- Research
- Open Access
- Published:
On new Milne-type inequalities and applications
Journal of Inequalities and Applications volume 2023, Article number: 3 (2023)
Abstract
Inequalities play a major role in pure and applied mathematics. In particular, the inequality plays an important role in the study of Rosseland’s integral for the stellar absorption. In this paper we obtain new Milne-type inequalities, and we apply them to the generalized Riemann–Liouville-type integral operators, which include most of the known Riemann–Liouville integral operators.
1 Introduction
Integral inequalities are used in countless mathematical problems such as approximation theory and spectral analysis, statistical analysis, and the theory of distributions. Studies involving integral inequalities play an important role in several areas of science and engineering.
In recent years there has been a growing interest in the study of many classical inequalities applied to integral operators associated with different types of fractional derivatives, since integral inequalities and their applications play a vital role in the theory of differential equations and applied mathematics. Some of the inequalities studied are Gronwall, Chebyshev, Hermite–Hadamard-type, Ostrowski-type, Grüss-type, Hardy-type, Gagliardo–Nirenberg-type, Jensen-type, Opial-type, Milne-type, reverse Minkowski, and reverse Hölder inequalities (see, e.g., [1, 3, 4, 7–9, 11, 12, 14–20]).
In this work we obtain new Milne-type inequalities, and we apply them to the generalized Riemann–Liouville-type integral operators defined in [2], which include most of the known Riemann–Liouville integral operators.
2 Preliminaries
One of the first operators that can be called fractional is the Riemann–Liouville fractional derivative of order \(\alpha \in \mathbb{C}\), with \(\operatorname{Re}(\alpha )> 0\), defined as follows (see [6]).
Definition 1
Let \(a < b\) and \(f \in L^{1}((a,b);\mathbb{R})\). The right- and left-side Riemann–Liouville fractional integrals of order α, with \(\operatorname{Re}(\alpha )> 0\), are defined, respectively, by
and
with \(t \in (a,b)\).
When \(\alpha \in (0,1)\), their corresponding Riemann–Liouville fractional derivatives are given by
Other definitions of fractional operators are the following ones.
Definition 2
Let \(a < b\) and \(f \in L^{1}((a,b);\mathbb{R})\). The right- and left-side Hadamard fractional integrals of order α, with \(\operatorname{Re}(\alpha )>0\), are defined, respectively, by
and
with \(t \in (a,b)\).
When \(\alpha \in (0,1)\), the Hadamard fractional derivatives are given by the following expressions:
with \(t \in (a,b)\).
Definition 3
Let \(0 < a < b\), \(g:[a, b] \rightarrow \mathbb{R}\) be an increasing positive function on \((a,b]\) with continuous derivative on \((a,b)\), \(f:[a, b]\rightarrow \mathbb{R}\) an integrable function, and \(\alpha \in (0,1)\) a fixed real number. The right- and left-side fractional integrals in [10] of order α of f with respect to g are defined, respectively, by
and
with \(t \in (a,b)\).
There are other definitions of integral operators in the global case, but they are slight modifications of the previous ones.
3 General fractional integral of Riemann–Liouville type
Now, we give the definition of a general fractional integral in [2].
Definition 4
Let \(a< b\) and \(\alpha \in \mathbb{R}^{+}\). Let \(g:[a, b] \rightarrow \mathbb{R}\) be a positive function on \((a,b]\) with continuous positive derivative on \((a,b)\), and \(G:[0, g(b)-g(a)]\times (0,\infty )\rightarrow \mathbb{R}\) a continuous function that is positive on \((0, g(b)-g(a)]\times (0,\infty )\). Let us define the function \(T:[a, b] \times [a, b] \times (0,\infty )\rightarrow \mathbb{R}\) by
The right and left integral operators, denoted, respectively, by \(J_{T,a^{+}}^{\alpha }\) and \(J_{T,b^{-}}^{\alpha }\), are defined for each measurable function f on \([a,b]\) as
with \(t \in [a,b]\).
We say that \(f \in L_{T}^{1}[a,b]\) if \(J_{T,a^{+}}^{\alpha }|f|(t), J_{T,b^{-}}^{\alpha }|f|(t) < \infty \) for every \(t \in [a,b]\).
Note that these operators generalize the integral operators in Definitions 1, 2, and 3:
\((A)\) If we choose
then \(J_{T,a^{+}}^{\alpha }\) and \(J_{T,b^{-}}^{\alpha }\) are the right and left Riemann–Liouville fractional integrals \({}^{ RL } { { J }_{ { a }^{ + } }^{ \alpha } }\) and \({}^{ RL } { { J }_{ { b }^{- } }^{ \alpha } }\) in (1) and (2), respectively. The corresponding right and left Riemann–Liouville fractional derivatives are
\((B)\) If we choose
then \(J_{T,a^{+}}^{\alpha }\) and \(J_{T,b^{-}}^{\alpha }\) are the right and left Hadamard fractional integrals \({ H }_{ { a }^{ + } }^{\alpha}\) and \({ H }_{ { b }^{ - } }^{\alpha}\) in (3) and (4), respectively. The corresponding right and left Hadamard fractional derivatives are
\((C)\) If we choose a function g with the properties in Definition 4 and
then \(J_{T,a^{+}}^{\alpha }\) and \(J_{T,b^{-}}^{\alpha }\) are the right and left fractional integrals \(I_{ g,a^{+} }^{ \alpha }\) and \(I_{ g,b^{-} }^{ \alpha }\) in (5) and (6), respectively.
Definition 5
Let \(a< b\) and \(\alpha \in \mathbb{R}^{+}\). Let \(g:[a, b] \rightarrow \mathbb{R}\) be a positive function on \((a,b]\) with continuous positive derivative on \((a,b)\), and \(G:[0, g(b)-g(a)]\times (0,\infty )\rightarrow \mathbb{R}\) a continuous function that is positive on \((0, g(b)-g(a)]\times (0,\infty )\). For each function \(f \in L_{T}^{1}[a,b]\), its right and left generalized derivative of order α are defined, respectively, by
for each \(t \in (a,b)\).
Note that if we choose
then \(D_{T,a^{+} }^{\alpha}f(t)= {}^{ RL } { { D}_{a^{+} }^{ \alpha } }f(t)\) and \(D_{T,b^{-} }^{\alpha}f(t)= {}^{ RL } { { D}_{b^{-}}^{ \alpha } }f(t)\). Also, we can obtain Hadamard and others fractional derivatives as particular cases of this generalized derivative.
4 Milne-type inequalities
Milne proved in 1925 the two following discrete and continuous versions of a useful inequality [13]:
Proposition 6
The following inequality holds for every \(a_{i},b_{i}>0\) for \(1 \le i \le n\):
Remark 7
Since
the conclusion of Proposition 6 also holds for every \(a_{i},b_{i} \ge 0\) with the convention \(0\cdot 0/(0+0)=0\).
Proposition 8
Let \(\phi :(0,\infty ) \rightarrow [0,\infty )\) be a Riemann integrable function with \(\int _{0}^{\infty }\phi (x)\,dx=1\). Let \(a_{i}>0\) and \(f_{i}:(0,\infty ) \rightarrow (0,\infty )\) such that \(\phi /f_{i}\) is a Riemann integrable function on \((0,\infty )\) for \(1 \le i \le n\). Then,
We start with our general version of Proposition 6.
Theorem 9
Let \(x_{i},y_{j} \ge 0\), \(c_{i,j}>0\) for any \(i,j \ge 1\). If \(\sum_{i=1}^{\infty }x_{i} > 0\) and \(\sum_{j=1}^{\infty }y_{j} > 0\), then
Proof
Let us prove first
if \(x_{i},y_{j}>0\) for \(1 \le i \le m\), \(1 \le j \le n\).
If we define \(k_{i,j}:= c_{i,j} y_{j}/x_{i}\), then it suffices to prove that
Let us prove (11) by induction on n.
If \(n=1\), then the inequality (11) holds since, in fact, it is an equality.
If \(n=2\), \(a_{i}:=1/k_{i,1}\) and \(b_{i}:=1/k_{i,2}\), then the following inequalities are equivalent
and this last inequality holds by Proposition 6.
Finally, assume that (11) holds for \(n-1\ge 2\). Then, the induction hypothesis and the previous inequality give
which completes the proof of (11). Hence, (10) holds if \(x_{i},y_{j}>0\) for \(1 \le i \le m\), \(1 \le j \le n\).
If we take limits as \(x_{i} \to 0\) and/or \(y_{j} \to 0\) for some indices \(1 \le i \le m\), \(1 \le j \le n\) in (10), we obtain the same conclusion if \(x_{i},y_{j} \ge 0\) for \(1 \le i \le m\), \(1 \le j \le n\), \(\sum_{i=1}^{m} x_{i}>0\) and \(\sum_{j=1}^{n} y_{j}>0\).
If we take limits as \(m \to \infty \) in (10), then we obtain for every n
if \(x_{i},y_{j} \ge 0\) for \(i \ge 1\), \(1 \le j \le n\), \(\sum_{i=1}^{\infty }x_{i}>0\) and \(\sum_{j=1}^{n} y_{j}>0\). Since
for every n, we have
for every n. Then, the result follows if we take limits as \(n \to \infty \) in this last inequality. □
Remark 10
The argument in the proof of Theorem 9 gives that Proposition 6 is equivalent to the case \(n=2\) in (10). Hence, this theorem is a generalization of the discrete Milne inequality.
Corollary 11
Let \(x_{i},y_{j} \ge 0\), \(c_{i,j}>0\) for \(1 \le i \le m\), \(1 \le j \le n\). If \(\sum_{i=1}^{m} x_{i} > 0\) and \(\sum_{j=1}^{n} y_{j} > 0\), then
In order to prove Theorem 20 below, generalizing Proposition 8 (the continuous version of Milne inequality), we need the following technical results.
Proposition 12
Let \(M>0\), μ, ν two σ-finite measures on the spaces X, Y, respectively, and \(f_{n},f:X\times Y \rightarrow [M,\infty )\) measurable functions. If \(\lim_{n \to \infty} f_{n} = f\) \((\mu \times \nu )\)-a.e. and \(f_{n} \le g \in L^{1}(\mu \times \nu )\), then
Proof
Since
\(|f-f_{n}| \le f+f_{n} \le 2g \in L^{1}(\mu \times \nu )\) and \(\lim_{n \to \infty} |f-f_{n}| = 0\) \((\mu \times \nu )\)-a.e., the dominated convergence theorem gives
and this completes the proof. □
Proposition 13
Let \(0< M \le N <\infty \), μ, ν be two finite measures on the spaces X, Y, respectively, and \(f_{n},f:X\times Y \rightarrow [M,N]\) measurable functions. If \(\lim_{n \to \infty} f_{n} = f\) \((\mu \times \nu )\)-a.e., then
Proof
Since
\(|f-f_{n}| \le 2N \in L^{1}(\mu \times \nu )\) and \(\lim_{n \to \infty} |f-f_{n}| = 0\) \((\mu \times \nu )\)-a.e., the dominated convergence theorem gives the result. □
Proposition 14
Let μ, ν be two measures on the spaces X, Y, respectively, and \(f_{n}:X\times Y \rightarrow [0,\infty ]\) measurable functions with \(f_{n} \le f_{n+1}\) for every n, and let \(f:=\lim_{n \to \infty} f_{n}\). If
then
Proof
The monotone convergence theorem gives
for every \(x \in X\).
Since \(f_{n} \le f\) for every n, if
for every n then,
If
by hypothesis. Since \(f_{1} \le f_{n}\) for every n, we have
and the dominated convergence theorem gives the result. □
Proposition 15
Let μ, ν be two measures on the spaces X, Y, respectively, and \(f_{n}:X\times Y \rightarrow [0,\infty ]\) measurable functions with \(f_{n} \ge f_{n+1}\) for every n, and let \(f:=\lim_{n \to \infty} f_{n}\). If
for each \(x \in X\), then
Proof
Fix \(x \in X\). If \(f(x,y) \notin L^{1}(\nu )\), then \(f_{n}(x,y) \notin L^{1}(\nu )\) for every n and so,
If \(f(x,y) \in L^{1}(\nu )\), then \(f_{1}(x,y) \in L^{1}(\nu )\) and the dominated convergence theorem gives
Since
for every n, the monotone convergence theorem gives the result. □
Proposition 16
Let μ, ν be two measures on the spaces X, Y, respectively, and \(f_{n}:X\times Y \rightarrow [0,\infty ]\) measurable functions with \(f_{n} \le f_{n+1}\) for every n, and let \(f:=\lim_{n \to \infty} f_{n}\). If
for each \(y \in Y\), then
Proof
Fix \(y \in Y\). If \(1/f(x,y) \notin L^{1}(\mu )\), then \(1/f_{n}(x,y) \notin L^{1}(\mu )\) for every n and hence,
If \(1/f(x,y) \in L^{1}(\mu )\), then \(1/f_{1}(x,y) \in L^{1}(\mu )\) and
and the dominated convergence theorem gives
Since
for every n, the monotone convergence theorem gives the result. □
Proposition 17
Let μ, ν be two measures on the spaces X, Y, respectively, and \(f_{n}:X\times Y \rightarrow [0,\infty ]\) measurable functions with \(f_{n} \ge f_{n+1}\) for every n, and let \(f:=\lim_{n \to \infty} f_{n}\). Then,
Proof
Since
for every n and \(y \in Y\), the monotone convergence theorem gives
for every \(y \in Y\).
Since
for every n and \(y \in Y\), there exists the limit
for every \(y \in Y\).
Since
for every n and \(y \in Y\), the Fatou lemma gives
□
Let us recall some background in [5]. A measure μ defined on the σ-algebra of all Borel sets in a locally compact Hausdorff space X is called a Borel measure on X. The measure μ is called outer regular on E if
and inner regular on E if
A Radon measure on X is a Borel measure that is finite on all compact sets, outer regular on all Borel sets, and inner regular on all open sets. Radon measures are also inner regular on all of their σ-finite sets [5, p. 216].
Recall that a second-countable space is a topological space whose topology has a countable base. In a second-countable, locally compact Hausdorff space, any Borel measure that is finite on compact sets is regular and hence Radon [5, p. 217].
The following two results appear in [5, pp. 217, 226].
Proposition 18
If μ is a Radon measure on X, then \(C_{c}(X)\) is dense in \(L^{p}(\mu )\) for \(1 \le p < \infty \).
Proposition 19
If X, Y are second-countable, locally compact Hausdorff spaces and μ, ν are Radon measures on X and Y, respectively, then \(\mu \times \nu \) is a Radon measure on \(X \times Y\).
We can prove now the main result in this work, generalizing Proposition 8, the continuous version of the Milne inequality.
Theorem 20
Let X, Y be second-countable, locally compact metric spaces, and let μ, ν be Borel measures on the metric spaces X, Y, respectively, which are finite on compact sets. If \(f:X\times Y \rightarrow [0,\infty ]\) is any measurable function, then
Proof
Since X, Y are σ-compact, there exist two sequences of compact sets \(\{X_{m}\}\), \(\{Y_{n}\}\), with
By hypothesis, \(\mu (X_{m}), \nu (Y_{n}) < \infty \) for every m, n.
As usual, we denote by \(B_{X}(x,r)\) the open ball in X with center \(x\in X\) and radius \(r>0\). For each \(\delta >0\) consider the open covering \(\{B_{X}(x,\delta /5)\}_{x \in X_{m}}\) of \(X_{m}\). Since \(X_{m}\) is a compact set there exists a finite subset \(\{x_{1},\dots ,x_{k}\} \subseteq X_{m}\) with
Thus, the measurable sets \(\{X_{m}^{i}\}_{i=1}^{k}\) defined as
are a partition of \(X_{m}\) and
for every \(1 \le i \le k\).
In a similar way we can find a partition of measurable sets \(\{Y_{n}^{j}\}_{j=1}^{\ell}\) of \(Y_{n}\) such that \(\operatorname{diam}(Y_{n}^{j})<\delta /2\) for every \(1 \le j \le \ell \).
Case A. Let us fix m, n and a continuous function \(f: X_{m} \times Y_{n} \rightarrow (0,\infty )\). We are going to prove
Since f is a strictly positive, continuous function on the compact set \(X_{m} \times Y_{n}\), we have
Let us fix \(\varepsilon > 0\). Since f is uniformly continuous on the compact set \(X_{m} \times Y_{n}\), there exists \(\delta >0\) such that
Consider partitions of measurable sets \(\{X_{m}^{i}\}_{i=1}^{k}\) of \(X_{m}\) and \(\{Y_{n}^{j}\}_{j=1}^{\ell}\) of \(Y_{n}\) such that \(\operatorname{diam}(X_{m}^{i})<\delta /2\) for every \(1 \le i \le k\) and \(\operatorname{diam}(Y_{n}^{j})<\delta /2\) for every \(1 \le j \le \ell \). If \((x_{1},y_{1}),(x_{2},y_{2}) \in X_{m}^{i} \times Y_{n}^{j}\), then
and we have \(| f(x_{1},y_{1}) - f(x_{2},y_{2}) | < \varepsilon \).
Define
Thus,
for every \(1 \le i \le k\) and \(1 \le j \le \ell \).
Let us consider the simple function
where \(\chi _{E}\) denotes the characteristic function of the set E, i.e., the function with \(\chi _{E}=1\) on E and \(\chi _{E}=0\) on \(X \setminus E\).
Since \(\{X_{m}^{i} \times Y_{n}^{j}\}_{i,j}\) is a partition of \(X_{m} \times Y_{n}\), it is clear that
We have
Since \(\{X_{m}^{i}\}_{i=1}^{k}\) is a partition of \(X_{m}\), we obtain
and
Since \(\{Y_{n}^{j}\}_{j=1}^{\ell}\) is a partition of \(Y_{n}\), we obtain
Thus, the two following inequalities are equivalent:
and this last inequality holds by Corollary 11, since \(M_{m,n}^{i,j} \ge M_{m,n} > 0\), \(\sum_{i=1}^{k} \mu (X_{m}^{i}) = \mu (X_{m})>0\) and \(\sum_{j=1}^{\ell} \mu (Y_{n}^{j}) = \mu (Y_{n})>0\). Hence, (15) holds for \(s_{\varepsilon }\).
Recall that
since \(X_{m}\) and \(Y_{n}\) are compact sets and so, \((\mu \times \nu ) (X_{m} \times Y_{n})= \mu (X_{m}) \nu (Y_{n}) < \infty \). Now, we can choose a sequence of ε converging to 0 and so, the corresponding \(s_{\varepsilon }\) converge to f. Since \(\mu (X_{m}), \nu (Y_{n}) < \infty \), Propositions 12 and 13 give
Case B. Given any \(0 < M <N\), consider now any measurable function \(f:X_{m}\times Y_{n} \rightarrow [M,N]\). The hypotheses give that μ, ν are Radon measures. Proposition 19 gives that \(\mu \times \nu \) is a Radon measure. Since \(X_{m} \times Y_{n}\) is a compact set, Proposition 18 gives that there exists a sequence \(\{f_{k}\} \subset C(X_{m}\times Y_{n})\) such that
Hence, there exists a subsequence of \(\{f_{k}\}\), that we will denote also by \(\{f_{k}\}\) for simplicity, such that \(\lim_{k \to \infty} f_{k} = f\) \((\mu \times \nu )\)-a.e. Let us consider the sequence \(\{F_{k}\}\) defined from \(\{f_{k}\}\) as
Thus, \(\{F_{k}\} \subset C(X_{m}\times Y_{n})\) and we also have \(\lim_{k \to \infty} F_{k} = f\) \((\mu \times \nu )\)-a.e., since \(|f - F_{k}| \le |f - f_{k}|\) for every k. We have proved that
for every k. Since \(M \le f\), \(F_{k} \le N\) and any constant function belongs to \(L^{1}(X_{m}\times Y_{n}, \mu \times \nu )\), Propositions 12 and 13 give
Case C. Consider now any measurable function \(f:X_{m}\times Y_{n} \rightarrow [M,\infty ]\), with \(M>0\). If \(f_{k}:= \min \{f,k\}\), it is clear that \(\lim_{k \to \infty} f_{k} = f\) and, since
we have proved
for every k. Since \(f_{k} \le f_{k+1}\) for every k and \(\mu (X_{m}) < \infty \), we have
Since \(f_{k} \le f_{k+1}\) for every k, Propositions 14 and 16 give
Case D. Consider now any measurable function \(f:X_{m}\times Y_{n} \rightarrow [0,\infty ]\). If \(f_{k}:= \max \{f,1/k\}\), it is clear that \(\lim_{k \to \infty} f_{k} = f\) and, since \(f_{k} \ge 1/k\), we have proved
for every k. Since \(\mu (X_{m}), \nu (Y_{n}) < \infty \) and
\(f_{1}(x,y) \in L^{1}(Y_{n},\nu )\) if and only if \(f(x,y) \in L^{1}(Y_{n},\nu )\) for each \(x \in X_{m}\). Since \(f_{k} \ge f_{k+1}\) for every k, Propositions 15 and 17 give
Case E. Fix m and consider any measurable function \(f:X_{m}\times Y \rightarrow [0,\infty ]\). We have proved for each n
Since \(\int _{Y} f(x,y)\,d\nu (y) \ge \int _{Y_{n}} f(x,y)\,d\nu (y)\), we have
The monotone convergence theorem gives
These three results allow us to conclude that
Case F. Finally, consider any measurable function \(f:X\times Y \rightarrow [0,\infty ]\). We have proved for each m
Since
we have
for each m. The monotone convergence theorem gives
These three results give
□
Theorem 20 has the following direct consequence for general fractional integrals of Riemann–Liouville type.
Proposition 21
If \(f: [a,b] \times [a,b] \rightarrow [0,\infty ]\) is a measurable function, then
5 Conclusions
In this paper we continue with the study and development of an important topic in mathematics that are inequalities, particularly inequalities in a fractional context. The Milne inequality plays an important role in the study of Rosseland’s integral for the stellar absorption. In this paper we obtain the Milne-type inequality
with appropriate hypotheses, and we apply it to the generalized Riemann–Liouville-type integral operators, which include most of the known Riemann–Liouville integral operators.
Although the assumptions of this inequality are not very restrictive, an interesting open problem is to weaken these assumptions for at least one of the two measures.
Availability of data and materials
Not applicable.
References
Abreu Blaya, R., Ávila Ávila, R., Bory Reyes, J.: Boundary value problems with higher order Lipschitz boundary data for polymonogenic functions in fractal domains. Appl. Math. Comput. 269, 802–808 (2015). https://doi.org/10.1016/j.amc.2015.08.012
Bosch, P., Carmenate, H.J., Rodríguez, J.M., Sigarreta, J.M.: Generalized inequalities involving fractional operators of Riemann-Liouville type. AIMS Math. 7(1), 1470–1485 (2022)
Bosch, P., Quintana, Y., Rodríguez, J.M., Sigarreta, J.M.: Jensen-type inequalities for m-convex functions. Open Math. 2022(20), 946–958 (2022)
Dahmani, Z.: On Minkowski and Hermite-Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 1, 51–58 (2010)
Folland, G.B.: Real Analysis, Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)
Gorenflo, R., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, 1st edn. Springer, Berlin (1997)
Han, J., Othman Mohammed, P., Zeng, H.: Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function. Open Math. 18, 794–806 (2020)
Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)
Kalsoom, H., Amer Latif, M., Khan, Z.A., Vivas-Cortez, M.: Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions. Mathematics 2022(10), 74 (2022). https://doi.org/10.3390/math10010074
Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integrals and Derivatives. Theory and Applications, 1st edn. Gordon & Breach, New York (1993)
Kórus, P., Nápoles Valdés, J.E., Rodríguez, J.M., Sigarreta Almira, J.M.: Petrović-type inequality via fractional calculus. Submitted
Li, J.D.: Opial-type integral inequalities involving several higher order derivatives. J. Math. Anal. Appl. 167, 98–100 (1992)
Milne, E.A.: Note on Rosseland’s integral for the stellar absorption. Mon. Not. R. Astron. Soc. 85(9), 979–984 (1925)
Mubeen, S., Habib, S., Naeem, M.N.: The Minkowski inequality involving generalized k-fractional conformable integral. J. Inequal. Appl. 2019, 81 (2019)
Nisar, K.S., Qi, F., Rahman, G., Mubeen, S., Arshad, M.: Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric K-function. J. Inequal. Appl. 2018, 135 (2018)
Rahman, G., Abdeljawad, T., Jarad, F., Khan, A., Sooppy Nisar, K.: Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2019, 454 (2019)
Rahman, G., Sooppy Nisar, K., Ghanbari, B., Abdeljawad, T.: On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals. Adv. Differ. Equ. 2020, 368 (2020)
Rashid, S., Aslam Noor, M., Inayat Noor, K., Chu, Y.-M.: Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions. AIMS Math. 5(3), 2629–2645 (2020)
Sawano, Y., Wadade, H.: On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space. J. Fourier Anal. Appl. 19, 20–47 (2013)
Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015)
Acknowledgements
The research of José M. Rodríguez and José M. Sigarreta is supported by a grant from Agencia Estatal de Investigación (PID2019-106433GB-I00/AEI/10.13039/501100011033), Spain. The research of José M. Rodríguez is supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation).
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bosch, P., Rodríguez, J.M. & Sigarreta, J.M. On new Milne-type inequalities and applications. J Inequal Appl 2023, 3 (2023). https://doi.org/10.1186/s13660-022-02910-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-022-02910-0
MSC
- 26A33
- 26A51
- 26D15
Keywords
- Milne-type inequalities
- Fractional derivatives and integrals
- Fractional integral inequalities