inequal. 6(1), 107–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, T.L., Xu, R.: Bounds for some new integral inequalities with delay on time scales. J. Math. Inequal. 6(1), 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  19. Xu, R., Meng, F.W., Song, C.H.: On some integral inequalities on time scales and their applications. J. Inequal. Appl. 2010), Article ID 464976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, L.W., Xu, R.: Some new Pachpatte type inequalities on time scales and their applications. J. Math. Inequal. 6(2), 229–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wan, L.L., Xu, R.: Some generalized integral inequalities and there applications. J. Math. Inequal. 7(3), 495–511 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, R., Zhang, Y.: Generalized Gronwall fractional summation inequalities and their applications. J. Inequal. Appl. 2015, 242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, Y.: On some new weakly singular Volterra integral inequality with maxima and their applications. J. Inequal. Appl. 369, 16 (2015)

    MATH  Google Scholar 

  24. Hristova, S., Stafanova, K.: Linear integral inequalities involving maxima of the unknown scalar functions. Funkc. Ekvacioj 53, 381–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Henderson, J., Hristova, S.: Nonlinear integral inequalities involving maxima of unknown scalar functions. Math. Comput. Model. 53, 871–882 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bohner, M., Hristova, S., Stefanova, K.: Nonlinear integral inequalities involving maxima of the unknown scalar functions. Math. Inequal. Appl. 12, 811–825 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Yan, Y.: Nonlinear Gronwall–Bellman type integral inequalities with maxima. Math. Inequal. Appl. 16, 911–928 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Thiramanus, P., Tariboon, J., Ntouyas, S.: Henry–Gronwall integral inequalities with maxima and their applications to fractional differential equations. Abstr. Appl. Anal. 2014, Article ID 276316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, R., Ma, X.T.: Some new retarded nonlinear Volterra–Fredholm type integral inequality with maxima in two variables and their applications. J. Inequal. Appl. 187, 25 (2017)

    MATH  Google Scholar 

  30. Wang, W.S.: A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl. Math. Comput. 191(1), 144–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hong, W., Kelong, Z.: Some nonlinear weakly singular integral inequalities with two variables and applications. J. Inequal. Appl. 2010, Article ID 345701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

YS carried out the bounds of solutions to retarded nonlinear Volterra type integral equations and completed the corresponding proof. RX participated in the proof of the theorem and examples. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Run Xu.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Xu, R. Some weakly singular Volterra integral inequalities with maxima in two variables. J Inequal Appl 2023, 36 (2023). https://doi.org/10.1186/s13660-023-02939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02939-9

MSC

Keywords