- Research
- Open Access
- Published:
New upper bounds for the dominant eigenvalue of a matrix with Perron–Frobenius property
Journal of Inequalities and Applications volume 2023, Article number: 13 (2023)
Abstract
In this paper, we derive some upper bounds for the dominant eigenvalue of a matrix with some negative entries, which possess the Perron–Frobenius property. Numerical examples are given to illustrate the effectiveness of our new upper bounds.
1 Introduction
Let \(\mathbb{R}\) be the set of all real numbers and \(\mathbb{R}^{n\times n}\) be the set of \(n\times n\) square matrices. If \(A\in \mathbb{R}^{n\times n}\) is positive, Perron proved that A has a simple eigenvalue equal to its spectral radius (called the dominant eigenvalue) and that its corresponding eigenvector is also positive [1]. This famous result was extended to nonnegative irreducible matrices by Frobenius in [2]. Based on Geršhgorin’s theorem [3–7], the following classical upper bound for the dominant eigenvalue \(\rho (A)\) of a nonnegative matrix \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) was presented as follows [1]:
where \(N=\{1,2,\ldots , n\}\), \(R_{i}(A)=\sum_{j\in N} a_{ij}\). Based on Brauer’s theorem [3, 4, 7], the authors derived the following improved upper bound [8]:
where \(R_{i}^{\prime }(A)=R_{i}(A)-a_{ii}\).
Consider the dynamics associated with the linear differential system
where the coefficient matrix A is essentially nonnegative, i.e., it has nonnegative offdiagonal entries. Such systems arise frequently in applications in engineering and mathematical biology among others [9]. In 2006, Noutsos extended the Perron–Frobenius theory of nonnegative matrices to the class of matrices with some negative entries, which possess the Perron–Frobenius property, the relationships between eventually positive matrices and the class of matrices with the Perron–Frobenius property are also discussed [10]. First, we give the definition of PF matrices [10].
Definition 1
A matrix \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) is called a PF matrix, if its dominant eigenvalue \(\rho (A)\) is positive and the corresponding eigenvector x is nonnegative.
The author also presented the following upper bound for the dominant eigenvalue \(\rho (A)\) of a matrix with the Perron–Frobenius property [10].
Theorem 1
If \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) is a PF matrix, then
There exists an extensive literature on bounds for the dominant eigenvalue \(\rho (A)\) of a nonnegative matrix, we refer to [1, 8, 11–13] and the references therein. In this paper, we obtain some sharper new upper bounds for the dominant eigenvalue \(\rho (A)\) of a PF matrix with some negative entries, these bounds are only dependent on the entries of a tensor, which are easy to check. Two numerical examples are given to show the efficiency of the proposed results in Sect. 3.
2 Main results
For any \(i \in N\), we let
where \([a_{ij}]_{+}\) is the set of nonnegative entries in the ith row, \([a_{ij}]_{-}\) is the set of negative entries in the ith row, obviously, \(R_{i}^{\prime }(A)=r_{i}^{+}(A)+r_{i}^{-}(A)\). We give the main results as follows.
Theorem 2
If \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) possesses the Perron–Frobenius property, then
Proof
Let \(\rho (A)\) be the dominant eigenvalue of A with the corresponding eigenvector x, then, \(0\leq x\neq 0\). Let \(|x_{p}|=\max_{i\in N}|x_{i}|\), then, the pth equation of
is
which implies that
□
Theorem 3
If \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) possesses the Perron–Frobenius property, then
Proof
Let \(\rho (A)\) be the dominant eigenvalue of A with the corresponding eigenvector x, then, \(0\leq x\neq 0\). Let \(|x_{p}|=\max_{i\in N}|x_{i}|\), \(|x_{q}|=\max_{i\in N,i\neq p}|x_{i}|\). Then, by the pth equation of
we have
which implies that
Consider the qth equation of \(Ax=\rho (A)x\), we have
which implies that
If \(\rho (A)-a_{qq}\leq 0\) and \(\rho (A)-a_{pp}\leq 0\), then,
Otherwise, multiplying inequalities (1) with (2), we obtain
therefore,
Furthermore,
Then, we have
and
which means that
always holds. □
By breaking N into disjoint subsets S and S̄, where S̄ is the complement of S in N, and let \(r_{i}^{S+}(A)=\sum_{j \in S\setminus \{i\}} [a_{i j}]_{+}\), \(r_{i}^{\bar{S}+}(A)=\sum_{j \in \bar{S}\setminus \{i\}} [a_{i j}]_{+}\), we give a new S-type upper bound for the dominant eigenvalue \(\rho (A)\) of a matrix with the Perron–Frobenius property.
Theorem 4
If \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) possesses the Perron–Frobenius property, then
where \(\varepsilon =(a_{ii}+r_{i}^{S+}(A)-a_{jj}-r_{j}^{\bar{S}+}(A))^{2}+4r_{i}^{ \bar{S}+}(A)r_{j}^{S+}(A)\).
Proof
Let \(\rho (A)\) be the dominant eigenvalue of A with the corresponding eigenvector x, then, \(0\leq x\neq 0\). Let \(|x_{p}|=\max_{i\in S}|x_{i}|\), \(|x_{q}|=\max_{i\in \bar{S}}|x_{i}|\). Then, by the pth equation of
we have
which implies that
Consider the qth equation of \(Ax=\rho (A)x\), similar to the proof of Theorem 3, we have
If \(\rho (A)-a_{pp}-r_{p}^{S+}(A)\leq 0\) and \(\rho (A)-a_{qq}-r_{q}^{\bar{S}+}(A)\leq 0\), then
Otherwise, multiplying inequalities (4) with (5), we obtain
therefore, let \(\varepsilon =(a_{pp}+r_{p}^{S+}(A)-a_{qq}-r_{q}^{\bar{S}+}(A))^{2}+4r_{p}^{ \bar{S}+}(A)r_{q}^{S+}(A)\),
Furthermore,
Then, we have
and
which means that
always holds. Then, the proof is completed by the arbitrary of S. □
The relationships between \(\omega _{1}\), \(\omega _{2}\), and \(\omega _{3}\) are discussed as follows.
Theorem 5
If \(A=(a_{ij})\in \mathbb{R}^{n\times n}\) possesses the Perron–Frobenius property, then
Proof
First, we prove \(\omega _{2} \leq \omega _{1}\). If \(\rho (A) \leq \omega _{2}\), from the proof of Theorem 3, we have
If \(r_{p}^{+}(A)r_{q}^{+}(A)=0\), we obtain
which implies \(\rho (A) \leq \omega _{1}\). If \(r_{p}^{+}(A)r_{q}^{+}(A)>0\), we obtain
then,
or
which implies \(\rho (A) \leq \omega _{1}\).
Next, we prove \(\omega _{3} \leq \omega _{2}\). If \(\rho (A) \leq \omega _{3}\), from the proof of Theorem 4, we have
without loss of generality, we assume that \(x_{p}\geq x_{q}\), from (4), we have
Letting \(S=\{p\}\), we obtain
therefore,
which implies \(\rho (A) \leq \omega _{2}\). □
3 Numerical examples
In this section, in order to show the efficiency of our results, we give some numerical examples.
Example 3.1
Consider the Example 2.2 in [10]:
Then, \(A_{1}\) possesses the Perron–Frobenius property with the dominant eigenvalue \(\rho (A_{1})=6.868\).
Example 3.2
Consider the Example 2.3 in [10]:
Then, \(A_{2}\) possesses the Perron–Frobenius property with the dominant eigenvalue \(\rho (A_{2})=8.753\).
The numerical comparison between our results and the result in [10] is given in Table 1. From Table 1, we reveal that our bounds are tighter than the bound in [10].
Availability of data and materials
Not applicable.
References
Perron, O.: Zur theorie der matrizen. Math. Ann. 64, 248–263 (1907)
Frobenius, G.: Über Matrizen aus nichtnegativen Elementen Sitzungsber. In: Kön, pp. 465–477. Preuss. Akad. Wiss, Berlin (1912)
Brauer, A.: Limits for the characteristic roots of a matrix II. Duke Math. J. 14, 21–26 (1947)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1988)
Li, C.Q., Li, Y.T.: A modification of eigenvalue localization for stochastic matrices. Linear Algebra Appl. 460, 231–241 (2014)
Li, H.B., Huang, T.Z., Li, H., Shen, S.Q.: Optimal gerschgorin-type inclusion intervals of singularvalues. Numer. Linear Algebra Appl. 14, 115–128 (2007)
Varga, R.S.: Geršgorin and His Circles. Springer, Berlin (2004)
Brauer, A., Gentry, I.C.: Bounds for the greatest characteristic root of an irreducible nonnegative matrix. Linear Algebra Appl. 8, 105–107 (1974)
Noutsos, D., Tsatsomeros, M.: Reachability and holdability of nonnegative states. SIAM J. Matrix Anal. Appl. 30(2), 700–712 (2008)
Noutsos, D.: On Perron-Frobenius property of matrices having some negative entries. Linear Algebra Appl. 412, 132–153 (2006)
Johnson, C.R., Tarazaga, P.: On matrices with Perron-Frobenius properties and some negative entries. Positivity 8, 327–338 (2004)
Kolotilina, L.Y.: Bounds and inequalities for the Perron root of a nonnegative matrix. J. Math. Sci. 121, 2481–2507 (2004)
Kolotilina, L.Y.: Bounds for the Perron root, singularity/nonsingularity conditions, and eigenvalue inclusion sets. Numer. Algorithms 42, 247–280 (2006)
Acknowledgements
The authors would like to thank the anonymous referees for encouraging and critical comments and suggestions that definitely led to improvements of the original manuscript.
Funding
This work is supported by the New Academic Talents and Innovative Exploration Fostering Project in China (Qian Ke He Pingtai Rencai [2017] 5727-21), the Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2020] 094), the Science and Technology Foundation of Guizhou Province, China (Qian Ke He Ji Chu ZK [2021] Yi Ban 014), and the General Project of Philosophy and Social Sciences Planning in Guizhou Province (19GZYB11).
Author information
Authors and Affiliations
Contributions
Jun He and Yanmin Liu wrote the main manuscript text and Wei Lv prepared Examples. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
He, J., Liu, Y. & Lv, W. New upper bounds for the dominant eigenvalue of a matrix with Perron–Frobenius property. J Inequal Appl 2023, 13 (2023). https://doi.org/10.1186/s13660-023-02924-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-023-02924-2
MSC
- 65F10
- 15A48
Keywords
- Perron–Frobenius property
- Nonnegative matrices
- Dominant eigenvalue
- Upper bound