# Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces

## Abstract

By using the rotation method, a sharp bound for an n-dimensional Hardy operator on mixed radial-angular central Morrey spaces is obtained. Furthermore, a sharp weak-type estimate for an n-dimensional Hardy operator on mixed radial-angular central Morrey spaces is established. In addition, we also calculate the sharp constant for an n-dimensional m-linear Hardy operator from product mixed radial-angular central Morrey spaces to mixed radial-angular weak central Morrey spaces. Since mixed radial-angular central Morrey spaces are generalizations of both central Morrey spaces and mixed radial-angular spaces, the main theorems in this paper extend various existing results to a more general setting.

## 1 Introduction

Let f be a nonnegative integrable function on $$\mathbb{R}$$. The classical Hardy operator is defined by

$$H(f) (x) := \frac{1}{x} \int _{0}^{x}f(t)\,dt ,$$

where $$x\neq 0$$.

As we know, the classical Hardy operator, initially introduced by Hardy [14], yields the following Hardy inequality:

$$\bigl\Vert H(f) \bigr\Vert _{L^{p}}\le \frac{p}{p-1} \Vert f \Vert _{L^{p}},$$

where the constant $$\frac{p}{p-1}$$ is the best possible.

Hardy-type operators in higher dimension were introduced by Faris [9]. Later, Christ and Grafakos [4] gave an equivalent expression of an n-dimensional Hardy operator

$${\mathcal{H}}(f) (x) := \frac{1}{\Omega _{n} \vert x \vert ^{n}} \int _{ \vert y \vert < \vert x \vert }f(y)\,dy , \quad x\in \mathbb{R}^{n} \backslash \{0\},$$
(1.1)

where f is a nonnegative measurable function on $$\mathbb{R}^{n}$$ and $$\Omega _{n}=\frac{\pi ^{n/2}}{\Gamma (1+n/2)}$$ is the volume of the unit ball in $$\mathbb{R}^{n}$$.

In the same paper [4], Christ and Grafakos proved that the operator norm of $$\mathcal{H}$$ on $$L^{p}(\mathbb{R}^{n})$$ $$(1< p<\infty )$$ is also $$\frac{p}{p-1}$$. Moreover, a sharp weak $$(p,p)$$ bound for $$\mathcal{H}$$ was obtained by Zhao et al. [46]: namely, for $$1\leq p\leq \infty$$, we have

$$\bigl\Vert \mathcal{H}(f) \bigr\Vert _{L^{p,\infty}}\leq 1 \cdot \Vert f \Vert _{L^{p}},$$

where the constant 1 is the best possible. Recently, much attention has been paid to the sharp bounds for Hardy-type operators. We refer the readers to [12, 13, 20, 36, 42, 45â€“47] for more studies of sharp bounds for Hardy-type operators on different function spaces.

In 2012, the Hardy operator was extended to the multilinear setting by Fu et al. [11]. Let $$m\in \mathbb{N}^{+}$$, $$f_{1}, f_{2},\dots , f_{m}$$ be nonnegative locally integrable functions on $$\mathbb{R}^{n}$$. The m-linear Hardy operator is defined by

\begin{aligned} &\mathcal{H}_{m}(f_{1},\dots ,f_{m}) (x) \\ &\quad :=\frac{1}{\Omega _{mn} \vert x \vert ^{mn}} \int _{ \vert (y_{1},y_{2},\dots ,y_{m}) \vert < \vert x \vert }f_{1}(y_{1})f_{2}(y_{2}) \cdots f_{m}(y_{m})\,dy _{1}\,dy _{2} \cdots \,dy _{m}. \end{aligned}
(1.2)

Two other variants of m-linear Hardy operators were also introduced and studied by BÃ©nyi and Oh [2]. Sharp bounds for the m-linear Hardy operator from product Lebesgue spaces to Lebesgue spaces and from product central Morrey spaces to central Morrey spaces were obtained in [11]. After that, many researchers studied sharp constants for n-dimensional m-linear Hardy operators and their variants on product Lebesgue spaces and product Morrey-type spaces. The readers are referred to [10, 28, 40] for more details. For some earlier development of Hardy-type inequalities, one can refer to the book [15]. We also refer the readers to [22, 26] for some recent progress on Hardy-type inequalities and related topics.

Note that recently the mixed radial-angular spaces have been used to improve some classical results in partial differential equations, see [3, 5, 8, 29, 39]. Later, many integral operators in harmonic analysis were proven to be bounded on these spaces. For instance, Duoandikoetxea and Oruetxebarria [7] established the extrapolation theorems on mixed radial-angular spaces to study the boundedness of operators on mixed radial-angular spaces which are weighted bounded. Moreover, the boundedness of some operators with rough kernels on mixed radial-angular spaces were also studied by Liu et al. [23â€“25]. Now we recall the definition of mixed radial-angular spaces.

### Definition 1.1

For $$n\geq 2$$ and $$1\leq p,\bar{p}\leq \infty$$, the mixed radial-angular space $$L^{p}_{|x|}L_{\theta}^{\bar{p}}(\mathbb{R}^{n})$$ consists of all functions f in $$\mathbb{R}^{n}$$ for which

$$\Vert f \Vert _{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}}}:= \biggl( \int _{0}^{\infty} \biggl( \int _{\mathbb{S}^{n-1}} \bigl\vert f(r,\theta ) \bigr\vert ^{\bar{p}}\,d\theta \biggr)^{p/\bar{p}}r^{n-1}\,dr \biggr)^{1/p}< \infty ,$$

where $$\mathbb{S}^{n-1}$$ denotes the unit sphere in $$\mathbb{R}^{n}$$. If $$p=\infty$$ or $$\bar{p}=\infty$$, then we have to make appropriate modifications.

Similarly, we can define the weak mixed radial-angular spaces.

### Definition 1.2

For $$n\geq 2$$ and $$1\leq p,\bar{p}\leq \infty$$, the weak mixed radial-angular space $$wL^{p}_{|x|}L_{\theta}^{\bar{p}}(\mathbb{R}^{n})$$ consists of all functions f in $$\mathbb{R}^{n}$$ for which

$$\Vert f \Vert _{wL^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}}}:=\sup_{t>0}t \Vert \chi _{\{x \in \mathbb{R}^{n}: \vert f(x) \vert >t\}} \Vert _{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}}}< \infty ,$$

where $$\chi _{\{x\in \mathbb{R}^{n}:|f(x)|>t\}}$$ denotes the characteristic function of the set $$\{x\in \mathbb{R}^{n}:|f(x)|>t\}$$.

Obviously, the mixed radial-angular spaces are particular cases of mixed-norm Lebesgue spaces studied by Benedek and Panzone [1]. We refer the readers to [6, 18, 19, 32â€“34] for more studies on mixed-norm Lebesgue spaces.

In order to study the local properties of solutions to partial differential equations, Morrey [31] introduced the classical Morrey space $$M^{\lambda}_{p}(\mathbb{R}^{n})$$, which consists of all functions f with finite norm

$$\Vert f \Vert _{M^{\lambda}_{p}}:=\sup_{x\in \mathbb{R}^{n},R>0} \frac{1}{ \vert B(x,R) \vert ^{1/p+\lambda}} \Vert f \Vert _{L^{p}(B(x,R))},$$

where $$1\leq p<\infty$$, $$-1/p\leq \lambda <0$$ and $$B(x,R)$$ denotes the ball in $$\mathbb{R}^{n}$$ centered at x with radius R. By restricting the balls centered at the origin, we obtain the central Morrrey space $$\dot{M}^{\lambda}_{p}(\mathbb{R}^{n})$$, which consists of all functions f with finite norm

$$\Vert f \Vert _{\dot{M}^{\lambda}_{p}}:=\sup_{R>0} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f \Vert _{L^{p}(B(0,R))},$$

for $$1\leq p<\infty$$, $$-1/p\leq \lambda <0$$.

Nowadays, Morrey-type spaces have become some of the most important function spaces in the theory of function spaces, see the book [37] for a comprehensive theory of Morrey-type spaces. By combining Morrey spaces with different function spaces, we can construct some new function spaces, for instance, Morreyâ€“Herz spaces, Besovâ€“Morrey spaces, Hardyâ€“Morrey spaces, Morreyâ€“Lorentz spaces, and so on. See [16, 17, 21, 27, 30, 35, 38, 44] for more details.

Naturally, by combining the definitions of central Morrey spaces and mixed radial-angular spaces, we can define mixed radial-angular central Morrey spaces, see [41] for a more general version of these spaces.

### Definition 1.3

For $$n\geq 2$$, $$1\leq p<\infty$$, $$-1/p\leq \lambda <0$$, and $$1\leq \bar{p}<\infty$$, the mixed radial-angular central Morrey space $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$ consists of all functions f in $$\mathbb{R}^{n}$$ for which

$$\Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}}}:=\sup_{R>0} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f\chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}}}}< \infty ,$$

where $$\chi _{B(0,R)}$$ denotes the characteristic function of the ball $$B(0,R)$$.

Similarly, the mixed radial-angular weak central Morrey spaces can be defined as follows:

### Definition 1.4

For $$n\geq 2$$, $$1\leq p<\infty$$, $$-1/p\leq \lambda <0$$, and $$1\leq \bar{p}<\infty$$, the mixed radial-angular weak central Morrey space $$w\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$ consists of all functions f in $$\mathbb{R}^{n}$$ for which

$$\Vert f \Vert _{w\dot{M}^{\lambda}_{p,\bar{p}}}:=\sup_{R>0} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f\chi _{B(0,R)} \Vert _{{wL^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}}}}< \infty .$$

Obviously, we recover the spaces $$L^{p}_{|x|}L_{\theta}^{\bar{p}}(\mathbb{R}^{n})$$ and $$wL^{p}_{|x|}L_{\theta}^{\bar{p}}(\mathbb{R}^{n})$$ if $$\lambda =-1/p$$ in Definitions 1.3 and 1.4, respectively.

Very recently, the sharp constant for an n-dimensional Hardy operator $$\mathcal{H}$$ from $$L^{p}_{|x|}L_{\theta}^{\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$L^{p}_{|x|}L_{\theta}^{\bar{p}_{2}}(\mathbb{R}^{n})$$ was obtained by Wei and Yan [43]. In addition, a sharp weak type estimate was also considered in [43]. Inspired by [11, 12, 43, 46], we will consider the sharp constants for an n-dimensional Hardy operator $$\mathcal{H}$$ and n-dimensional m-linear Hardy operator $$\mathcal{H}_{m}$$ on mixed radial-angular central Morrey spaces in this paper. Moreover, we will also give a sharp weak estimate for $$\mathcal{H}$$ from $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$w\dot{M}^{\lambda}_{p,\bar{p}_{2}}(\mathbb{R}^{n})$$.

This paper is organized as follows. The sharp bound for n-dimensional Hardy operator from $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}_{2}}(\mathbb{R}^{n})$$ is obtained in Sect.Â 2. We calculate the operator norm of $$\mathcal{H}$$ from $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$w\dot{M}^{\lambda}_{p,\bar{p}_{2}}(\mathbb{R}^{n})$$ in Sect.Â 3. In addition, we also calculate the operator norm for an n-dimensional m-linear Hardy operator from $$\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}(\mathbb{R}^{n})\times \dot{M}^{ \lambda _{2}}_{p_{2},\bar{p}_{2}}(\mathbb{R}^{n})\times \cdots \times \dot{M}^{\lambda _{m}}_{p_{m},\bar{p}_{m}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$ in Sect.Â 4.

## 2 Sharp bound for $$\mathcal{H}$$ on $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$

The main result in this section is the following:

### Theorem 2.1

Let $$n\geq 2$$, $$1< p,\bar{p}_{1},\bar{p}_{2}<\infty$$, and $$-1/p\leq \lambda <0$$. Then the n-dimensional Hardy operator $$\mathcal{H}$$ defined in (1.1) is bounded from $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}_{2}}(\mathbb{R}^{n})$$. Moreover,

$$\Vert \mathcal{H} \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}\rightarrow \dot{M}^{ \lambda}_{p,\bar{p}_{2}}}=\frac{1}{1+\lambda}w_{n}^{1/\bar{p}_{2}-1/ \bar{p}_{1}},$$

where $$w_{n}=2\pi ^{n/2}/\Gamma (n/2)$$ is the measure of $$\mathbb{S}^{n-1}$$.

### Proof

We borrow some ideas from [4, 11], where a rotation method was used. Set

$$g(x)=\frac{1}{w_{n}} \int _{\mathbb{S}^{n-1}}f\bigl( \vert x \vert \theta \bigr)\,d\theta , \quad x\in \mathbb{R}^{n}.$$
(2.1)

Obviously, $$g(x)$$ is a radial function. Moreover, for any $$R>0$$ and locally integrable function f on $$\mathbb{R}^{n}$$, we have

\begin{aligned} &\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f\chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{1}}}} \\ &\quad =\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl( \int _{ \mathbb{S}^{n-1}} \bigl\vert g(r,\theta ) \bigr\vert ^{\bar{p}_{1}}\,d\theta \biggr)^{p/ \bar{p}_{1}}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad =w^{1/\bar{p}_{1}}_{n}\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \bigl\vert g(r) \bigr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p}, \end{aligned}
(2.2)

where $$g(r)$$ should be recognized as $$g(r)=g(x)$$ for any $$x\in \mathbb{R}^{n}$$ with $$|x|=r$$, since g is a radial function.

In view of (2.1) and (2.2), by using HÃ¶lderâ€™s inequality, we get

\begin{aligned} &\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f\chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{1}}}} \\ &\quad =w^{1/\bar{p}_{1}}_{n}\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl\vert \frac{1}{w_{n}} \int _{\mathbb{S}^{n-1}}f(r\theta )\,d\theta \biggr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad =w^{1/\bar{p}_{1}-1}_{n}\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl\vert \int _{\mathbb{S}^{n-1}}f(r\theta )\,d\theta \biggr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad \leq w^{1/\bar{p}_{1}-1}_{n}\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl( \int _{\mathbb{S}^{n-1}} \bigl\vert f(r\theta ) \bigr\vert ^{\bar{p}_{1}}\,d\theta \biggr)^{p/\bar{p}_{1}} \biggl( \int _{\mathbb{S}^{n-1}}\,d\theta \biggr)^{p/\bar{p}'_{1}}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad =\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl( \int _{ \mathbb{S}^{n-1}} \bigl\vert f(r\theta ) \bigr\vert ^{\bar{p}_{1}}\,d\theta \biggr)^{p/ \bar{p}_{1}}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad \leq \Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}, \end{aligned}

where $$\bar{p}'_{1}$$ satisfies $$1/\bar{p}_{1}+1/\bar{p}'_{1}=1$$. By taking the supremum over all $$R>0$$, we have

$$\Vert g \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}\leq \Vert f \Vert _{\dot{M}^{\lambda}_{p, \bar{p}_{1}}}.$$

Moreover, Fu et al. [11, Proof of TheoremÂ 1] showed that $$\mathcal{H}(g)$$ is equal to $$\mathcal{H}(f)$$. Therefore, we arrive at

$$\frac{ \Vert \mathcal{H}(f) \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{2}}}}{ \Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}} \leq \frac{ \Vert \mathcal{H}(g) \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{2}}}}{ \Vert g \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}}.$$

Consequently, the operator $$\mathcal{H}$$ and its restriction to radial functions have the same operator norm on $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$. Without loss of generality, we can assume that f is a radial function.

For a radial function f, $$\mathcal{H}(f)(x)$$ is also a radial function. Moreover, we have

\begin{aligned} &\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \bigl\Vert \mathcal{H}(f)\cdot \chi _{B(0,R)} \bigr\Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}} \\ &\quad =\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl( \int _{ \mathbb{S}^{n-1}} \bigl\vert \mathcal{H}(f) (r,\theta ) \bigr\vert ^{\bar{p}_{2}}\,d\theta \biggr)^{p/\bar{p}_{2}}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad =\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl( \int _{ \mathbb{S}^{n-1}} \bigl\vert \mathcal{H}(f) (r) \bigr\vert ^{\bar{p}_{2}}\,d\theta \biggr)^{p/ \bar{p}_{2}}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad =w^{1/\bar{p}_{2}}_{n}\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \bigl\vert \mathcal{H}(f) (r) \bigr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p}, \end{aligned}
(2.3)

where $$\mathcal{H}(f)(r)$$ should be recognized as $$\mathcal{H}(f)(r)=\mathcal{H}(f)(x)$$ for any $$x\in \mathbb{R}^{n}$$ with $$|x|=r$$ noting that $$\mathcal{H}(f)$$ is a radial function.

By changing variables, there holds

$$\mathcal{H}(f) (r)=\frac{1}{\Omega _{n}} \int _{B(0,1)}f(ry)\,dy .$$
(2.4)

Combining (2.3) with (2.4), and using Minkowskiâ€™s inequality, we get

\begin{aligned} &\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \bigl\Vert \mathcal{H}(f)\cdot \chi _{B(0,R)} \bigr\Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}} \\ &\quad =\frac{w_{n}^{1/\bar{p}_{2}}}{\Omega _{n}} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl\vert \int _{B(0,1)}f(ry)\,dy \biggr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad \leq \frac{w_{n}^{1/\bar{p}_{2}}}{\Omega _{n}} \int _{B(0,1)} \biggl( \frac{1}{ \vert B(0,R) \vert ^{1+p\lambda}} \int _{0}^{R} \bigl\vert f(ry) \bigr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \,dy \\ &\quad =\frac{w_{n}^{1/\bar{p}_{2}}}{\Omega _{n}} \int _{B(0,1)} \biggl( \frac{1}{ \vert B(0,R) \vert ^{1+p\lambda}} \int _{0}^{R} \bigl\vert f\bigl(r \vert y \vert \bigr) \bigr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \,dy \\ &\quad =\frac{w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}}{\Omega _{n}} \int _{B(0,1)} \frac{1}{ \vert B(0,R \vert y \vert ) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R \vert y \vert } w_{n}^{p/ \bar{p}_{1}} \bigl\vert f(r) \bigr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \vert y \vert ^{n\lambda}\,dy \\ &\quad \leq \frac{w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}}{\Omega _{n}} \int _{B(0,1)} \vert y \vert ^{n\lambda}\,dy \Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}} \\ &\quad =w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}\frac{w_{n}}{\Omega _{n}} \frac{1}{n(1+\lambda )} \Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}= \frac{1}{1+\lambda}w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}} \Vert f \Vert _{\dot{M}^{ \lambda}_{p,\bar{p}_{1}}}, \end{aligned}

where we have used the identity $$w_{n}=n\Omega _{n}$$.

By taking the supremum over all $$R>0$$, we obtain

$$\bigl\Vert \mathcal{H}(f) \bigr\Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{2}}}\leq \frac{1}{1+\lambda}w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}} \Vert f \Vert _{\dot{M}^{ \lambda}_{p,\bar{p}_{1}}}.$$

To prove that the constant $$\frac{1}{1+\lambda}w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}$$ is optimal, we only need to consider the case $$-1/p<\lambda <0$$, since the case $$\lambda =-1/p$$ has been studied in [43, TheoremÂ 2.1]. For $$-1/p<\lambda <0$$, we take $$f_{0}(x)=|x|^{n\lambda}$$. Obviously, $$f_{0}(x)=|x|^{n\lambda}$$ satisfies $$\mathcal{H}(f_{0})(x)=\frac{1}{1+\lambda}f_{0}(x)$$. Moreover,

\begin{aligned} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f_{0} \chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{1}}}} &= \frac{w_{n}^{1/\bar{p}_{1}}}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R}r^{np \lambda}r^{n-1}\,dr \biggr)^{1/p} \\ &= \frac{w_{n}^{1/\bar{p}_{1}}}{\Omega _{n}^{1/p+\lambda}[n(1+p\lambda )]^{1/p}}< \infty , \end{aligned}
(2.5)

which yields that $$f_{0}$$ lies in $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$, and

\begin{aligned} \Vert f_{0} \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}&=\sup _{R>0} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f_{0} \chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{1}}}} \\ &= \frac{w_{n}^{1/\bar{p}_{1}}}{\Omega _{n}^{1/p+\lambda}[n(1+p\lambda )]^{1/p}}. \end{aligned}

Similarly,

\begin{aligned} \bigl\Vert \mathcal{H}(f_{0}) \bigr\Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{2}}}&= \frac{1}{1+\lambda}\sup_{R>0} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert f_{0} \chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}} \\ &=\frac{1}{1+\lambda} \frac{w_{n}^{1/\bar{p}_{2}}}{\Omega _{n}^{1/p+\lambda}[n(1+p\lambda )]^{1/p}}. \end{aligned}

Consequently,

$$\bigl\Vert \mathcal{H}(f_{0}) \bigr\Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{2}}}= \frac{1}{1+\lambda}w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}} \Vert f_{0} \Vert _{ \dot{M}^{\lambda}_{p,\bar{p}_{1}}},$$

which finishes the proof.â€ƒâ–¡

### Remark 2.1

When $$p=\bar{p}_{1}=\bar{p}_{2}\in (1,\infty )$$ in TheoremÂ 2.1, we recover the result of [11, TheoremÂ 2] in the linear situation.

## 3 Sharp weak bound for $$\mathcal{H}$$ from $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$w\dot{M}^{\lambda}_{p,\bar{p}_{2}}(\mathbb{R}^{n})$$

This section establishes a sharp weak estimate for an n-dimensional Hardy operator from mixed radial-angular central Morrey spaces to mixed radial-angular weak central Morrey spaces. Our main result is as follows.

### Theorem 3.1

Let $$n\geq 2$$, $$1\leq p,\bar{p}_{1},\bar{p}_{2}<\infty$$, and $$-1/p\leq \lambda <0$$. Then the n-dimensional Hardy operator $$\mathcal{H}$$ defined in (1.1) is bounded from $$\dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$ to $$w\dot{M}^{\lambda}_{p,\bar{p}_{2}}(\mathbb{R}^{n})$$. Moreover,

$$\Vert \mathcal{H} \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}\rightarrow w \dot{M}^{\lambda}_{p,\bar{p}_{2}}}=w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}.$$

### Proof

We only give the proof of the case $$1< p,\bar{p}_{1},\bar{p}_{2}<\infty$$, with the usual modifications made when $$p=1$$ or $$\bar{p}_{i}=1$$, $$i=1,2$$. By using HÃ¶lderâ€™s inequality on mixed-norm Lebesgue spaces (see [1]), we have

\begin{aligned} \bigl\vert \mathcal{H}(f) (x) \bigr\vert &\leq \frac{1}{\Omega _{n} \vert x \vert ^{n}} \Vert f\chi _{B(0, \vert x \vert )} \Vert _{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{1}}} \Vert \chi _{B(0, \vert x \vert )} \Vert _{L^{p'}_{ \vert x \vert }L_{ \theta}^{\bar{p}'_{1}}} \\ &\leq \frac{1}{\Omega _{n} \vert x \vert ^{n}} \Vert f\chi _{B(0, \vert x \vert )} \Vert _{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{1}}} \Vert \chi _{B(0, \vert x \vert )} \Vert _{L^{p'}_{ \vert x \vert }L_{\theta}^{ \bar{p}'_{1}}} \\ &= w_{n}^{1/\bar{p}_{1}-1/p'}\Omega _{n}^{\lambda} \vert x \vert ^{n\lambda} \frac{1}{ \vert B(0, \vert x \vert ) \vert ^{1/p+\lambda}} \Vert f\chi _{B(0, \vert x \vert )} \Vert _{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{1}}} \\ &\leq w_{n}^{1/\bar{p}'_{1}-1/p'}\Omega _{n}^{\lambda} \vert x \vert ^{n\lambda} \Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}, \end{aligned}

where $$p'$$ and $$\bar{p}'_{1}$$ satisfy $$1/p+1/p'=1$$ and $$1/\bar{p}_{1}+1/\bar{p}'_{1}=1$$.

Denote by $$A=w_{n}^{1/\bar{p}'_{1}-1/p'}\Omega _{n}^{\lambda}\|f\|_{\dot{M}^{ \lambda}_{p,\bar{p}_{1}}}$$. Noting that $$\lambda <0$$, we have

\begin{aligned} \bigl\Vert \mathcal{H}(f) \bigr\Vert _{w\dot{M}^{\lambda}_{p,\bar{p}_{2}}}&\leq \sup _{R>0} \sup_{t>0}\frac{t}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert \chi _{ \{x\in B(0,R): A \vert x \vert ^{n\lambda}>t \}} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}} \\ &= \sup_{R>0}\sup_{t>0} \frac{t}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert \chi _{ \{x\in B(0,R): \vert x \vert < (t/A)^{\frac{1}{n\lambda}} \}} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}}. \end{aligned}

Now we divide our discussion into two cases:

(i) If $$0< R\leq (t/A)^{\frac{1}{n\lambda}}$$, then we have

\begin{aligned} \begin{aligned} &\sup_{t>0}\sup_{0< R\leq (t/A)^{\frac{1}{n\lambda}}} \frac{t}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert \chi _{ \{x\in B(0,R): \vert x \vert < (t/A)^{ \frac{1}{n\lambda}} \}} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{ \bar{p}_{2}}}} \\ &\quad =\frac{w_{n}^{1/\bar{p}_{2}-1/p}}{\Omega _{n}^{\lambda}}\sup_{t>0} \sup_{0< R\leq (t/A)^{\frac{1}{n\lambda}}} tR^{-n\lambda} \\ &\quad = w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}} \Vert f \Vert _{\dot{M}^{\lambda}_{p, \bar{p}_{1}}}, \end{aligned} \end{aligned}

since $$\lambda <0$$.

(ii) If $$R>(t/A)^{\frac{1}{n\lambda}}$$, then we have

\begin{aligned} &\sup_{t>0}\sup_{R>(t/A)^{\frac{1}{n\lambda}}} \frac{t}{ \vert B(0,R) \vert ^{1/p+\lambda}} \Vert \chi _{ \{x\in B(0,R): \vert x \vert < (t/A)^{ \frac{1}{n\lambda}} \}} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{ \bar{p}_{2}}}} \\ &\quad \leq \frac{w_{n}^{1/\bar{p}_{2}-1/p}}{\Omega _{n}^{\lambda}}\sup_{t>0} \sup _{R>(t/A)^{\frac{1}{n\lambda}}} tR^{-n(1/p+\lambda )}(t/A)^{ \frac{1}{{p\lambda}}} \\ &\quad = w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}} \Vert f \Vert _{\dot{M}^{\lambda}_{p, \bar{p}_{1}}}, \end{aligned}

since $$\lambda +1/p\geq 0$$.

Combining the estimates of (i) and (ii), we obtain

$$\bigl\Vert \mathcal{H}(f) \bigr\Vert _{w\dot{M}^{\lambda}_{p,\bar{p}_{2}}}\leq w_{n}^{1/ \bar{p}_{2}-1/\bar{p}_{1}} \Vert f \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}.$$

On the other hand, we need to show that the constant $$w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}$$ is the best possible. Note that we only need to consider the case $$-1/p<\lambda <0$$, since the case $$\lambda =-1/p$$ has been studied in [43, TheoremÂ 4.1]. Taking $$f_{0}(x)=\chi _{[0,1]}(|x|)$$, $$x\in \mathbb{R}^{n}$$, for $$-1/p<\lambda <0$$, we have $$f_{0}\in \dot{M}^{\lambda}_{p,\bar{p}_{1}}(\mathbb{R}^{n})$$. In fact, when $$0< R\leq 1$$,

$$\Vert f_{0}\chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{1}}}}= \frac{w_{n}^{1/\bar{p}_{1}}}{n^{1/p}}R^{n/p}.$$

When $$R>1$$,

$$\Vert f_{0}\chi _{B(0,R)} \Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{1}}}}= \frac{w_{n}^{1/\bar{p}_{1}}}{n^{1/p}}.$$

Denoting by $$E=\|f_{0}\chi _{B(0,R)}\|_{{L^{p}_{|x|}L_{\theta}^{\bar{p}_{1}}}}$$, we have

\begin{aligned} \Vert f_{0} \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}&=\max \biggl\{ \sup _{0< R \leq 1}\frac{E}{ \vert B(0,R) \vert ^{1/p+\lambda}},\sup_{R>1} \frac{E}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggr\} \\ &=\max \Bigl\{ \sup_{0< R\leq 1}w_{n}^{1/\bar{p}_{1}-1/p} \bigl(\Omega _{n}R^{n}\bigr)^{- \lambda},\sup _{R>1}w_{n}^{1/\bar{p}_{1}-1/p} \Omega _{n}^{-\lambda}R^{-n(1/p+ \lambda )} \Bigr\} \\ &=w_{n}^{1/\bar{p}_{1}-1/p} \Omega _{n}^{-\lambda}, \end{aligned}

since $$-1/p\leq \lambda <0$$. Moreover,

$$\mathcal{H}(f_{0}) (x)=\textstyle\begin{cases} \vert x \vert ^{-n}, & \vert x \vert > 1, \\ 1,& \vert x \vert \leq 1. \end{cases}$$

Therefore, $$\mathcal{H}(f_{0})(x)\leq 1$$. On the other hand, when $$0< R\leq 1$$, we have

$$\bigl\Vert \mathcal{H}(f_{0})\chi _{B(0,R)} \bigr\Vert _{wL^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}= \sup_{0< t\leq 1}t \Vert \chi _{\{x\in B(0,R): 1>t\}} \Vert _{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{2}}} =\frac{w_{n}^{1/\bar{p}_{2}}}{n^{1/p}}R^{n/p}.$$
(3.1)

When $$R>1$$, we have

$$\bigl\Vert \mathcal{H}(f_{0})\chi _{B(0,R)} \bigr\Vert _{wL^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}= \sup_{0< t\leq 1}t \Vert \chi _{\{x\in B(0,1): 1>t\}\cup \{1\leq \vert x \vert < R: \vert x \vert ^{-n}>t \} } \Vert _{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}.$$

If $$1< R\leq t^{-1/n}$$, then

\begin{aligned} &t \Vert \chi _{\{x\in B(0,1): 1>t\}\cup \{1\leq \vert x \vert < R: \vert x \vert ^{-n}>t\} } \Vert _{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{2}}} \\ &\quad \leq \sup_{0< t\leq \frac{1}{R^{n}}}t w_{n}^{1/\bar{p}_{2}} \biggl( \frac{R^{n}}{n} \biggr)^{1/p}= \frac{w_{n}^{1/\bar{p}_{2}}}{R^{n/p'}n^{1/p}}. \end{aligned}

If $$1< t^{-1/n}< R$$, then

\begin{aligned} & t \Vert \chi _{\{x\in B(0,1): 1>t\}\cup \{1\leq \vert x \vert < R: \vert x \vert ^{-n}>t\} } \Vert _{L^{p}_{ \vert x \vert }L_{ \theta}^{\bar{p}_{2}}} \\ &\quad \leq \sup_{\frac{1}{R^{n}}< t< 1} \frac{w_{n}^{1/\bar{p}_{2}}}{n^{1/p}}t^{1-1/p}= \frac{w_{n}^{1/\bar{p}_{2}}}{n^{1/p}}. \end{aligned}

Consequently, for $$R>1$$, we have

$$\bigl\Vert \mathcal{H}(f_{0})\chi _{B(0,R)} \bigr\Vert _{wL^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}_{2}}}= \frac{w_{n}^{1/\bar{p}_{2}}}{n^{1/p}}.$$
(3.2)

It follows from (3.1) and (3.2) that

\begin{aligned} & \bigl\Vert \mathcal{H}(f_{0}) \bigr\Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{2}}} \\ &\quad = \max \biggl\{ \sup_{0< R\leq 1} \bigl\vert B(0,R) \bigr\vert ^{-1/p-\lambda}\cdot \frac{w_{n}^{1/\bar{p}_{2}}}{n^{1/p}}R^{n/p}, \sup _{R>1} \bigl\vert B(0,R) \bigr\vert ^{-1/p- \lambda} \cdot \frac{w_{n}^{1/\bar{p}_{2}}}{n^{1/p}} \biggr\} \\ &\quad =w_{n}^{1/\bar{p}_{2}-1/p} \Omega _{n}^{-\lambda}=w_{n}^{1/\bar{p}_{2}-1/ \bar{p}_{1}} \Vert f_{0} \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}}, \end{aligned}

since $$1\leq p<\infty$$ and $$-1/p< \lambda <0$$.

Therefore,

$$\Vert \mathcal{H} \Vert _{\dot{M}^{\lambda}_{p,\bar{p}_{1}}\rightarrow w \dot{M}^{\lambda}_{p,\bar{p}_{2}}}=w_{n}^{1/\bar{p}_{2}-1/\bar{p}_{1}}.$$

â€ƒâ–¡

Obviously, TheoremÂ 3.1 improves the result of [12, TheoremÂ 2.1].

## 4 Sharp bound for $$\mathcal{H}_{m}$$ from $$\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}(\mathbb{R}^{n})\times \dot{M}^{\lambda _{2}}_{p_{2},\bar{p}_{2}}(\mathbb{R}^{n})\times \cdots \times \dot{M}^{\lambda _{m}}_{p_{m},\bar{p}_{m}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$

This section is devoted to calculating the operator norm of $$\mathcal{H}_{m}$$ from $$\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}(\mathbb{R}^{n})\times \dot{M}^{ \lambda _{2}}_{p_{2},\bar{p}_{2}}(\mathbb{R}^{n})\times \cdots \times \dot{M}^{\lambda _{m}}_{p_{m},\bar{p}_{m}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$. To state our main result, we need the Beta and Gamma functions. Let $$z_{1}$$ and $$z_{2}$$ be complex numbers with positive real parts. Then the Beta function $$B(z_{1},z_{2})$$ and the Gamma function $$\Gamma (z_{1})$$ are defined by

$$B(z_{1},z_{2}):= \int _{0}^{1}t^{z_{1}-1}(1-t)^{z_{2}-1}\,dt$$

and

$$\Gamma (z_{1}):= \int _{0}^{\infty }t^{z_{1}-1}e^{-t}\,dt ,$$

respectively.

Our main result in this section can be read as follows.

### Theorem 4.1

Let $$m,n\geq 2$$, $$1< p_{i},\bar{p_{i}}<\infty$$, $$-1/p_{i}<\lambda _{i}<0$$, $$i=1,2,\dots ,m$$ and $$1< p,\bar{p}<\infty$$, $$-1/p<\lambda <0$$ such that $$1/p=1/p_{1}+1/p_{2}+\cdots +1/p_{m}$$, $$\lambda =\lambda _{1}+\lambda _{2}+\cdots +\lambda _{m}$$, and $$p_{i}\lambda _{i}=p\lambda$$, $$i=1,2,\dots ,m$$. Then the n-dimensional m-linear Hardy operator $$\mathcal{H}_{m}$$ defined in (1.2) maps $$\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}(\mathbb{R}^{n})\times \dot{M}^{ \lambda _{2}}_{p_{2},\bar{p}_{2}}(\mathbb{R}^{n})\times \cdots \times \dot{M}^{\lambda _{m}}_{p_{m},\bar{p}_{m}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$ with operator norm

\begin{aligned} & \Vert \mathcal{H}_{m} \Vert _{\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}} \times \dot{M}^{\lambda _{2}}_{p_{2},\bar{p}_{2}}\times \cdots \times \dot{M}^{\lambda _{m}}_{p_{m},\bar{p}_{m}}\rightarrow \dot{M}^{ \lambda}_{p,\bar{p}}} \\ &\quad =w_{n}^{1/\bar{p}-\sum _{i=1}^{m}1/\bar{p}_{i}} \frac{w_{n}^{m}}{w_{mn}}\frac{m}{\lambda +m} \frac{1}{2^{m-1}} \frac{\Pi _{i=1}^{m}\Gamma (\frac{n}{2}(\lambda _{i}+1))}{\Gamma (\frac{n}{2}(m+\lambda ))}. \end{aligned}

### Proof

We only prove the case $$m=2$$ since the cases $$m\geq 3$$ can be proven in a similar way.

A similar process as in the proof of TheoremÂ 2.1 yields that the norm of the operator $$\mathcal{H}_{2}$$ from $$\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}(\mathbb{R}^{n})\times \dot{M}^{ \lambda _{2}}_{p_{2},\bar{p}_{2}}(\mathbb{R}^{n})$$ to $$\dot{M}^{\lambda}_{p,\bar{p}}(\mathbb{R}^{n})$$ is equal to the norm of $$\mathcal{H}_{2}$$ acting on radial functions. For two radial functions $$f_{1}$$ ad $$f_{2}$$, we then write, for $$r=|x|$$,

\begin{aligned} \mathcal{H}_{2}(f_{1},f_{2}) (x)&= \frac{1}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} f_{1}\bigl( \vert x \vert y_{1}\bigr)f_{2}\bigl( \vert x \vert y_{2}\bigr)\,dy _{1}\,dy _{2} \\ &=\frac{1}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} f_{1}(ry_{1})f_{2}(ry_{2})\,dy _{1}\,dy _{2}. \end{aligned}

By using Minkowskiâ€™s and HÃ¶lderâ€™s inequalities, we get

\begin{aligned} &\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \bigl\Vert \mathcal{H}_{2}(f_{1},f_{2}) \cdot \chi _{B(0,R)} \bigr\Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}}}} \\ &\quad =\frac{w_{n}^{1/\bar{p}}}{\Omega _{2n}} \frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \biggl( \int _{0}^{R} \biggl\vert \int _{ \vert (y_{1},y_{2}) \vert < 1} f_{1}(ry_{1})f_{2}(ry_{2})\,dy _{1}\,dy _{2} \biggr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \\ &\quad \leq \frac{w_{n}^{1/\bar{p}}}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} \biggl(\frac{1}{ \vert B(0,R) \vert ^{1+p\lambda}} \int _{0}^{R} \bigl\vert f_{1}(ry_{1})f_{2}(ry_{2}) \bigr\vert ^{p}r^{n-1}\,dr \biggr)^{1/p} \,dy _{1}\,dy _{2} \\ &\quad \leq \frac{w_{n}^{1/\bar{p}}}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} \biggl(\frac{1}{ \vert B(0,R) \vert ^{1+p_{1}\lambda _{1}}} \int _{0}^{R} \bigl\vert f_{1} \bigl(r \vert y_{1} \vert \bigr) \bigr\vert ^{p_{1}}r^{n-1}\,dr \biggr)^{1/p_{1}} \\ &\quad\quad {}\times \biggl(\frac{1}{ \vert B(0,R) \vert ^{1+p_{2}\lambda _{2}}} \int _{0}^{R} \bigl\vert f_{2} \bigl(r \vert y_{2} \vert \bigr) \bigr\vert ^{p_{2}}r^{n-1}\,dr \biggr)^{1/p_{2}} \,dy _{1}\,dy _{2} \\ &\quad =\frac{w_{n}^{1/\bar{p}-1/\bar{p}_{1}-1/\bar{p}_{2}}}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} \frac{1}{ \vert B(0,R \vert y_{1} \vert ) \vert ^{1/p_{1}+\lambda _{1}}} \biggl( \int _{0}^{R \vert y_{1} \vert } w_{n}^{p_{1}/\bar{p}_{1}} \bigl\vert f_{1}(r) \bigr\vert ^{p_{1}}r^{n-1}\,dr \biggr)^{1/p_{1}} \\ &\quad\quad {}\times \frac{1}{ \vert B(0,R \vert y_{2} \vert ) \vert ^{1/p_{2}+\lambda _{2}}} \biggl( \int _{0}^{R \vert y_{2} \vert } w_{n}^{p_{2}/\bar{p}_{2}} \bigl\vert f_{2}(r) \bigr\vert ^{p_{2}}r^{n-1}\,dr \biggr)^{1/p_{2}} \vert y_{1} \vert ^{n\lambda _{1}} \vert y_{2} \vert ^{n\lambda _{2}}\,dy _{1}\,dy _{2} \\ &\quad \leq \frac{w_{n}^{1/\bar{p}-1/\bar{p}_{1}-1/\bar{p}_{2}}}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} \vert y_{1} \vert ^{n\lambda _{1}} \vert y_{2} \vert ^{n\lambda _{2}}\,dy _{1}\,dy _{2} \Vert f_{1} \Vert _{\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}} \Vert f_{2} \Vert _{ \dot{M}^{\lambda _{2}}_{p_{2},\bar{p}_{2}}}. \end{aligned}

It was proven by Fu et al. [11, Proof of TheoremÂ 2] that

$$\int _{ \vert (y_{1},y_{2}) \vert < 1} \vert y_{1} \vert ^{n\lambda _{1}} \vert y_{2} \vert ^{n\lambda _{2}}\,dy _{1}\,dy _{2}= \frac{w_{n}^{2}}{2n}\frac{1}{\lambda +2} B \biggl(\frac{n}{2}(1+ \lambda _{1}),\frac{n}{2}(1+\lambda _{2}) \biggr).$$

By using the identity $$w_{2n}=2n\Omega _{2n}$$ and

$$B \biggl(\frac{n}{2}(1+\lambda _{1}), \frac{n}{2}(1+\lambda _{2}) \biggr)= \frac{\Gamma (\frac{n}{2}(1+\lambda _{1}))\Gamma (\frac{n}{2}(1+\lambda _{2}))}{\Gamma (\frac{n}{2}(2+\lambda ))},$$
(4.1)

we obtain

\begin{aligned} & \bigl\Vert \mathcal{H}_{2}(f_{1},f_{2}) \bigr\Vert _{\dot{M}^{\lambda}_{p,\bar{p}}} \\ &\quad =\sup_{R>0}\frac{1}{ \vert B(0,R) \vert ^{1/p+\lambda}} \bigl\Vert \mathcal{H}_{2}(f_{1},f_{2}) \cdot \chi _{B(0,R)} \bigr\Vert _{{L^{p}_{ \vert x \vert }L_{\theta}^{\bar{p}}}} \\ &\quad \leq w_{n}^{1/\bar{p}-1/\bar{p}_{1}-1/\bar{p}_{2}} \frac{w_{n}^{2}}{w_{2n}} \frac{1}{\lambda +2} \frac{\Gamma (\frac{n}{2}(1+\lambda _{1}))\Gamma (\frac{n}{2}(1+\lambda _{2}))}{\Gamma (\frac{n}{2}(2+\lambda ))} \Vert f_{1} \Vert _{\dot{M}^{\lambda _{1}}_{p_{1},\bar{p}_{1}}} \Vert f_{2} \Vert _{ \dot{M}^{\lambda _{2}}_{p_{2},\bar{p}_{2}}}, \end{aligned}

and this proves one direction in the claimed identity.

On the other hand, taking $$\bar{f}_{i}(x)=|x_{i}|^{n\lambda _{i}}$$ for $$x_{i}\in \mathbb{R}^{n}$$, $$i=1,2$$, in view of (2.5), we have $$\bar{f}_{i}\in \dot{M}^{\lambda _{i}}_{p_{i},\bar{p_{i}}}(\mathbb{R}^{n})$$ and, moreover,

$$\Vert \bar{f_{i}} \Vert _{\dot{M}^{\lambda _{i}}_{p_{i},\bar{p_{i}}}} = \frac{w_{n}^{1/\bar{p_{i}}}}{\Omega _{n}^{1/p_{i}+\lambda _{i}}[n(1+p_{i}\lambda _{i})]^{1/p_{i}}}.$$
(4.2)

By a simple calculation, we can see that

$$\mathcal{H}_{2}(\bar{f}_{1},\bar{f}_{2}) (x) =\bar{f}_{1}(x)\bar{f}_{2}(x) \frac{1}{\Omega _{2n}} \int _{ \vert (y_{1},y_{2}) \vert < 1} \vert y_{1} \vert ^{n\lambda _{1}} \vert y_{2} \vert ^{n \lambda _{2}}\,dy _{1}\,dy _{2}.$$

This observation, combined with (4.1), (4.2) and the fact $$p_{i}\lambda _{i}=p\lambda$$, $$i=1,2$$, finishes the proof.â€ƒâ–¡

By taking $$\bar{p}=p$$ and $$\bar{p}_{i}=p_{i}$$, $$i=1,2,\dots ,m$$, we recover the result of Fu et al. [11, TheoremÂ 2].

Not applicable.

## References

1. Benedek, A., Panzone, R.: The space $$L^{p}$$, with mixed norm. Duke Math. J. 28(3), 301â€“324 (1961)

2. BÃ©nyi, A., Oh, C.T.: Best constants for certain multilinear integral operators. J. Inequal. Appl. 2006, Article ID 28582 (2006)

3. Cacciafesta, F., Dâ€™Ancona, P.: Endpoint estimates and global existence for the nonlinear Dirac equation with potential. J. Differ. Equ. 254(5), 2233â€“2260 (2013)

4. Christ, M., Grafakos, L.: Best constants for two nonconvolution inequalities. Proc. Am. Math. Soc. 123(6), 1687â€“1693 (1995)

5. Dâ€™Ancona, P., LucÃ , R.: On the regularity set and angular integrability for the Navierâ€“Stokes equation. Arch. Ration. Mech. Anal. 221(3), 1255â€“1284 (2016)

6. Dong, H., Krylov, N.V.: Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces. Calc. Var. Partial Differ. Equ. 58(4), 145 (2019)

7. Duoandikoetxea, J., Oruetxebarria, O.: Weighted mixed-norm inequalities through extrapolation. Math. Nachr. 292(7), 1482â€“1489 (2019)

8. Fang, D.Y., Wang, C.B.: Weighted Strichartz estimates with angular regularity and their applications. Forum Math. 23(1), 181â€“205 (2011)

9. Faris, W.G.: Weak Lebesgue spaces and quantum mechanical binding. Duke Math. J. 43(2), 365â€“373 (1976)

10. Fu, Z.W., Gong, S.L., Lu, S.Z., Yuan, W.: Weighted multilinear Hardy operators and commutators. Forum Math. 27(5), 2825â€“2851 (2015)

11. Fu, Z.W., Grafakos, L., Lu, S.Z., Zhao, F.Y.: Sharp bounds for m-linear Hardy and Hilbert operators. Houst. J. Math. 38, 225â€“244 (2012)

12. Gao, G.L., Hu, X.M., Zhang, C.J.: Sharp weak estimates for Hardy-type operators. Ann. Funct. Anal. 7(3), 421â€“433 (2016)

13. Gao, G.L., Zhao, F.Y.: Sharp weak bounds for Hausdorff operators. Anal. Math. 41(3), 163â€“173 (2015)

14. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6(3), 314â€“317 (1920)

15. Hardy, G.H., Littlewood, J.E., PÃ³lya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

16. Ho, K.-P.: Sobolevâ€“Jawerth embedding of Triebelâ€“Lizorkinâ€“Morreyâ€“Lorentz spaces and fractional integral operator on Hardy type spaces. Math. Nachr. 287(14â€“15), 1674â€“1686 (2014)

17. Ho, K.-P.: Atomic decomposition of Hardyâ€“Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn., Math. 40(1), 31â€“62 (2015)

18. Huang, L., Liu, J., Yang, D.C., Yuan, W.: Atomic and Littlewoodâ€“Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29(3), 1991â€“2067 (2019)

19. Huang, L., Yang, D.C.: On function spaces with mixed normsâ€”a survey. J. Math. Study 54(3), 262â€“336 (2021)

20. Hussain, A., Sarfraz, N., Gurbuz, F.: Sharp weak bounds for p-adic Hardy operators on p-adic linear spaces. arXiv:2002.08045 (2020)

21. Jia, H.Y., Wang, H.G.: Decomposition of Hardyâ€“Morrey spaces. J. Math. Anal. Appl. 354(1), 99â€“110 (2009)

22. Kufner, A., Maligranda, L., Persson, L.-E.: The prehistory of the Hardy inequality. Am. Math. Mon. 113(8), 715â€“732 (2006)

23. Liu, F., Fan, D.S.: Weighted estimates for rough singular integrals with applications to angular integrability. Pac. J. Math. 301(1), 267â€“295 (2019)

24. Liu, R.H., Liu, F., Wu, H.X.: Mixed radial-angular integrability for rough singular integrals and maximal operators. Proc. Am. Math. Soc. 148(9), 3943â€“3956 (2020)

25. Liu, R.H., Liu, F., Wu, H.X.: On the mixed radial-angular integrability of Marcinkiewicz integrals with rough kernels. Acta Math. Sci. 41(1), 241â€“256 (2021)

26. Lu, S.Z.: Some recent progress of n-dimensional Hardy operators. Adv. Math. 42(6), 737â€“747 (2013)

27. Lu, S.Z., Xu, L.F.: Boundedness of rough singular integral operators on the homogeneous Morreyâ€“Herz spaces. Hokkaido Math. J. 34(2), 299â€“314 (2005)

28. Lu, S.Z., Yan, D.Y., Zhao, F.Y.: Sharp bounds for Hardy type operators on higher-dimensional product spaces. J. Inequal. Appl. 2013, 148 (2013)

29. LucÃ , R.: Regularity criteria with angular integrability for the Navierâ€“Stokes equation. Nonlinear Anal. 105, 24â€“40 (2014)

30. Mazzucato, A.L.: Decomposition of Besovâ€“Morrey spaces. Contemp. Math. 320, 279â€“294 (2003)

31. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43(1), 126â€“166 (1938)

32. Nogayama, T.: Boundedness of commutators of fractional integral operators on mixed Morrey spaces. Integral Transforms Spec. Funct. 30(10), 790â€“816 (2019)

33. Nogayama, T., Ono, T., Salim, D., Sawano, Y.: Atomic decomposition for mixed Morrey spaces. J. Geom. Anal. 31(9), 9338â€“9365 (2021)

34. Phan, T.: Well-posedness for the Navierâ€“Stokes equations in critical mixed-norm Lebesgue spaces. J. Evol. Equ. 20(2), 553â€“576 (2020)

35. Ragusa, M.A.: Embeddings for Morreyâ€“Lorentz spaces. J. Optim. Theory Appl. 154(2), 491â€“499 (2012)

36. Sarfraz, N., GÃ¼rbÃ¼z, F.: Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator. Int. J. Nonlinear Sci. Numer. Simul. (2021). https://doi.org/10.1515/ijnsns-2020-0290

37. Sawano, Y., Di Fazio, G., Hakim, D.I.: Morrey Spacesâ€”Applications to Integral Operators and PDE, Volume I. Chapman and Hall/CRC, Boca Raton (2020)

38. Sawano, Y., Ho, K.-P., Yang, D.C., Yang, S.B.: Hardy spaces for ball quasi-Banach function spaces. Diss. Math. 525, 1â€“102 (2017)

39. Tao, T.: Spherically averaged endpoint Strichartz estimates for the two-dimensional SchrÃ¶dinger equation. Commun. Partial Differ. Equ. 25(7â€“8), 1471â€“1485 (2000)

40. Wang, S.M., Lu, S.Z., Yan, D.Y.: Explicit constants for Hardyâ€™s inequality with power weight on n-dimensional product spaces. Sci. China Math. 55(12), 2469â€“2480 (2012)

41. Wei, M.Q., Su, F.M., Sun, L.Y.: Steinâ€“Weiss inequality for local mixed radial-angular Morrey spaces. Open Math. 20(1), 1288â€“1295 (2022)

42. Wei, M.Q., Yan, D.Y.: Sharp bounds for Hardy operators on product spaces. Acta Math. Sci. 38(2), 441â€“449 (2018)

43. Wei, M.Q., Yan, D.Y.: Sharp bounds for Hardy-type operators on mixed radial-angular spaces. arXiv:2207.14570 [math.CA]

44. Yang, M.H., Fu, Z.W., Sun, J.Y.: Existence and large time behavior to coupled chemotaxis-fluid equations in Besovâ€“Morrey spaces. J. Differ. Equ. 266(9), 5867â€“5894 (2019)

45. Yu, H.X., Li, J.F.: Sharp weak bounds for n-dimensional fractional Hardy operators. Front. Math. China 13(2), 449â€“457 (2018)

46. Zhao, F.Y., Fu, Z.W., Lu, S.Z.: Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci. China Math. 55(10), 1977â€“1990 (2012)

47. Zhao, F.Y., Lu, S.Z.: The best bound for n-dimensional fractional Hardy operators. Math. Inequal. Appl. 18(1), 233â€“240 (2015)

## Acknowledgements

The authors would like to express their deep gratitude to the anonymous referees for their careful reading of the manuscript and their comments and suggestions.

## Funding

The National Natural Science Foundation of China (No. 11871452), the Natural Science Foundation of Henan Province (No. 202300410338) and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University.

## Author information

Authors

### Contributions

MW made the major analysis and the original draft preparation. DY analyzed all the results and made necessary improvements. MW was the major contributor in writing the paper. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Mingquan Wei.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Rights and permissions

Reprints and permissions

Wei, M., Yan, D. Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces. J Inequal Appl 2023, 31 (2023). https://doi.org/10.1186/s13660-023-02936-y