Theorem 6
Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \) for some fixed \(q>1\), then the following inequality is satisfied:
$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\& \qquad {} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(2.1)
where \(\frac{1}{p}+\frac{1}{q}=1\).
Proof
From Lemma 1 and by using the Hölder inequality, we have
$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl( \int _{0}^{1} \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}}. \end{aligned}$$
By using the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\), we obtain
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}}\biggl[ \int _{0}^{1} \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad{} + ( 1-\tau ) ^{s} \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \\ & = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{{\frac{1}{p}}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
Thus, the proof is completed. □
Corollary 1
If we choose \(s=1\) in Theorem 6, then we obtain
$$ \begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{ \varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{1+\frac{1}{q}}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad {}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned} $$
Corollary 2
If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 6, we have
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl( \biggl( \frac{\varphi -\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varphi -\varepsilon -1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad {}+ \biggl( \biggl( \frac{\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varepsilon +1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(2.2)
Remark 1
If we choose \(s=1\) in Corollary 2, then inequality (2.2) reduces to inequality (1.1).
Corollary 3
If we choose \(\varphi =2\) in Corollary 2, then we obtain
$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl( \frac{1}{p+1} \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \biggl\{ \biggl( \biggl[ 1+ \frac{1}{2^{s}} \biggr] \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \frac{1}{2^{s}} \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr) ^{ \frac{1}{q}} \\ &\quad \quad{}+ \biggl( \frac{1}{2^{s}} \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+ \biggl[ 1+\frac{1}{2^{s}} \biggr] \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Theorem 7
Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \) for some fixed \(q\geq 1\), then the following inequality is satisfied:
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{s}{ ( s+1 ) ( s+2 ) }+\frac{1}{2^{s} ( s+1 ) ( s+2 ) } \biggr) ^{ \frac{1}{q}} \\ &\quad \quad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(2.3)
Proof
From Lemma 1 and by using the well-known power-mean inequality, we have
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }\\ &\quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\ & \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert \,d\tau \biggr) ^{1- \frac{1}{q}} \\ &\quad{} \times \biggl( \int _{0}^{1} \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}}. \end{aligned}$$
Since \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex \([ \mu ,\omega ] \), then
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert \,d\tau \biggr) ^{1- \frac{1}{q}}\biggl[ \int _{0}^{1} \vert 1-2\tau \vert \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad{} + ( 1-\tau ) ^{s} \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \\ & = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{s}{ ( s+1 ) ( s+2 ) }+ \frac{1}{2^{s} ( s+1 ) ( s+2 ) } \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}, \end{aligned}$$
where we have used the fact that
$$\begin{aligned}& \int _{0}^{1} \vert 1-2\tau \vert \,d\tau = \frac{1}{2}, \\& \int _{0}^{1} \vert 1-2\tau \vert \tau ^{s}\,d\tau = \int _{0}^{1} \vert 1-2\tau \vert ( 1-\tau ) ^{s}\,d\tau = \frac{s}{ ( s+1 ) ( s+2 ) }+ \frac{1}{2^{s} ( s+1 ) ( s+2 ) } . \end{aligned}$$
Thus, the proof is completed. □
Corollary 4
If we choose \(s=1\) in Theorem 7, then we obtain
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert &\leq \sum _{ \varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2+\frac{1}{q}}} \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad {}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
Corollary 5
If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 7, we get
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{s}{ ( s+1 ) ( s+2 ) }+ \frac{1}{2^{s} ( s+1 ) ( s+2 ) } \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl( \biggl( \frac{\varphi -\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varphi -\varepsilon -1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad {}+ \biggl( \biggl( \frac{\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varepsilon +1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(2.4)
Remark 2
If we choose \(s=1\) in Corollary 5, then inequality (2.4) reduces to inequality (1.2).
Corollary 6
If we choose \(\varphi =2\) and \(s=1\) in Theorem 7, then we obtain
$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2^{2+\frac{1}{q}}} \biggl[ \biggl( \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl\vert \zeta ^{ \prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+ \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$
Theorem 8
Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \), then the following inequality is obtained:
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \frac{1}{ ( s+1 ) } \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+\frac{1}{ ( s+1 ) } \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(2.5)
where \(\frac{1}{p}+\frac{1}{q}=1\).
Proof
From Lemma 1 and by using the Hölder–İşcan inequality, we have
$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\& \qquad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2 \tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl( \int _{0}^{1} ( 1-\tau ) \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\& \quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\tau \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\& \quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \biggr\} \\& \quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\& \quad \quad{}+ \biggl( \int _{0}^{1}\tau \biggl\vert \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
By using the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\), we have
$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl\{ \biggl[ \int _{0}^{1} ( 1-\tau ) \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\& \quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \\& \quad \quad{} + \biggl[ \int _{0}^{1}\tau \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\& \quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \biggr\} \\& \quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl\{ \biggl[ \frac{1}{ ( s+1 ) ( s+2 ) } \biggl\vert \zeta \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \frac{1}{s+2} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\& \quad \quad{} + \biggl[ \frac{1}{s+2} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \frac{1}{ ( s+1 ) ( s+2 ) } \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
That completes the proof. □
Corollary 7
If we choose \(s=1\) in Theorem 8, then we obtain
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\ &\quad{} \times \biggl\{ \biggl[ \frac{1}{6} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+\frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad{}+ \biggl[ \frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \frac{1}{6} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 8
If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 8, we have
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2+\frac{s}{q}}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl\{ \biggl[ \biggl( \frac{ ( \varphi -\varepsilon ) ^{s}}{s+1}+ ( \varphi -\varepsilon -1 ) ^{s} \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \frac{\varepsilon ^{s}}{s+1}+ ( \varepsilon +1 ) ^{s} \biggr) \bigl\vert \zeta ^{ \prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{ \frac{1}{q}} \\ &\quad{}+ \biggl[ \biggl( ( \varphi -\varepsilon ) ^{s}+ \frac{ ( \varphi -\varepsilon -1 ) ^{s}}{s+1} \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \varepsilon ^{s}+ \frac{ ( \varepsilon +1 ) ^{s}}{s+1} \biggr) \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 9
If we choose \(s=1\) in Corollary 8, then we obtain
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{3} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl\{ \biggl[ \biggl( \frac{3\varphi -3\varepsilon -2}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \frac{3\varepsilon +2}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad{}+ \biggl[ \biggl( \frac{3\varphi -3\varepsilon -1}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \frac{3\varepsilon +1}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 10
If we choose \(\varphi =1\) in Theorem 8, then we obtain
$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \frac{1}{s+1} \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+ \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}+ \biggl[ \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+\frac{1}{s+1} \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 11
In Corollary 10, if we choose \(s=1\), we obtain
$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl\{ \biggl[ \frac{ \vert \zeta ^{\prime }(\mu ) \vert ^{q}+2 \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{6} \biggr] ^{\frac{1}{q}}+ \biggl[ \frac{2 \vert \zeta ^{\prime }(\mu ) \vert ^{q}+ \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{6} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 12
If we choose \(\varphi =2\) in Theorem 8, then we obtain
$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl( \frac{1}{s+1} \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{1}{s+1} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+ \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \quad{}+ \biggl[ \biggl( \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+\frac{1}{s+1} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{ \frac{1}{q}}+ \biggl( \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+\frac{1}{s+1} \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
Corollary 13
In Corollary 12, if we choose \(s=1\), we have
$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl( \frac{ \vert \zeta ^{\prime }(\mu ) \vert ^{q}}{6}+ \frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{1}{6} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+\frac{1}{3} \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \quad{}+ \biggl[ \biggl( \frac{1}{3} \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert ^{q}+\frac{1}{6} \biggl\vert \zeta ^{ \prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+ \frac{ \vert \zeta ^{\prime } ( \omega ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
Remark 3
Inequality (2.5) is better than inequality (2.1). In fact, since the function \(\psi :[0,\infty )\rightarrow \mathbb{R} \), \(\psi (\chi )=\chi ^{\rho }\), \(\rho \in (0,1]\) is a concave function, we can write
$$ \frac{\theta ^{\rho }+\delta ^{\rho }}{2}= \frac{\psi (\theta )+\psi (\delta )}{2}\leq \psi \biggl( \frac{\theta +\delta }{2} \biggr) = \biggl( \frac{\theta +\delta }{2} \biggr) ^{\rho } $$
(2.6)
for all \(\theta ,\delta \geq 0\). In inequality (2.6), if we choose
$$\begin{aligned}& \theta = \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2}, \\& \delta = \frac{(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \end{aligned}$$
and \(\rho =\frac{1}{q}\), we obtain
$$\begin{aligned} &\frac{1}{2} \biggl[ \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \frac{1}{2} \biggl[ \frac{(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \\ &\quad \leq \biggl[ \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{2} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
So, we have the following inequality:
$$\begin{aligned} &\sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\qquad{} \times \biggl\{ \biggl[ \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \\ &\qquad{} + \biggl[ \frac{(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \biggr\} \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\qquad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
Theorem 9
Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \) for some fixed \(q\geq 1\), then the following inequality is satisfied:
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+\frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+ \frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.7)
Proof
From Lemma 1 and by using the improved power-mean inequality, we have
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }\\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2 \tau \vert \,d\tau \biggr) ^{1-\frac{1}{q}} \\ &\quad \quad{} \times \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2 \tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \,d\tau \biggr) ^{1-\frac{1}{q}} \\ &\quad \quad{} \times \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{ \frac{1}{q}}\biggr\} \\ &\quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
By using the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\), we have
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2\tau \vert \biggl( \tau ^{s} \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \biggl[ \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] \,d\tau \biggr) ^{\frac{1}{q}} \biggr\} \\ &\quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+ \frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+ \frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
That completes the proof. □
Corollary 14
If we choose \(s=1\) in Theorem 9, then we obtain
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3+\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+3 \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ 3 \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 15
If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 9, we have
$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2+\frac{s}{q}}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) ( \varphi -\varepsilon ) ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) ( \varphi - \varepsilon -1 ) ^{s} \biggr] \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) \varepsilon ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) ( \varepsilon +1 ) ^{s} \biggr] \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) ( \varphi -\varepsilon -1 ) ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) ( \varphi - \varepsilon ) ^{s} \biggr] \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) ( \varepsilon +1 ) ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) \varepsilon ^{s} \biggr] \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 16
If we choose \(s=1\) in Corollary 15, then we obtain
$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3+\frac{2}{q}}\varphi ^{2+\frac{1}{q}}} \bigl\{ \bigl[ ( 4\varphi -4 \varepsilon -3 ) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ ( 4\varepsilon +3 ) \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \\ &\quad{}+ \bigl[ ( 4 \varphi -4\varepsilon -1 ) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ ( 4\varepsilon +1 ) \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$
Corollary 17
If we choose \(\varphi =1\) in Corollary 15, then we obtain
$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2^{3-\frac{2}{q}}} \biggl\{ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{ \frac{1}{q}} \\ &\quad \quad{}+ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 18
In Corollary 17, if we choose \(s=1\), we have
$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl\{ \biggl[ \frac{ \vert \zeta ^{\prime }(\mu ) \vert ^{q}+3 \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{4} \biggr] ^{\frac{1}{q}}+ \biggl[ \frac{3 \vert \zeta ^{\prime }(\mu ) \vert ^{q}+ \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{4} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Corollary 19
If we choose \(\varphi =2\) and \(q=1\) in Corollary 15, then we obtain
$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ & \quad \leq \frac{\omega -\mu }{2^{3+s}} \biggl\{ \bigl( 2^{s}+2 \bigr) \biggl( \frac{ ( \frac{1}{2} ) ^{s}s+3 ( \frac{1}{2} ) ^{s}+s^{2}+3s}{s^{3}+6s^{2}+11s+6} \biggr) \bigl( \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert + \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert \bigr) \biggr\} . \end{aligned}$$
Remark 4
Inequality (2.7) in Theorem 9 is better than inequality (2.3) in Theorem 7. The proof can be obtained applying similarly to Remark 3.