Skip to main content

On new general inequalities for s-convex functions and their applications

Abstract

In this work, we established some new general integral inequalities of Hermite–Hadamard type for s-convex functions. To obtain these inequalities, we used the Hölder inequality, power-mean integral inequality, and some generalizations associated with these inequalities. Also we compared some inequalities (e.g., Theorem 6 and Theorem 8). Finally, we gave some applications for special means.

1 Introduction

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a convex function defined on the interval I (\(I \subset \mathbb{R} \)) and \(\mu ,\omega \in I\) with \(\mu <\omega \). The following double inequality

$$ \zeta \biggl( \frac{\mu +\omega }{2} \biggr) \leq \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \leq \frac{\zeta (\mu )+\zeta (\omega )}{2} $$

is known in the literature as the Hermite–Hadamard inequality for convex function.

The Hermite–Hadamard inequality is a significant inequality with many applications for convex functions. Owing to the great importance of this inequality, in the last decade many remarkable refinements, extensions, generalizations, and different forms of Hermite–Hadamard inequality for different classes of convexity, such as m-convex, \((\alpha ,m)\)-convex, s-convex, harmonically convex, exponential convex, and co-ordinated convex functions, have been considered in the literature. In addition, with the help of the obtained kernels and identities, many authors have contributed to the development of this field. So, there have been a great number of studies on this subject; we recommend interested readers to read the papers [16] and some of the references therein.

Definition 1

\(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) is said to be a convex function if

$$ \zeta \bigl(\tau \chi +(1-\tau )\gamma \bigr)\leq \tau \zeta (\chi )+(1-\tau ) \zeta (\gamma ) $$

holds for all \(\chi ,\gamma \in I\) and \(\tau \in [ 0,1 ] \).

The convex functions theory plays an important role in all the fields of pure and applied mathematics. Some noteworthy inequalities have been acquired using the different types of convexity [79]. One of these types of convexity is s-convexity. In [10], Hudzik and Maligranda investigated the class of s-convex functions in the second sense. In this study, various properties (e.g., nonnegative on \([0,\infty )\) and nondecreasing on \((0,\infty )\)) of s-convex functions are examined and examples are given. Of course, s-convexity means the convexity only when \(s=1\). This definition is given as follows.

Definition 2

\(\zeta :[0,\infty )\rightarrow \mathbb{R} \) is said to be s-convex function in the second sense if the inequality

$$ \zeta \bigl(\tau \chi +(1-\tau )\gamma \bigr)\leq \tau ^{s}\zeta ( \chi )+(1- \tau )^{s}\zeta (\gamma ) $$

holds for all \(\chi ,\gamma \in {}[ 0,\infty )\), \(\tau \in [ 0,1 ] \), and \(s\in (0,1]\). The class of s-convex functions in the second sense is usually denoted by \(K_{s}^{2}\).

In [11], Dragomir and Fitzpatrick established a modification of Hermite–Hadamard inequality that holds for the s-convex functions in the second sense.

Theorem 1

Suppose that \(\zeta :[0,\infty )\rightarrow {}[ 0,\infty )\) is an s-convex function in the second sense, where \(s\in (0,1]\), and let \(\mu ,\omega \in {}[ 0,\infty )\), \(\mu <\omega \). If \(\zeta \in L[\mu ,\omega ]\), then the following inequalities hold:

$$ 2^{s-1}\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \leq \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \leq \frac{\zeta (\mu )+\zeta (\omega )}{s+1}. $$

The constant \(\xi =\frac{1}{s+1}\) is the best possible in the second inequality. The above inequalities are sharp. For final results and generalizations regarding s-convex functions, see [1217].

Hölder’s inequality, one of the important inequalities of mathematical analysis named after Otto Hölder, a German mathematician, is a fundamental inequality between integrals and an indispensable tool for the study of \(L^{p}\) spaces. Many generalizations and refinements have been obtained in the theory of convex functions using this inequality. However, İşcan obtained a new form of the Hölder inequality using a simple method in [18]. Using the Hölder–Işcan inequality, better upper bounds than those in previous studies are obtained. This new form is as follows.

Theorem 2

(Hölder–İşcan integral inequality)

Let ζ and ϑ be real mappings defined on \([ \mu ,\omega ] \). If \(\vert \zeta \vert ^{p}\) and \(\vert \vartheta \vert ^{q}\) are integrable on \([ \mu ,\omega ] \), then

$$\begin{aligned} \int _{\mu }^{\omega } \bigl\vert \zeta (\chi ) \vartheta (\chi ) \bigr\vert \,d\chi & \leq \frac{1}{\omega -\mu } \biggl\{ \biggl( \int _{\mu }^{\omega }(\omega -\chi ) \bigl\vert \zeta (\chi ) \bigr\vert ^{p}\,d\chi \biggr) ^{\frac{1}{p}} \biggl( \int _{\mu }^{\omega }(\omega -\chi ) \bigl\vert \vartheta (\chi ) \bigr\vert ^{q}\,d\chi \biggr) ^{\frac{1}{q}} \\ &\quad {}+ \biggl( \int _{\mu }^{\omega }(\chi -\mu ) \bigl\vert \zeta ( \chi ) \bigr\vert ^{p}\,d\chi \biggr) ^{\frac{1}{p}} \biggl( \int _{\mu }^{\omega }(\chi -\mu ) \bigl\vert \vartheta (\chi ) \bigr\vert ^{q}\,d\chi \biggr) ^{\frac{1}{q}} \biggr\} , \end{aligned}$$

where \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\).

The power-mean inequality, which is a different version of the Hölder inequality, is well known for its elementary role in many branches of mathematical analysis. In [19], Kadakal et al. showed and proved the improved power-mean inequality, which gives better results than the power-mean inequality. This new generalized expression is as follows.

Theorem 3

(Improved power-mean integral inequality)

Let ζ and ϑ be real mappings defined on \([ \mu ,\omega ] \). If \(\vert \zeta \vert \), \(\vert \zeta \vert \vert \vartheta \vert ^{q}\) are integrable on \([ \mu ,\omega ] \), then

$$\begin{aligned}& \int _{\mu }^{\omega } \bigl\vert \zeta (\chi ) \vartheta (\chi ) \bigr\vert \,d\chi \\& \quad \leq \frac{1}{\omega -\mu } \biggl\{ \biggl( \int _{\mu }^{\omega }( \omega -\chi ) \bigl\vert \zeta (\chi ) \bigr\vert \,d\chi \biggr) ^{1- \frac{1}{q}} \biggl( \int _{\mu }^{\omega }(\omega -\chi ) \bigl\vert \zeta ( \chi ) \bigr\vert \bigl\vert \vartheta (\chi ) \bigr\vert ^{q}\,d\chi \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \int _{\mu }^{\omega }(\chi -\mu ) \bigl\vert \zeta ( \chi ) \bigr\vert \,d\chi \biggr) ^{1-\frac{1}{q}} \biggl( \int _{\mu }^{\omega }(\chi -\mu ) \bigl\vert \zeta ( \chi ) \bigr\vert \bigl\vert \vartheta (\chi ) \bigr\vert ^{q}\,d\chi \biggr) ^{ \frac{1}{q}} \biggr\} , \end{aligned}$$

where \(q\geq 1\).

In [20], İşcan et al. developed a new lemma and found new generalizations for convex functions. The point emphasized in this study is that it applied the definition of convex function twice to the obtained inequalities. For the special values of φ, new inequalities have been obtained and also their relationship with previous studies has been determined. These new identities obtained are as follows.

Lemma 1

Let \(\zeta :I^{\circ }\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\zeta ^{\prime }\in L [ \mu ,\omega ] \), then the following equality holds:

$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad = \sum_{\varepsilon =0}^{\varphi -1}\frac{1}{2\varphi } \biggl[ \zeta \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) +\zeta \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr] -\frac{1}{\omega -\mu } \int _{\mu }^{\omega }\zeta (\chi )\,d\chi \\& \quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} ( 1-2 \tau ) \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \,d\tau \biggr] . \end{aligned}$$

Theorem 4

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is convex on \([ \mu ,\omega ] \) for some fixed \(q>1\), then the following inequality is satisfied:

$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum _{ \varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{1+\frac{1}{q}}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl[ \biggl( \frac{2\varphi -2\varepsilon -1}{\varphi } \biggr) \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert ^{q}+ \biggl( \frac{2\varepsilon +1}{\varphi } \biggr) \bigl\vert \zeta ^{\prime }( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(1.1)

where \(\frac{1}{q}+\frac{1}{p}=1\).

Theorem 5

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is convex on \([ \mu ,\omega ] \) for some fixed \(q\geq 1\), then the following inequality is satisfied:

$$ \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \leq \sum _{ \varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{4\varphi ^{2}} \biggl[ \biggl( \frac{2\varphi -2\varepsilon -1}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl( \frac{2\varepsilon +1}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}. $$
(1.2)

Our main contribution in this study is to use s-convex functions and to obtain new generalization identities. We also aimed to compare the inequalities obtained by different methods. The fact that these inequalities were conformable with the literature motivated us.

2 Main results

Theorem 6

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \) for some fixed \(q>1\), then the following inequality is satisfied:

$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\& \qquad {} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(2.1)

where \(\frac{1}{p}+\frac{1}{q}=1\).

Proof

From Lemma 1 and by using the Hölder inequality, we have

$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl( \int _{0}^{1} \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}}. \end{aligned}$$

By using the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\), we obtain

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}}\biggl[ \int _{0}^{1} \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad{} + ( 1-\tau ) ^{s} \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \\ & = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{{\frac{1}{p}}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$

Thus, the proof is completed. □

Corollary 1

If we choose \(s=1\) in Theorem 6, then we obtain

$$ \begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{ \varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{1+\frac{1}{q}}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad {}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned} $$

Corollary 2

If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 6, we have

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl( \biggl( \frac{\varphi -\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varphi -\varepsilon -1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad {}+ \biggl( \biggl( \frac{\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varepsilon +1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(2.2)

Remark 1

If we choose \(s=1\) in Corollary 2, then inequality (2.2) reduces to inequality (1.1).

Corollary 3

If we choose \(\varphi =2\) in Corollary 2, then we obtain

$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl( \frac{1}{p+1} \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \biggl\{ \biggl( \biggl[ 1+ \frac{1}{2^{s}} \biggr] \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \frac{1}{2^{s}} \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr) ^{ \frac{1}{q}} \\ &\quad \quad{}+ \biggl( \frac{1}{2^{s}} \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+ \biggl[ 1+\frac{1}{2^{s}} \biggr] \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Theorem 7

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \) for some fixed \(q\geq 1\), then the following inequality is satisfied:

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{s}{ ( s+1 ) ( s+2 ) }+\frac{1}{2^{s} ( s+1 ) ( s+2 ) } \biggr) ^{ \frac{1}{q}} \\ &\quad \quad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(2.3)

Proof

From Lemma 1 and by using the well-known power-mean inequality, we have

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }\\ &\quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\ & \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert \,d\tau \biggr) ^{1- \frac{1}{q}} \\ &\quad{} \times \biggl( \int _{0}^{1} \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}}. \end{aligned}$$

Since \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex \([ \mu ,\omega ] \), then

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \int _{0}^{1} \vert 1-2\tau \vert \,d\tau \biggr) ^{1- \frac{1}{q}}\biggl[ \int _{0}^{1} \vert 1-2\tau \vert \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad{} + ( 1-\tau ) ^{s} \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \\ & = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{s}{ ( s+1 ) ( s+2 ) }+ \frac{1}{2^{s} ( s+1 ) ( s+2 ) } \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}, \end{aligned}$$

where we have used the fact that

$$\begin{aligned}& \int _{0}^{1} \vert 1-2\tau \vert \,d\tau = \frac{1}{2}, \\& \int _{0}^{1} \vert 1-2\tau \vert \tau ^{s}\,d\tau = \int _{0}^{1} \vert 1-2\tau \vert ( 1-\tau ) ^{s}\,d\tau = \frac{s}{ ( s+1 ) ( s+2 ) }+ \frac{1}{2^{s} ( s+1 ) ( s+2 ) } . \end{aligned}$$

Thus, the proof is completed. □

Corollary 4

If we choose \(s=1\) in Theorem 7, then we obtain

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert &\leq \sum _{ \varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2+\frac{1}{q}}} \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad {}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$

Corollary 5

If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 7, we get

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{s}{ ( s+1 ) ( s+2 ) }+ \frac{1}{2^{s} ( s+1 ) ( s+2 ) } \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl[ \biggl( \biggl( \frac{\varphi -\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varphi -\varepsilon -1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad {}+ \biggl( \biggl( \frac{\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varepsilon +1}{\varphi } \biggr) ^{s} \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(2.4)

Remark 2

If we choose \(s=1\) in Corollary 5, then inequality (2.4) reduces to inequality (1.2).

Corollary 6

If we choose \(\varphi =2\) and \(s=1\) in Theorem 7, then we obtain

$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2^{2+\frac{1}{q}}} \biggl[ \biggl( \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl\vert \zeta ^{ \prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+ \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

Theorem 8

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \), then the following inequality is obtained:

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \frac{1}{ ( s+1 ) } \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+\frac{1}{ ( s+1 ) } \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(2.5)

where \(\frac{1}{p}+\frac{1}{q}=1\).

Proof

From Lemma 1 and by using the Hölder–İşcan inequality, we have

$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\& \qquad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2 \tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl( \int _{0}^{1} ( 1-\tau ) \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\& \quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\tau \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\& \quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \biggr\} \\& \quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\& \quad \quad{}+ \biggl( \int _{0}^{1}\tau \biggl\vert \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

By using the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\), we have

$$\begin{aligned}& \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\& \quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl\{ \biggl[ \int _{0}^{1} ( 1-\tau ) \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\& \quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \\& \quad \quad{} + \biggl[ \int _{0}^{1}\tau \biggl( \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\& \quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr] ^{\frac{1}{q}} \biggr\} \\& \quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\& \quad \quad{} \times \biggl\{ \biggl[ \frac{1}{ ( s+1 ) ( s+2 ) } \biggl\vert \zeta \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \frac{1}{s+2} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\& \quad \quad{} + \biggl[ \frac{1}{s+2} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \frac{1}{ ( s+1 ) ( s+2 ) } \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

That completes the proof. □

Corollary 7

If we choose \(s=1\) in Theorem 8, then we obtain

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\ &\quad{} \times \biggl\{ \biggl[ \frac{1}{6} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+\frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad{}+ \biggl[ \frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \frac{1}{6} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 8

If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 8, we have

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2+\frac{s}{q}}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl\{ \biggl[ \biggl( \frac{ ( \varphi -\varepsilon ) ^{s}}{s+1}+ ( \varphi -\varepsilon -1 ) ^{s} \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \frac{\varepsilon ^{s}}{s+1}+ ( \varepsilon +1 ) ^{s} \biggr) \bigl\vert \zeta ^{ \prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{ \frac{1}{q}} \\ &\quad{}+ \biggl[ \biggl( ( \varphi -\varepsilon ) ^{s}+ \frac{ ( \varphi -\varepsilon -1 ) ^{s}}{s+1} \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \varepsilon ^{s}+ \frac{ ( \varepsilon +1 ) ^{s}}{s+1} \biggr) \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 9

If we choose \(s=1\) in Corollary 8, then we obtain

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{3} \biggr) ^{\frac{1}{q}} \\ &\quad{} \times \biggl\{ \biggl[ \biggl( \frac{3\varphi -3\varepsilon -2}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \frac{3\varepsilon +2}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad{}+ \biggl[ \biggl( \frac{3\varphi -3\varepsilon -1}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \mu ) \bigr\vert ^{q}+ \biggl( \frac{3\varepsilon +1}{2\varphi } \biggr) \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 10

If we choose \(\varphi =1\) in Theorem 8, then we obtain

$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \frac{1}{s+1} \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+ \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}}+ \biggl[ \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+\frac{1}{s+1} \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 11

In Corollary 10, if we choose \(s=1\), we obtain

$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl\{ \biggl[ \frac{ \vert \zeta ^{\prime }(\mu ) \vert ^{q}+2 \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{6} \biggr] ^{\frac{1}{q}}+ \biggl[ \frac{2 \vert \zeta ^{\prime }(\mu ) \vert ^{q}+ \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{6} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 12

If we choose \(\varphi =2\) in Theorem 8, then we obtain

$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl( \frac{1}{s+1} \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{1}{s+1} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+ \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \quad{}+ \biggl[ \biggl( \bigl\vert \zeta ^{\prime }( \mu ) \bigr\vert ^{q}+\frac{1}{s+1} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{ \frac{1}{q}}+ \biggl( \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+\frac{1}{s+1} \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$

Corollary 13

In Corollary 12, if we choose \(s=1\), we have

$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl( \frac{ \vert \zeta ^{\prime }(\mu ) \vert ^{q}}{6}+ \frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{1}{6} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+\frac{1}{3} \bigl\vert \zeta ^{\prime } ( \omega ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \quad{}+ \biggl[ \biggl( \frac{1}{3} \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert ^{q}+\frac{1}{6} \biggl\vert \zeta ^{ \prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{1}{3} \biggl\vert \zeta ^{\prime } \biggl( \frac{\mu +\omega }{2} \biggr) \biggr\vert ^{q}+ \frac{ \vert \zeta ^{\prime } ( \omega ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$

Remark 3

Inequality (2.5) is better than inequality (2.1). In fact, since the function \(\psi :[0,\infty )\rightarrow \mathbb{R} \), \(\psi (\chi )=\chi ^{\rho }\), \(\rho \in (0,1]\) is a concave function, we can write

$$ \frac{\theta ^{\rho }+\delta ^{\rho }}{2}= \frac{\psi (\theta )+\psi (\delta )}{2}\leq \psi \biggl( \frac{\theta +\delta }{2} \biggr) = \biggl( \frac{\theta +\delta }{2} \biggr) ^{\rho } $$
(2.6)

for all \(\theta ,\delta \geq 0\). In inequality (2.6), if we choose

$$\begin{aligned}& \theta = \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2}, \\& \delta = \frac{(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \end{aligned}$$

and \(\rho =\frac{1}{q}\), we obtain

$$\begin{aligned} &\frac{1}{2} \biggl[ \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \frac{1}{2} \biggl[ \frac{(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \\ &\quad \leq \biggl[ \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{2} \biggr] ^{\frac{1}{q}}. \end{aligned}$$

So, we have the following inequality:

$$\begin{aligned} &\sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{2 ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\qquad{} \times \biggl\{ \biggl[ \frac{ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \\ &\qquad{} + \biggl[ \frac{(s+1) \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } ) \vert ^{q}+ \vert \zeta ^{\prime } ( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } ) \vert ^{q}}{s+2} \biggr] ^{\frac{1}{q}} \biggr\} \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\qquad{} \times \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$

Theorem 9

Let \(\zeta :I\subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^{\circ }\), where \(\mu ,\omega \in I^{\circ }\), with \(\mu <\omega \). If \(\vert \zeta ^{\prime } \vert ^{q}\) is s-convex on \([ \mu ,\omega ] \) for some fixed \(q\geq 1\), then the following inequality is satisfied:

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+\frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+ \frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.7)

Proof

From Lemma 1 and by using the improved power-mean inequality, we have

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum _{\varepsilon =0}^{\varphi -1}\frac{\omega -\mu }{2\varphi ^{2}} \biggl[ \int _{0}^{1} \biggl\vert ( 1-2\tau ) \zeta ^{ \prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }\\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert \,d\tau \biggr] \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2 \tau \vert \,d\tau \biggr) ^{1-\frac{1}{q}} \\ &\quad \quad{} \times \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2 \tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \,d\tau \biggr) ^{1-\frac{1}{q}} \\ &\quad \quad{} \times \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi }+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{ \frac{1}{q}}\biggr\} \\ &\quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2\varphi ^{2}} \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \biggl\vert \zeta ^{\prime } \biggl( \tau \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \\ &\quad \quad {}+ ( 1-\tau ) \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

By using the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\), we have

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl( \int _{0}^{1} ( 1-\tau ) \vert 1-2\tau \vert \biggl( \tau ^{s} \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr) \,d\tau \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{0}^{1}\tau \vert 1-2\tau \vert \biggl[ \tau ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad {}+ ( 1-\tau ) ^{s} \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] \,d\tau \biggr) ^{\frac{1}{q}} \biggr\} \\ &\quad = \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+ \frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}-1}{s+2}+ \frac{2- ( \frac{1}{2} ) ^{s+1}}{s+3} \biggr) \biggl\vert \zeta ^{ \prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q} \\ &\quad \quad{} + \biggl( \frac{ ( \frac{1}{2} ) ^{s}-1}{s+1}+ \frac{3-3 ( \frac{1}{2} ) ^{s+1}}{s+2}+ \frac{ ( \frac{1}{2} ) ^{s+1}-2}{s+3} \biggr) \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

That completes the proof. □

Corollary 14

If we choose \(s=1\) in Theorem 9, then we obtain

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3+\frac{2}{q}}\varphi ^{2}} \biggl\{ \biggl[ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+3 \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ 3 \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) \biggr\vert ^{q}+ \biggl\vert \zeta ^{\prime } \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) \biggr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 15

If we use the s-convexity of \(\vert \zeta ^{\prime } \vert ^{q}\) once again in Theorem 9, we have

$$\begin{aligned} &\bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3-\frac{2}{q}}\varphi ^{2+\frac{s}{q}}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) ( \varphi -\varepsilon ) ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) ( \varphi - \varepsilon -1 ) ^{s} \biggr] \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) \varepsilon ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) ( \varepsilon +1 ) ^{s} \biggr] \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) ( \varphi -\varepsilon -1 ) ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) ( \varphi - \varepsilon ) ^{s} \biggr] \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q} \\ &\quad \quad{} + \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) ( \varepsilon +1 ) ^{s}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) \varepsilon ^{s} \biggr] \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 16

If we choose \(s=1\) in Corollary 15, then we obtain

$$\begin{aligned} \bigl\vert I_{\varphi }(\zeta ,\mu ,\omega ) \bigr\vert & \leq \sum _{\varepsilon =0}^{\varphi -1} \frac{\omega -\mu }{2^{3+\frac{2}{q}}\varphi ^{2+\frac{1}{q}}} \bigl\{ \bigl[ ( 4\varphi -4 \varepsilon -3 ) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ ( 4\varepsilon +3 ) \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \\ &\quad{}+ \bigl[ ( 4 \varphi -4\varepsilon -1 ) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ ( 4\varepsilon +1 ) \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \bigr\} . \end{aligned}$$

Corollary 17

If we choose \(\varphi =1\) in Corollary 15, then we obtain

$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{2^{3-\frac{2}{q}}} \biggl\{ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert ^{q} \biggr] ^{ \frac{1}{q}} \\ &\quad \quad{}+ \biggl[ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}+s+1}{s^{2}+5s+6} \biggr) \bigl\vert \zeta ^{\prime }(\mu ) \bigr\vert ^{q}+ \biggl( \frac{ ( \frac{1}{2} ) ^{s+1}s+5 ( \frac{1}{2} ) ^{s+1}+s-1}{s^{3}+6s^{2}+11s+6} \biggr) \bigl\vert \zeta ^{ \prime }(\omega ) \bigr\vert ^{q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 18

In Corollary 17, if we choose \(s=1\), we have

$$\begin{aligned} &\biggl\vert \frac{\zeta (\mu )+\zeta (\omega )}{2}- \frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ &\quad \leq \frac{\omega -\mu }{8} \biggl\{ \biggl[ \frac{ \vert \zeta ^{\prime }(\mu ) \vert ^{q}+3 \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{4} \biggr] ^{\frac{1}{q}}+ \biggl[ \frac{3 \vert \zeta ^{\prime }(\mu ) \vert ^{q}+ \vert \zeta ^{\prime }(\omega ) \vert ^{q}}{4} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Corollary 19

If we choose \(\varphi =2\) and \(q=1\) in Corollary 15, then we obtain

$$\begin{aligned} &\biggl\vert \frac{1}{2} \biggl[ \frac{\zeta (\mu )+\zeta (\omega )}{2}+\zeta \biggl( \frac{\mu +\omega }{2} \biggr) \biggr] -\frac{1}{\omega -\mu }\int _{\mu }^{\omega }\zeta (\chi )\,d\chi \biggr\vert \\ & \quad \leq \frac{\omega -\mu }{2^{3+s}} \biggl\{ \bigl( 2^{s}+2 \bigr) \biggl( \frac{ ( \frac{1}{2} ) ^{s}s+3 ( \frac{1}{2} ) ^{s}+s^{2}+3s}{s^{3}+6s^{2}+11s+6} \biggr) \bigl( \bigl\vert \zeta ^{ \prime }(\mu ) \bigr\vert + \bigl\vert \zeta ^{\prime }(\omega ) \bigr\vert \bigr) \biggr\} . \end{aligned}$$

Remark 4

Inequality (2.7) in Theorem 9 is better than inequality (2.3) in Theorem 7. The proof can be obtained applying similarly to Remark 3.

3 Applications to special means

Hudzik and Maligranda gave the following example in [21]:

Let \(\zeta :[0,\infty )\rightarrow \mathbb{R} \) be a function as

$$ \zeta (\tau )=\textstyle\begin{cases} \mu , &\tau =0, \\ \omega \tau ^{s}+\varrho ,& \tau >0.\end{cases} $$

Also, let \(s\in (0,1)\) and \(\mu ,\omega ,\varrho \in \mathbb{R} \). If \(\omega \geq 0\) and \(0\leq \varrho \leq \mu \), then \(\zeta \in K_{s}^{2}\). Hence, for \(\mu =\varrho =0\), \(\omega =1\), we have \(\zeta :[0,1]\rightarrow {}[ 0,1]\), \(\zeta (\tau )=\tau ^{s}\), \(\zeta \in K_{s}^{2}\).

Now, using the results of Sect. 2, we consider some special means for which we will have new integral inequalities. Let \(\mu ,\omega \in \mathbb{R} \),

  1. (1)

    the arithmetic mean:

    $$ A=A(\mu ,\omega )=\frac{\mu +\omega }{2},\quad \mu ,\omega \geq 0; $$
  2. (2)

    the logarithmic mean:

    $$ L=L(\mu ,\omega )= \textstyle\begin{cases} \mu ,&\text{if } \mu =\omega , \\ \frac{\omega -\mu }{\ln \omega -\ln \mu },& \text{if } \mu \neq \omega , \end{cases}\displaystyle \quad \mu ,\omega >0; $$
  3. (3)

    the p-logarithmic mean:

    $$ L_{p}=L_{p}(\mu ,\omega )=\textstyle\begin{cases} \mu , &\text{if } \mu = \omega , \\ [ \frac{\omega ^{p+1}-\mu ^{p+1}}{ ( p+1 ) ( \omega -\mu ) } ] ^{\frac{1}{p}}, & \text{if } \mu \neq \omega ,\end{cases}\displaystyle \quad p\in \mathbb{R} \setminus \{ -1,0 \} , \mu ,\omega >0. $$

Proposition 1

Let \(\mu ,\omega \in \mathbb{R} \), \(0<\mu <\omega \), and \(m\in \mathbb{N} \), \(m\geq 2\). Then, for all \(q>1\), the following inequality holds:

$$\begin{aligned} &\Biggl\vert \sum_{\varepsilon =0}^{\varphi -1} \frac{1}{\varphi }A \biggl( \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) ^{m}, \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) ^{m} \biggr) -L_{m}^{m} ( \mu ,\omega ) \Biggr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{ ( \omega -\mu ) m}{2\varphi ^{2}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+1} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl[ \biggl( \biggl( \frac{\varphi -\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varphi -\varepsilon -1}{\varphi } \biggr) ^{s} \biggr) \mu ^{ ( m-1 ) q}+ \biggl( \biggl( \frac{\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varepsilon +1}{\varphi } \biggr) ^{s} \biggr) \omega ^{ ( m-1 ) q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$

Proof

The proof is obtained immediately from (2.2) in Corollary 2 with \(\zeta (\chi )=\chi ^{m}\), \(\chi \in [ \mu ,\omega ] \), \(m\in \mathbb{N} \), \(m\geq 2\). □

Proposition 2

Let \(\mu ,\omega \in \mathbb{R} \), \(0<\mu <\omega \) and \(m\in \mathbb{N} \), \(m\geq 2\). Then, for all \(q\geq 1\), the following inequality holds:

$$\begin{aligned} &\Biggl\vert \sum_{\varepsilon =0}^{\varphi -1} \frac{1}{\varphi }A \biggl( \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) ^{m}, \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) ^{m} \biggr) -L_{m}^{m} ( \mu ,\omega ) \Biggr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{ ( \omega -\mu ) m}{\varphi ^{2}2^{2-\frac{1}{q}}} \biggl( \frac{1}{s+1} \biggl[ \biggl( \frac{1}{2} \biggr) ^{s}-1 \biggr] - \frac{2}{s+2} \biggl[ \biggl( \frac{1}{2} \biggr) ^{s+1}-1 \biggr] \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl[ \biggl( \biggl( \frac{\varphi -\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varphi -\varepsilon -1}{\varphi } \biggr) ^{s} \biggr) \mu ^{ ( m-1 ) q}+ \biggl( \biggl( \frac{\varepsilon }{\varphi } \biggr) ^{s}+ \biggl( \frac{\varepsilon +1}{\varphi } \biggr) ^{s} \biggr) \omega ^{ ( m-1 ) q} \biggr] ^{\frac{1}{q}}. \end{aligned}$$

Proof

The proof is obtained immediately from (2.4) in Corollary 5 with \(\zeta (\chi )=\chi ^{m}\), \(\chi \in [ \mu ,\omega ] \), \(m\in \mathbb{N} \), \(m\geq 2\). □

Proposition 3

Let \(\mu ,\omega \in \mathbb{R} \), \(0<\mu <\omega \) and \(m\in \mathbb{N} \), \(m\geq 2\). Then, for all \(q>1\), the following inequality holds:

$$\begin{aligned} &\Biggl\vert \sum_{\varepsilon =0}^{\varphi -1} \frac{1}{\varphi }A \biggl( \biggl( \frac{ ( \varphi -\varepsilon ) \mu +\varepsilon \omega }{\varphi } \biggr) ^{m}, \biggl( \frac{ ( \varphi -\varepsilon -1 ) \mu + ( \varepsilon +1 ) \omega }{\varphi } \biggr) ^{m} \biggr) -L_{m}^{m} ( \mu ,\omega ) \Biggr\vert \\ &\quad \leq \sum_{\varepsilon =0}^{\varphi -1} \frac{ ( \omega -\mu ) m}{2^{1+\frac{1}{p}}\varphi ^{2+\frac{s}{q}}} \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{s+2} \biggr) ^{\frac{1}{q}} \\ &\quad \quad{} \times \biggl\{ \biggl[ \biggl( \frac{ ( \varphi -\varepsilon ) ^{s}}{s+1}+ ( \varphi -\varepsilon -1 ) ^{s} \biggr) \mu ^{ ( m-1 ) q}+ \biggl( \frac{\varepsilon ^{s}}{s+1}+ ( \varepsilon +1 ) ^{s} \biggr) \omega ^{ ( m-1 ) q} \biggr] ^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[ \biggl( ( \varphi -\varepsilon ) ^{s}+ \frac{ ( \varphi -\varepsilon -1 ) ^{s}}{s+1} \biggr) \mu ^{ ( m-1 ) q}+ \biggl( \varepsilon ^{s}+ \frac{ ( \varepsilon +1 ) ^{s}}{s+1} \biggr) \omega ^{ ( m-1 ) q} \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Proof

The proof is obtained immediately in Corollary 8 with \(\zeta (\chi )=\chi ^{m}\), \(\chi \in [ \mu ,\omega ] \), \(m\in \mathbb{N} \), \(m\geq 2\). □

4 Conclusion

In this study, using the generalized identity (Lemma 1), different types of integral inequalities were obtained (different results were found for various values of n, \(n\in \mathbb{N} \)) and comparisons were made between these inequalities. In these comparisons, Theorem 8 yields a better result compared to Theorem 6. Similarly, Theorem 9 yields a better result compared to Theorem 7. In addition to this work, researchers can obtain the new lemma for second sense differentiable functions and can find new results for other convex mappings. We hope that this article will inspire new interesting sequels for researchers working in this field.

Availability of data and materials

Not applicable.

References

  1. Özcan, S., İşcan, İ.: Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 201 (2019)

    Article  MATH  Google Scholar 

  2. Sezer, S.: The Hermite–Hadamard inequality for s-convex functions in the third sense. AIMS Math. 6(7), 7719–7732 (2021)

    Article  MATH  Google Scholar 

  3. You, X.X., Ali, M.A., Budak, H., Agarwal, P., Chu, Y.M.: Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals. J. Inequal. Appl. 2021, 102 (2021)

    Article  MATH  Google Scholar 

  4. Özdemir, M.E., Gürbüz, M., Yildiz, Ç.: Inequalities for mappings whose second derivatives are quasi-convex or h-convex functions. Miskolc Math. Notes 15(2), 635–649 (2014)

    Article  MATH  Google Scholar 

  5. Zhao, D., Zhao, G., Ye, G., Liu, W., Dragomir, S.S.: On Hermite–Hadamard-type inequalities for coordinated h-convex interval-valued functions. Mathematics 9, 2352 (2021)

    Article  Google Scholar 

  6. Kara, H., Budak, H., Ali, M.A., Sarikaya, M.Z., Chu, Y.M.: Weighted Hermite–Hadamard type inclusions for products of co-ordinated convex interval-valued functions. Adv. Differ. Equ. 2021, 104 (2021)

    Article  MATH  Google Scholar 

  7. Ahmad, H., Tariq, M., Sahoo, S.K., Baili, J., Cesarano, C.: New estimations of Hermite–Hadamard type integral inequalities for special functions. Fractal Fract. 5, 144 (2021)

    Article  Google Scholar 

  8. Akdemir, A.O., Karaoğlan, A., Ragusa, M.A., Set, E.: Fractional integral inequalities via Atangana–Baleanu operators for convex and concave functions. J. Funct. Spaces 2021, Article ID 1055434 (2021)

    MATH  Google Scholar 

  9. Yildiz, Ç., Özdemir, M.E.: New inequalities for n-time differentiable functions. Tbil. Math. J. 12(2), 1–15 (2019)

    MATH  Google Scholar 

  10. Hudzik, H., Maligranda, L.: Some remarks on s-convex functions. Aequ. Math. 48, 100–111 (1994)

    Article  MATH  Google Scholar 

  11. Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32(4), 687–696 (1999)

    MATH  Google Scholar 

  12. Kirmaci, U.S.: Refinements of Hermite–Hadamard type inequalities for s-convex functions with applications to special means. Univers. J. Math. Appl. 4(3), 114–124 (2021)

    Article  Google Scholar 

  13. Barsam, H., Ramezani, S.M., Sayyari, Y.: On the new Hermite–Hadamard type inequalities for s-convex functions. Afr. Math. 32, 1355–1367 (2021)

    Article  MATH  Google Scholar 

  14. Bayrak, G., Kiriş, M.E., Kara, H., Budak, H.: On new weighted Ostrowski type inequalities for co-ordinated s-convex functions. Turk. J. Inequal. 5(1), 76–92 (2021)

    Google Scholar 

  15. Kirmaci, U.S., Bakula, M.K., Özdemir, M.E., Pečarić, J.: Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193, 26–35 (2007)

    MATH  Google Scholar 

  16. Özdemir, M.Ö., Yildiz, Ç., Akdemir, A.O., Set, E.: On some inequalities for s-convex functions and applications. J. Inequal. Appl. 2013, 333 (2013)

    Article  MATH  Google Scholar 

  17. Alomari, M., Dragomir, S.S., Kırmacı, U.S.: Generalizations of the Hermite–Hadamard type inequalities for functions whose derivatives are s-convex. Acta Comment. Univ. Tartu Math. 17(2), 157–169 (2013)

    MATH  Google Scholar 

  18. İşcan, İ.: New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 204 (2019)

    Article  MATH  Google Scholar 

  19. Kadakal, M., İşcan, İ., Kadakal, H., Bekar, K.: On improvements of some integral inequalities. Honam Math. J. 43(3), 441–452 (2021)

    Google Scholar 

  20. İşcan, İ., Toplu, T., Yetgin, F.: Some new inequalities on generalization of Hermite–Hadamard and Bullen type inequalities, applications to trapezoidal and midpoint formula. Kragujev. J. Math. 45(4), 647–657 (2021)

    Article  MATH  Google Scholar 

  21. Hudzik, H., Maligranda, L.: Some remarks on s-convex functions. Aequ. Math. 48, 100–111 (1994)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Çetin Yildiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, Ç., Yergöz, B. & Yergöz, A. On new general inequalities for s-convex functions and their applications. J Inequal Appl 2023, 11 (2023). https://doi.org/10.1186/s13660-023-02914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02914-4

MSC

Keywords