Skip to main content

Fixed points of completely positive maps and their dual maps

Abstract

Let \(\mathcal {A} \subset{\mathcal {B}}(\mathcal {H})\) be a row contraction and \(\Phi _{\mathcal {A}}\) determined by \(\mathcal {A}\) be a completely positive map on \({\mathcal {B}}(\mathcal {H})\). In this paper, we mainly consider fixed points of \(\Phi _{\mathcal {A}}\) and its dual map \(\Phi _{\mathcal {A}}^{\dagger}\). It is given that \(\Phi _{\mathcal {A}}(X)\leq X \) (or \(\Phi _{\mathcal {A}}(X)\geq X \)) implies \(\Phi _{\mathcal {A}}(X)= X\) and \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\) when \(X\in {\mathcal {B}}(\mathcal {H})\) is a compact operator. Some necessary conditions of \(\Phi _{\mathcal {A}}(X)= X\) and \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\) are given.

1 Introduction

Completely positive maps play an essential role in quantum information theory since they correspond to physical operations, see [7]. Recall that a quantum operation can be represented by a normal completely positive map, which is determined by an operator sequence, see [2, 3]. Hence, some problems about completely positive maps can be solved by researching operator sequences.

For the convenience of description, let \(\mathcal {H}\) and \(\mathcal {K}\) be separable Hilbert spaces and \(\mathcal {B}(\mathcal {K}, {\mathcal {H}})\) be the set of all bounded linear operators from \(\mathcal {K}\) into \(\mathcal {H}\) and abbreviate \(\mathcal {B}(\mathcal {K}, \mathcal {H})\) to \(\mathcal {B}({\mathcal {H}})\) if \({\mathcal {K}}={\mathcal {H}}\). \({\mathcal {K}}(\mathcal {H})\) is the set of compact operators on \(\mathcal {H}\). Denote by J a finite or infinite countable index set. Let \({\mathcal {A}}=\{A_{k}\}_{k\in J}\subset {\mathcal {B}}(\mathcal {H})\). \(\mathcal {A}\) is called a row contraction if \(\sum_{k\in J}A_{k}A_{k}^{*} \leq I\), where the series \(\sum_{k\in J}A_{k}A_{k}^{*}\) is convergent in strong operator topology and \(A_{k} ^{*}\) is the adjoint operator of \(A_{k}\). We say that \(\mathcal {A}\) is unital if \(\sum_{k\in J}A_{k}A_{k}^{*}=I\) and trace preserving if \(\sum_{k\in J}A_{k}^{*}A_{k}=I\).

To each row contraction \({\mathcal {A}}=\{A_{k}\}_{k\in J}\) one can associate a normal completely positive mapping \(\Phi _{\mathcal {A}}\) on \({\mathcal {B}}(\mathcal {H})\),

$$\begin{aligned} \Phi _{\mathcal {A}}(X)= \sum_{k\in J} A_{k}XA_{k}^{*},\quad \forall X\in{ \mathcal {B}}( \mathcal {H}). \end{aligned}$$

Then, we say that \(\Phi _{\mathcal {A}}\) is a quantum operation on \(\mathcal {B}(\mathcal {H})\) and each \(A_{k} \) is the operation element or the Kraus operator of \(\Phi _{\mathcal {A}}\). \(\mathcal {A}\) and \(\Phi _{\mathcal {A}}\) are called self-adjoint if each \(A_{k}\) is self-adjoint. If a row contraction \(\mathcal {A}\) also satisfies \(\sum_{k\in J}A_{k}^{*}A_{k}\leq I\), we can define a completely positive map \(\Phi _{\mathcal {A}}^{\dagger} \) on \({\mathcal {B}}(\mathcal {H})\) as follows:

$$\begin{aligned} \Phi _{\mathcal {A}}^{\dagger} (X)= \sum_{k\in J} A_{k}^{*}XA_{k}, \quad\forall X\in{\mathcal {B}}( \mathcal {H}). \end{aligned}$$

The map \(\Phi _{\mathcal {A}}^{\dagger}\) is well defined and is called the dual operation of \(\Phi _{\mathcal {A}}\). An operator \(X\in {\mathcal {B}}(\mathcal {H})\) is said to be a fixed point of \(\Phi _{\mathcal {A}} \) if \(\Phi _{\mathcal {A}} (X)=X\). In fact, a fixed point \(\Phi _{\mathcal {A}} \) means that it is not disturbed by the action of \(\Phi _{\mathcal {A}} \). Denote by \({\mathcal {B}}({\mathcal {H}})^{\Phi _{\mathcal {A}}}\) the set of fixed points of \(\Phi _{\mathcal {A}}\).

Fixed points of completely positive maps were considered from different aspects since they are useful in the theory of quantum error correction, see [1, 46], and [811]. Li discussed fixed points of dual quantum operations on compact operators in [4] and given that the two fixed points sets of quantum operation and its dual operation are coincident under a certain condition. In [1], the authors noted that the positive fixed point \(B\in {\mathcal {B}}({\mathcal {H}})^{\Phi _{\mathcal {A}}}\) of \(\Phi _{\mathcal {A}}\) and \(A_{k}\) commute if B has only discrete point spectra and \(\Phi _{\mathcal {A}}\) is a self-adjoint quantum operation. However, the result does not necessary hold for a not self-adjoint quantum operation. Li generalized the result to the unital and trace-preserving quantum operation in [5], but B must be an operator when the spectra space is finite. In [4], the fixed points sets of \(\Phi _{\mathcal {A}}\) and its dual map \(\Phi _{\mathcal {A}}^{\dagger}\) were given by use of the properties of self-adjoint operators. It was given that the two sets were equivalent in compact operator space. Also, it was noted that \(\Phi _{\mathcal {A}}(X)\geq X\) implied \(\Phi _{\mathcal {A}}(X)=X\) under certain conditions. Popescu studied the inequality \(\Phi _{\mathcal {A}}(X)\leq X\) and the equation \(\Phi _{\mathcal {A}}(X)=X\) by use of the minimal isometric dilation and Poisson transforms in [5] and the canonical decompositions and lifting theorems were obtained to provide a description of all solutions of \(\Phi _{\mathcal {A}}(X)\leq X\).

Inspired by the above results, we mainly consider fixed points of completely positive maps and their dual operations. For a given row contraction \({\mathcal {A}}\), we study the inequality \(\Phi _{\mathcal {A}}(X)\leq X\) and the equation \(\Phi _{\mathcal {A}}(X)=X\) on the set of all diagonalizable operators. It is given that \(\Phi _{\mathcal {A}}(X)\leq X \) (or \(\Phi _{\mathcal {A}}(X)\geq X \)) implies \(\Phi _{\mathcal {A}}(X)= X\) and \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\) when \(X\in {\mathcal {B}}(\mathcal {H})\) is a compact operator. Simultaneously, an example is given to show that \(\Phi _{\mathcal {A}}(X)= X\) does not necessarily imply \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\) when X is not compact. Some necessary conditions of \(\Phi _{\mathcal {A}}(X)= X\) and \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\) are obtained.

2 Main result

In order to obtain the main results, we begin with some lemmas.

Lemma 1

([8])

Let Φ be a normal completely positive map on \({\mathcal {B}}(\mathcal {H})\) that is defined by

$$\begin{aligned} \Phi (X)=\sum_{k\in J}A_{k}XA_{k}^{*}, \quad \forall {\mathcal {B}}( \mathcal {H}). \end{aligned}$$

A positive operator \(C\in {\mathcal {B}}(\mathcal {H})\) is a solution of the inequality \(\Phi (X)\leq X\) (or \(\Phi (X)= X\)) if and only if there exists an operator sequence \(\{B_{k}\}_{k\in J}\subset {\mathcal {B}}(\mathcal {H})\) such that \(\sum_{k=1}B_{k}B_{k}^{*}\leq I\) (or \(\sum_{k=1}B_{k}B_{k}^{*}= I\)) and \(A_{k} C^{\frac{1}{2}}=C^{\frac{1}{2}}B_{k}\) for any k.

Similar to Lemma 1, we give an equivalent condition of \(\Phi (X)\geq X\).

Lemma 2

Let Φ be a normal completely positive map on \({\mathcal {B}}(\mathcal {H})\) that is defined by

$$\begin{aligned} \Phi (X)=\sum_{k\in J}A_{k}XA_{k}^{*}, \quad \forall {\mathcal {B}}( \mathcal {H}). \end{aligned}$$

Then, an invertible and positive operator \(C\in {\mathcal {B}}(\mathcal {H})\) is a solution of the inequality \(\Phi (X)\geq X\) if and only if there exists an operator sequence \(\{B_{k}\}_{k\in J}\subset {\mathcal {B}}(\mathcal {H})\) such that \(\sum_{k\in J} B_{k}B_{k}^{*}\geq I\) and \(C^{\frac{1}{2}}B_{k}=A_{k} C^{\frac{1}{2}}\) for any k.

Proof

Suppose that C is an invertible and positive operator and also a solution of the inequality \(\Phi (X)\geq X\). Define the operator \(B_{k}\) by setting \(B_{k}=C^{-\frac{1}{2}}A_{k} C^{\frac{1}{2}}\) for any k. By direct computing, we have

$$\begin{aligned} \sum_{k\in J} B_{k}B_{k}^{*}= C^{-\frac{1}{2}}\sum_{k\in J}A_{k} A_{k} ^{*} C^{-\frac{1}{2}}\leq C^{-1}. \end{aligned}$$

That is to say, the operator series \(\sum_{k\in J} B_{k}B_{k}^{*}\) is convergent in strong operator topology. From the definition of \(B_{k}\), it is easy to obtain that \(C^{\frac{1}{2}} B_{k}=A_{k} C^{\frac{1}{2}}\) and

$$\begin{aligned} \Phi (C)=\sum_{k\in J}A_{k}CA_{k}^{*}=C^{\frac{1}{2}} \sum_{k\in J}B_{k}B_{k}^{*}C^{ \frac{1}{2}} \geq C. \end{aligned}$$

Thus, \(C^{\frac{1}{2}}(\sum_{k\in J}B_{k}B_{k}^{*}-I)C^{\frac{1}{2}}\geq 0\) and so \(\sum_{k\in J} B_{k}B_{k}^{*}\geq I\).

On the contrary, suppose that \(\{B_{k}\}_{k\in J}\subset {\mathcal {B}}(\mathcal {H})\) satisfies \(\sum_{k=1}B_{k}B_{k}^{*}\geq I\) and \(C^{\frac{1}{2}}B_{k}=A_{k} C^{\frac{1}{2}}\) for any k, then

$$\begin{aligned} \Phi (C)=\sum_{k\in J}A_{k}CA_{k}^{*}=C^{\frac{1}{2}} \sum_{k\in J}B_{k}B_{k}^{*}C^{ \frac{1}{2}} \geq C. \end{aligned}$$

The proof is completed. □

Lemma 3

Let \(\dim {\mathcal {H}}<\infty \) and \({\mathcal {A}}=\{A_{k}\}_{k\in J}\subset {\mathcal {B}}(\mathcal {H})\) be a row contraction. If \(\sum_{k\in J}A_{k}A_{k}^{*} = I\) and \(\sum_{k\in J}A_{k}^{*}A_{k} \leq I\), then \(\sum_{k\in J}A_{k}^{*}A_{k} = I\).

Proof

Let τ be a faithful tracial state on \({\mathcal {B}}(\mathcal {H})\). This shows that \(\tau ( \sum_{k\in J}A_{k}A_{k}^{*})= \tau (\sum_{k\in J}A_{k}^{*}A_{k})\). That is to say \(\tau ( \sum_{k\in J}A_{k}A_{k}^{*}-\sum_{k\in J}A_{k}^{*}A_{k})=0\). This implies that \(\sum_{k\in J}A_{k}^{*}A_{k} =\sum_{k\in J}A_{k}A_{k}^{*}=I\). □

Theorem 4

Let \(\Phi _{\mathcal {A}}(I)= I\) and \(\Phi _{\mathcal {A}}^{\dagger} (I)\leq I\). If \(X \in {\mathcal {B}}(\mathcal {H})\) is a compact and self-adjoint operator that satisfies \(\Phi _{\mathcal {A}}(X)\leq X\) or \(\Phi _{\mathcal {A}}(X)\geq X\), then \(\Phi _{\mathcal {A}}(X)=X\), \(\Phi _{\mathcal {A}}^{\dagger} (X)=X\) and \(X\in {\mathcal {A}}^{\prime}\).

Proof

(1) Suppose that \(X \in {\mathcal {B}}(\mathcal {H})\) is a compact and self-adjoint operator with \(\Phi _{\mathcal {A}}(X)\leq X\). Then, \(\Phi _{\mathcal {A}}(\alpha +X)\leq \alpha +X\) holds for any real number α since \(\Phi _{\mathcal {A}}(I)= I\). Without loss of generality, we may assume that X is an invertible and positive operator. According to the spectral theorem of compact normal operators, it is easy to show that the spectrum of X is at most countable and these spectral points can be arrayed as follows, \(\lambda _{1}>\lambda _{2}> \cdots >\lambda _{m}\) (m is a positive integer or +∞) and the dimension of the spectral projection space associated with \(\lambda _{i}\) is finite. It follows that \(X={\sum_{i=1} ^{m}} \lambda _{i} P_{i}\), where \(P_{i}\) is the spectral projection associated with \(\lambda _{i}\). From Lemma 1, there exists an operator sequence \(\{B_{k}\}_{k\in J}\) with \(\sum_{k\in J}B_{k}B_{k}^{*}\leq I\) such that \(B_{k}X^{\frac{1}{2}}=X^{\frac{1}{2}}A_{k}\). Denote \({\mathcal {H}}_{1}= R(P_{1})\) and \({\mathcal {H}}_{2}={\mathcal {H} }\ominus {\mathcal {H}}_{1}\). Then, \(X=\lambda _{1} I_{{\mathcal {H}}_{1}}\oplus X_{1}\). It follows that \(X^{\frac{1}{2}}=\lambda _{1}^{\frac{1}{2}}I_{{\mathcal {H}}_{1}} \oplus X_{1}^{\frac{1}{2}}\). \(A_{k}\) and \(B_{k}\) can be represented by

$$\begin{aligned} A_{k}= \begin{pmatrix} A_{11}^{k} & A_{12}^{k} \\ A_{21}^{k} & A_{22}^{k} \end{pmatrix}\quad\text{and}\quad B_{k}= \begin{pmatrix} B_{11}^{k} & B_{12}^{k} \\ B_{21}^{k} & B_{22}^{k} \end{pmatrix}, \end{aligned}$$

with respect to the space decomposition \({\mathcal {H}}={\mathcal {H}}_{1} \oplus {\mathcal {H}}_{2}\). Therefore,

$$\begin{aligned} \begin{pmatrix} \lambda _{1}^{\frac{1}{2}} B_{11}^{k} & B_{12}^{k} X_{1}^{\frac{1}{2}} \\ \lambda _{1}^{\frac{1}{2}} B_{21}^{k} & B_{22}^{k} X_{1}^{\frac{1}{2}} \end{pmatrix}= \begin{pmatrix} \lambda _{1}^{\frac{1}{2}} A_{11}^{k} & \lambda _{1}^{\frac{1}{2}} A_{12}^{k} \\ X_{1}^{\frac{1}{2}} A_{21}^{k} & X_{1}^{\frac{1}{2}} A_{22}^{k} \end{pmatrix}. \end{aligned}$$

This implies that \(B_{11}^{k}=A_{11}^{k} \) and \(A_{12}^{k}=\frac{1}{\sqrt{\lambda _{1}} }B_{12}^{k} X_{1}^{ \frac{1}{2}}\) hold. According to \(\sum_{k\in J} A_{k}A_{k}^{*}= I\) and \(\sum_{k\in J} B_{k} B_{k}^{*}\leq I\), we have

$$\begin{aligned} \sum_{k\in J} A_{11}^{k}{A_{11}^{k}}^{*}+ \sum_{k\in J} A_{12}^{k} {A_{12}^{k}}^{*}= \sum _{k\in J} A_{11}^{k}{A_{11}^{k}}^{*}+ \sum_{k\in J} \frac{1}{\lambda _{1} } B_{12}^{k} X_{1} {B_{12}^{k}}^{*}= I_{{ \mathcal {H}}_{1}} \end{aligned}$$

and

$$\begin{aligned} \sum_{k\in J} B_{11}^{k}{B_{11}^{k}}^{*}+ \sum_{k\in J}B_{12}^{k} {B_{12}^{k}}^{*} \leq I_{{\mathcal {H}}_{1}}. \end{aligned}$$

On the other hand, \(0\leq {\frac{1}{\lambda _{1} }} X_{1} \leq I_{{ \mathcal {H}}_{2}}\). Hence, \(\sum_{k\in J} B_{12}^{k}(I_{{\mathcal {H}}_{2}}- \frac{1}{\lambda _{1} } X_{1} ) {B_{12}^{k}}^{*}=0\), and then \(B_{12}=0\). Therefore, \(A_{12}^{k} =0\) and \(\sum_{k\in J} A_{11}^{k}{A_{11}^{k}}^{*}=I_{{\mathcal {H}}_{1}}\). From \(\Phi _{\mathcal {A}}^{\dagger} (I)\leq I\), that is, \(\sum_{k\in J} A_{k}^{*}A_{k}\leq I_{\mathcal {H}}\) then \(\sum_{k\in J}{ A_{11}^{k}}^{*}{A_{11}^{k}}\leq I_{{\mathcal {H}}_{1}}\). It follows from Lemma 3 that \(\sum_{k\in J} { A_{11}^{k}}^{*}{A_{11}^{k}}= I_{{\mathcal {H}}_{1}}\) since \({\mathcal {H}}_{1}\) is a finite-dimensional space. Thus, \(\sum_{k\in J} {A_{21}^{k} }^{*}{A_{21}^{k}}= 0\) and then \(A_{21}^{k}=0\). This shows that \(A_{k} P_{1}=P_{1}A_{k}\), \(\Phi _{ \mathcal {A}}(P_{1})=P_{1}\), \(\Phi _{ \mathcal {A}}^{\dagger}(P_{1})=P_{1}\) and \(\Phi _{\mathcal {A}}(X)=\lambda _{1}\Phi _{\mathcal {A}}(P_{1})\oplus \Phi _{\mathcal {A}}(X_{1})\leq \lambda _{1}P_{1}\oplus X_{1}\). Therefore, \(\Phi _{\mathcal {A}}(X_{1})\leq X_{1}\). By induction, \(X\in {\mathcal {A}}^{\prime}\), \(\Phi _{\mathcal {A}}(X)=X\) and \(\Phi _{\mathcal {A}}^{\dagger} (X)=X\).

(2) If \(\Phi _{\mathcal {A}}(X)\geq X\), the process is as above, the result holds by Lemma 2. The proof is completed. □

Similar to the proof of Theorem 4, we have the following result.

Theorem 5

([4])

Let \(\Phi _{\mathcal {A}}(I)\leq I\) and \(\Phi _{\mathcal {A}}^{\dagger} (I)\leq I\). If \(X \in {\mathcal {K}}(\mathcal {H})\) satisfies \(\Phi _{\mathcal {A}}(X)\geq X\geq 0\), then \(\Phi _{\mathcal {A}}(X)=X\) and \(X\in {\mathcal {A}}^{\prime}\) hold.

Corollary 6

([1])

Let \(\dim \mathcal {H}<\infty \) and \({\mathcal {A}}\subset {\mathcal {B}}(\mathcal {H})\) be a unital and trace-preserving row contraction. Then, \({\mathcal {B}}{(\mathcal {H})}^{\Phi _{\mathcal {A}}}= {\mathcal {A}}^{ \prime}\).

Proof

As \(\mathcal {A}\) is unital, it is natural that \({\mathcal {A}}^{\prime} \subset {\mathcal {B}}({\mathcal {H}})^{\Phi _{ \mathcal {A}}}\) holds. We need only to prove that \({\mathcal {B}}({\mathcal {H}})^{\Phi _{\mathcal {A}}}\subset \mathcal {A}^{ \prime}\). For any \(X\in {\mathcal {B}}({\mathcal {H}})^{\Phi _{\mathcal {A}}}\), then \(X^{*} \in {\mathcal {B}}({\mathcal {H}})^{\Phi _{\mathcal {A}}}\). Hence, we can assume that X is self-adjoint. Denote \({\mathcal {H}}_{1}= P^{X} (0,\|X\|]\) and \({\mathcal {H}}_{2}=[-\|X\|, 0] \). Then, \({\mathcal {H}}={\mathcal {H}}_{1} \oplus {\mathcal {H}}_{2} \) and X has the representation \(X=X^{+} \oplus ( -X^{-})\), where \(X^{+}\) is invertible in \({\mathcal {B}}({\mathcal {H}}_{1})\). With respect to the space decomposition as above, the operator \(A_{k}\) can be expressed as \(A_{k}=(A_{ij}^{k})_{2\times 2}\) and then \({A_{k}}^{*}=({A_{ji}^{k}}^{*})_{2\times 2}\). It follows that

$$\begin{aligned} A_{k}XA_{k}^{*}= \begin{pmatrix} A_{11}^{k} X^{+}{A_{11}^{k}}^{*}-A_{12}^{k} X^{-} {A_{12}^{k}}^{*} & A_{11}^{k} X^{+}{A_{21}^{k}}^{*}-A_{12}^{k} X^{-} {A_{22}^{k}}^{*} \\ A_{21}^{k} X^{+}{A_{11}^{k}}^{*}-A_{22}^{k} X^{-} {A_{12}^{k}}^{*} & A_{21}^{k} X^{+}{A_{21}^{k}}^{*}-A_{22}^{k} X^{-} {A_{22}^{k}}^{*} \end{pmatrix}. \end{aligned}$$

From \(\Phi _{\mathcal {A}}(X)=X\), we obtain

$$\begin{aligned} \textstyle\begin{cases} \sum_{k\in J} A_{11}^{k} X^{+}{A_{11}^{k}}^{*}-\sum_{k\in J} A_{12}^{k} X^{-} {A_{12}^{k}}^{*}=X^{+}, \\ \sum_{k\in J} A_{21}^{k} X^{+}{A_{21}^{k}}^{*}-\sum_{k\in J} A_{22}^{k} X^{-} {A_{22}^{k}}^{*} = -X^{-}, \end{cases}\displaystyle \end{aligned}$$

whereas, \(\sum_{k\in J} A_{12}^{k} X^{-} {A_{12}^{k}}^{*}\geq 0\), so \(\sum_{k\in J} A_{11}^{k} X^{+}{A_{11}^{k}}^{*}\geq X^{+} \). Combining this with Theorem 5, we have \(X^{+}\in {\{A_{11}^{k}\}_{k\in J}}^{\prime}\) and \(\sum_{k\in J} A_{11}^{k} X^{+} {A_{11}^{k}}^{*}=X^{+}\). Furthermore, \(\sum_{k\in J} A_{11}^{k} {A_{11}^{k}}^{*}=I_{{\mathcal {H}}_{1}}\) holds. Moreover, \(\sum_{k\in J} A_{k} {A_{k}}^{*}=I_{\mathcal {H}}\) implies \(\sum_{k\in J} A_{12}^{k} {A_{12}^{k}}^{*}=0\) and hence \(A_{12}^{k}=0\). From Lemma 3 and \(\sum_{k\in J} A_{k} ^{*} {A_{k}}=I_{\mathcal {H}}\), we have \(A_{21}^{k}=0\) for any k. Hence, \(\sum_{k\in J} A_{22}^{k} {A_{22}^{k}}^{*}=I_{{ \mathcal {H}}_{2}}\). Combining \(\sum_{k\in J} A_{22}^{k} X^{-} {A_{22}^{k}}^{*} \geq X^{-}\) with Theorem 4, it is easy to obtain \(X^{-}\in {\{A_{22}^{k}\}_{k\in J}}^{\prime}\), and then \(X\in \mathcal {A}^{\prime}\). The proof is completed. □

In Theorem 4, the result does not necessarily hold if X is not a compact operator.

Example 7

Let \(\{e_{1},e_{2},\ldots \}\) be a basis of an infinite Hilbert space \(\mathcal {H}\) and S be the unilateral operator on \(\mathcal {H}\). Then, \(Se_{i}=e_{i+1}, \forall i \geq 1\). Suppose that \(\mathcal {K}=\mathcal {H} \oplus \mathcal {H} \oplus \mathcal {H}\). Define an operator A as follows,

$$\begin{aligned} A= \begin{pmatrix} S^{*} & 0 & 0 \\ \frac{1}{\sqrt{2}}(I-SS^{*}) & SS^{*} & \frac{1}{\sqrt{2}}(I-SS^{*}) \\ 0 & 0 &S^{*} \end{pmatrix}. \end{aligned}$$

Then,

$$\begin{aligned} A^{*}= \begin{pmatrix} S & \frac{1}{\sqrt{2}}(I-SS^{*}) & 0 \\ 0 & SS^{*} & 0 \\ 0 & \frac{1}{\sqrt{2}}(I-SS^{*}) &S \end{pmatrix}. \end{aligned}$$

By direct computing, it is easy to obtain that \(AA^{*}=I_{\mathcal {K}}\) and \(A^{*}A\leq I_{\mathcal {K}}\). Assume that \(X\in \mathcal {B}(\mathcal {K})\) has the following matrix form,

$$\begin{aligned} X= \begin{pmatrix} I_{\mathcal {H}} & 0 & I_{\mathcal {H}} \\ 0 & \frac{3}{2}I_{\mathcal {H}} & 0 \\ 0 & 0 & I_{\mathcal {H}} \end{pmatrix}. \end{aligned}$$

According to the matrix forms of \(A, A^{*}, X\), \(AXA^{*}=X\) holds, whereas,

$$\begin{aligned} AX= \begin{pmatrix} S^{*} & 0 & 0 \\ \frac{1}{\sqrt{2}}(I-SS^{*}) & \frac{3}{2} SS^{*} & {\sqrt{2}}(I-SS^{*}) \\ 0 & 0 &S^{*} \end{pmatrix},\\ XA= \begin{pmatrix} S^{*} & 0 &S^{*} \\ \frac{3}{\sqrt{2}} (I-SS^{*}) & \frac{3}{2} SS^{*} & \frac{3}{\sqrt{2}}(I-SS^{*}) \\ 0 & 0 &S^{*} \end{pmatrix}. \end{aligned}$$

These show that \(AX\neq XA\) and \(A^{*}XA\neq X\).

Proposition 8

Let \(\Phi _{\mathcal {A}}(I)\leq I\) and \(\Phi _{\mathcal {A}}^{\dagger} (I)\leq I\). Suppose that X is a positive operator with only at most a countable set of distinct eigenvalues \(\{\lambda _{i}\}\) such that \(X =\sum_{i}\lambda _{i}P_{i} \), where \(P_{i}P_{j}=P_{j}P_{i}=0\) and \(\lambda _{i}\) is strictly decreasing. If \(\Phi _{\mathcal {A}}(X)\geq X\) and \(\Phi _{\mathcal {A}}^{\dagger} (X)\geq X\), then \(X\in {\mathcal {A}}^{\prime}\) and \(\Phi _{\mathcal {A}}(X)=\Phi _{ \mathcal {A}}^{\dagger}(X)= X\).

Proof

Suppose that X is a positive operator with \(X =\sum_{i}\lambda _{i}P_{i} \) and \(\lambda _{i}\) is strictly decreasing. Denote \({\mathcal {H}}_{1}= P^{X}\{\lambda _{1}\} \mathcal {H}\) and \({\mathcal {H}}_{2}={\mathcal {H} }\ominus {\mathcal {H}}_{1}\). Then, \(X=\lambda _{1} I_{{\mathcal {H}}_{1}}\oplus X_{1}\). \(A_{k} \) and \(A_{k}^{*}\) have the following matrix forms,

$$\begin{aligned} A_{k}= \begin{pmatrix} A_{11}^{k} & A_{12}^{k} \\ A_{21}^{k} & A_{22}^{k} \end{pmatrix}\quad\text{and}\quad A_{k}^{*}= \begin{pmatrix} {A_{11}^{k}}^{*} & {A_{21}^{k}}^{*} \\ {A_{12}^{k}}^{*} & {A_{22}^{k}}^{*} \end{pmatrix}. \end{aligned}$$

Therefore,

$$\begin{aligned} A_{k}XA_{k}^{*}= \begin{pmatrix} \lambda _{1} A_{11}^{k} {A_{11}^{k}}^{*}+A_{12}^{k} X_{1} {A_{12}^{k}}^{*} & \lambda _{1} A_{11}^{k} {A_{21}^{k}}^{*}+A_{12}^{k} X_{1} {A_{22}^{k}}^{*} \\ \lambda _{1} A_{21}^{k} {A_{11}^{k}}^{*}+A_{22}^{k} X_{1} {A_{12}^{k}}^{*} & \lambda _{1} A_{21}^{k} {A_{21}^{k}}^{*}+A_{22}^{k} X_{1} {A_{22}^{k}}^{*} \end{pmatrix}. \end{aligned}$$

From \(\sum_{k\in J} A_{k}XA_{k}^{*}\geq X\), we have

$$\begin{aligned} \lambda _{1} I_{{\mathcal {H}}_{1}}\leq \sum_{k\in J} \lambda _{1} A_{11}^{k} {A_{11}^{k}}^{*}+ \sum_{k\in J}A_{12}^{k} X_{1} {A_{12}^{k}}^{*} \leq \lambda _{1} \biggl(\sum_{k\in J}A_{11}^{k} {A_{11}^{k}}^{*}+\sum _{k \in J}A_{12}^{k} {A_{12}^{k}}^{*} \biggr)\leq \lambda _{1}{{\mathcal {H}}_{1}}. \end{aligned}$$

If \(X_{1}=0\), then \(\sum_{k\in J}A_{11}^{k} {A_{11}^{k}}^{*}=I_{{\mathcal {H}}_{1}}\). It follows that \(\sum_{k\in J}A_{12}^{k} {A_{12}^{k}}^{*}=0\), hence \(A_{12}^{k}=0\). If \(X_{1}\neq 0\), then \(X_{1}<\lambda _{1}I_{{\mathcal {H}}_{2}}\), which means \(\lambda _{1}I_{{\mathcal {H}}_{2}}-X_{1}\) is a positive and invertible operator. Therefore, \(\sum_{k\in J}A_{12}^{k} {A_{12}^{k}}^{*}=0\) and so \(A_{12}^{k}=0\). On the other hand, from \(\Phi _{\mathcal {A}}^{\dagger}(X)\geq X\), we can obtain \(A_{21}^{k}=0\). That is, \(A_{k}P_{1}=P_{1}A_{k}\), \(\Phi _{\mathcal {A}}(P_{1})=P_{1}\) and \(\Phi _{\mathcal {A}}^{\dagger}(P_{1})=P_{1}\). Meanwhile, \(\Phi _{\mathcal {A}}(0\oplus X_{1})\geq 0\oplus X_{1}\), \(\Phi _{\mathcal {A}}^{\dagger} (0\oplus X_{1})\geq 0\oplus X_{1}\). Continuing the above process, the result holds. The proof is completed. □

Theorem 9

Let \(\Phi _{\mathcal {A}}(I)\leq I\) and \(\Phi _{ \mathcal {A}}^{\dagger} (I)\leq I\). Suppose that X is a self-adjoint operator with only at most a countable set of distinct eigenvalues \(\{\lambda _{i}\}\) and \(|\lambda _{i}|\) can be arranged in decreasing order, where \(|\lambda _{i}|\) means the absolute value of \(\lambda _{i}\). If \(\Phi _{\mathcal {A}}(X)=X\) and \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\), then \(X\in {\mathcal {A}}^{\prime}\).

Proof

Let \({\mathcal {H}}_{1}=P^{X} [-\|X\|, 0), {\mathcal {H}}_{2}=P^{X} \{ 0\}\) and \({\mathcal {H}}_{3}=P^{X} (0,\|X\|]\), where \(P^{X} (\cdot )\) is the spectral measure of X. Then, \({\mathcal {H}}={\mathcal {H}}_{1} \oplus { \mathcal {H}}_{2} \oplus {\mathcal {H}}_{3}\). X has the matrix form \(X=X_{1} \oplus 0 \oplus (-X_{3})\), where \(X_{1}\) and \(X_{3}\) are injective and have dense ranges. Denote \(A_{k}=(A_{ij}^{k})_{3\times 3}\), then \({A_{k}}^{*}=({A_{ji}^{k}}^{*})_{3\times 3}\). By direct computing, we have

$$\begin{aligned} A_{k}XA_{k}^{*}= \begin{pmatrix} A_{11}^{k} X_{1} A_{11}^{k} *-A_{13}^{k} X_{3} {A_{13}^{k}}^{*} & A_{11}^{k} X_{1}{A_{21}^{k}}^{*}-A_{13}^{k} X_{3} {A_{23}^{k}}^{*} & A_{11}^{k} X_{1}{A_{31}^{k}}^{*}-A_{13}^{k} X_{3} {A_{33}^{k}}^{*} \\ A_{21}^{k} X_{1}{A_{11}^{k}}^{*}-A_{23}^{k} X_{3} {A_{13}^{k}}^{*} & A_{21}^{k} X_{1}{A_{21}^{k}}^{*}-A_{23}^{k} X_{3} {A_{23}^{k}}^{*} & A_{21}^{k} X_{1}{A_{31}^{k}}^{*}-A_{23}^{k} X_{3} {A_{33}^{k}}^{*} \\ A_{31}^{k} X_{1}{A_{11}^{k}}^{*}-A_{33}^{k} X_{3} {A_{13}^{k}}^{*} & A_{31}^{k} X_{1}{A_{11}^{k}}^{*}-A_{33}^{k} X_{3} {A_{13}^{k}}^{*} & A_{31}^{k} X_{1}{A_{31}^{k}}^{*}-A_{33}^{k} X_{3} {A_{33}^{k}}^{*} \end{pmatrix}. \end{aligned}$$

From \(\Phi _{\mathcal {A}}(X)=X\), it is easy to see that

$$\begin{aligned} &\sum_{k\in J} A_{11}^{k} X_{1}{A_{11}^{k}}^{*}-\sum _{k\in J} A_{13}^{k} X_{3} {A_{13}^{k}}^{*}=X_{1}, \end{aligned}$$
(1)
$$\begin{aligned} &\sum_{k\in J} A_{31}^{k} X_{1}{A_{31}^{k}}^{*}-\sum _{k\in J} A_{33}^{k} X_{3} {A_{33}^{k}}^{*} = -X_{3}, \end{aligned}$$
(2)

whereas,

$$\begin{aligned} A_{k}^{*}XA_{k}= \begin{pmatrix} {A_{11}^{k}}^{*}X_{1}A_{11}^{k} - {A_{31}^{k}}^{*}X_{3} A_{31}^{k} & {A_{11}^{k}}^{*}X_{1}A_{12}^{k} - {A_{31}^{k}}^{*}X_{3} A_{32}^{k} & {A_{11}^{k}}^{*}X_{1}A_{13}^{k} - {A_{31}^{k}}^{*}X_{3} A_{33}^{k} \\ {A_{12}^{k}}^{*}X_{1}A_{11}^{k} -{A_{32}^{k}}^{*}X_{3} A_{31}^{k} & {A_{12}^{k}}^{*}X_{1}A_{12}^{k} - {A_{32}^{k}}^{*}X_{3} A_{32}^{k} & {A_{12}^{k}}^{*}X_{1}A_{13}^{k} -X_{3} {A_{32}^{k}}^{*} A_{33}^{k} \\ {A_{13}^{k}}^{*}X_{1}A_{11}^{k} -{A_{33}^{k}}^{*}X_{3} A_{31}^{k} & {A_{13}^{k}}^{*}X_{1}A_{12}^{k} -{A_{33}^{k}}^{*}X_{3} A_{32}^{k} & {A_{13}^{k}}^{*}X_{1} A_{13}^{k} - {A_{33}^{k}}^{*}X_{3} A_{33}^{k} \end{pmatrix}. \end{aligned}$$

From \(\Phi _{\mathcal {A}}^{\dagger}(X)= X\), we can obtain

$$\begin{aligned} &\sum_{k\in J} {A_{11}^{k}}^{*}X_{1}A_{11}^{k} - \sum_{k\in J}{A_{31}^{k}}^{*}X_{3} A_{31}^{k}=X_{1}, \end{aligned}$$
(3)
$$\begin{aligned} &\sum_{k\in J} {A_{13}^{k}}^{*}X_{1}A_{13}^{k} - \sum_{k\in J}{A_{33}^{k}}^{*}X_{3} A_{33}^{k}= -X_{3}. \end{aligned}$$
(4)

As \(\sum_{k\in J} A_{13}^{k} X_{3} {A_{13}^{k}}^{*}\geq 0\) and \(\sum_{k\in J} A_{31}^{k} X_{1}{A_{31}^{k}}^{*}\geq 0\), combining Eq. (1) with Eq. (2), we have

$$\begin{aligned} &\sum_{k\in J} A_{11}^{k} X_{1}{A_{11}^{k}}^{*}\geq X_{1}, \end{aligned}$$
(5)
$$\begin{aligned} &\sum_{k\in J} {A_{33}^{k}}^{*}X_{3}A_{33}^{k} \geq X_{3}. \end{aligned}$$
(6)

Similarly, combining \(\sum_{k\in J}{A_{13}^{k}}^{*} X_{1} A_{13}^{k}\geq 0\), \(\sum_{k\in J}{A_{31}^{k}}^{*} X_{3} A_{31}^{k}\geq 0\) with Eqs. (3) and (4), the following equations hold,

$$\begin{aligned} &\sum_{k\in J} {A_{11}^{k}}^{*} X_{1} A_{11}^{k} \geq X_{1}, \end{aligned}$$
(7)
$$\begin{aligned} &\sum_{k\in J} {A_{33}^{k}}^{*}X_{3} A_{33}^{k} \geq X_{3}. \end{aligned}$$
(8)

It follows from Proposition 8, Eqs. (5), (7), (6), and (8) that

$$\begin{aligned} X_{1} \in \bigl\{ A_{11}^{k}, {A_{11}^{k}}^{*} \bigr\} ^{\prime}\quad\text{and}\quad X_{3} \in \bigl\{ A_{33}^{k}, {A_{33}^{k}}^{*} \bigr\} ^{\prime}, \end{aligned}$$
(9)

and

$$\begin{aligned} \sum_{k\in J} A_{11}^{k} X_{1}{A_{11}^{k}}^{*}= X_{1},\qquad \sum_{k \in J} A_{33}^{k} X_{3}{A_{33}^{k}}^{*}=X_{3}.~ \end{aligned}$$

Hence, \(\sum_{k\in J} A_{13}^{k} X_{3} {A_{13}^{k}}^{*}=0\). As \(X_{3}\) is positive, injective, and also has dense range, hence \(A_{13}^{k}=0\). Similarly, \(A_{31}^{k}=0\). The operator \(X_{1}\) is also a positive and injective operator with dense range, \(\sum_{k\in J} A_{11}^{k} {A_{11}^{k}}^{*}=I_{{\mathcal {H}}_{1}}\) from Eq. (5). According to \(\sum_{k\in J} A_{k} {A_{k}}^{*}\leq I_{\mathcal {H} }\), then \(\sum_{k \in J} A_{12}^{k} {A_{12}^{k}}^{*}=0\), and so \(A_{12}^{k}=0\) for any k. Similarly, \(A_{21}^{k}=0\). This shows that \(A_{k}= A_{11}^{k}\oplus A_{22}^{k}\oplus A_{33}^{k}\). Combining Eq. (9) and the matrix forms of X and \(A_{k}\), we have \(A_{k}X=XA_{k}\) for any k. The proof is completed. □

If X has only two spectral points, we have the following result.

Theorem 10

Let \(\mathcal {A}\) be a unital operator sequence and X be a self-adjoint operator with only two spectral points. If \(\Phi _{\mathcal {A}}(X)=X\), then \(X\in {\mathcal {A}}^{\prime}\).

Proof

Let \(\lambda _{1}, \lambda _{2}\) be the two spectral points of X. Without loss of generality, suppose that \(\lambda _{1}>\lambda _{2}>0\) since \(\Phi _{\mathcal {A}}(I)=I\). Denote \({\mathcal {H}}_{1}=P^{X}\{\lambda _{1}\}{\mathcal {H}} \) and \({\mathcal {H}}_{2}=P^{X}\{\lambda _{2}\}{\mathcal {H}}\), then \({\mathcal {H}}_{1} \oplus {\mathcal {H}}_{2}=\mathcal {H}\). Hence, \(X=\lambda _{1}I_{{\mathcal {H}}_{1}}\oplus \lambda _{2} I_{{\mathcal {H}}_{2}}\). Assume that \(A_{k}\) has the matrix form \(A_{k}=(A_{ij}^{k})_{2\times 2}\) with respect to the space decomposition \({\mathcal {H}} ={\mathcal {H}}_{1} \oplus {\mathcal {H}}_{2}\). From \(\Phi _{\mathcal {A}}(X)=X\), we have

$$\begin{aligned} &\sum_{k\in J} A_{k}XA_{k}^{*} \\ &\quad= \begin{pmatrix} \lambda _{1}\sum_{k\in J} A_{11}^{k} {A_{11}^{k}}^{*}+\lambda _{2} \sum_{k\in J}A_{12}^{k} {A_{12}^{k}}^{*} & \lambda _{1} \sum_{k \in J}A_{11}^{k} {A_{21}^{k}}^{*}+\lambda _{2} \sum_{k\in J} A_{12}^{k} {A_{22}^{k}}^{*} \\ \lambda _{1} \sum_{k\in J} A_{21}^{k} {A_{11}^{k}}^{*}+\lambda _{2} \sum_{k\in J}A_{22}^{k} {A_{12}^{k}}^{*} & \lambda _{1} \sum_{k \in J}A_{21}^{k} {A_{21}^{k}}^{*}+ \lambda _{2} \sum_{k\in J}A_{22}^{k} {A_{22}^{k}}^{*} \end{pmatrix} \\ & \quad= \begin{pmatrix} \lambda _{1} & 0 \\ 0 & \lambda _{2} \end{pmatrix}. \end{aligned}$$

This shows that \(\lambda _{1}\sum_{k\in J} A_{11}^{k} {A_{11}^{k}}^{*}+\lambda _{2} \sum_{k\in J}A_{12}^{k} {A_{12}^{k}}^{*} =\lambda _{1} I_{{ \mathcal {H}}_{1}}\). That is,

$$\begin{aligned} \sum_{k\in J} A_{11}^{k} {A_{11}^{k}}^{*}+ \frac{\lambda _{2}}{\lambda _{1}} \sum _{k\in J}A_{12}^{k} {A_{12}^{k}}^{*} =I_{{\mathcal {H}}_{1}}. \end{aligned}$$

As \(\mathcal {A}\) is unital, it is easy to obtain that

$$\begin{aligned} \sum_{k\in J} A_{11}^{k} {A_{11}^{k}}^{*}+ \sum _{k\in J}A_{12}^{k} {A_{12}^{k}}^{*} =I_{{\mathcal {H}}_{1}}. \end{aligned}$$

Hence, \(\sum_{k\in J}A_{12}^{k} {A_{12}^{k}}^{*}=0\) and then \(A_{12}^{k}=0\). Similarly, according to

$$\begin{aligned} \lambda _{1} \sum_{k\in J}A_{21}^{k} {A_{21}^{k}}^{*}+ \lambda _{2} \sum _{k\in J}A_{22}^{k} {A_{22}^{k}}^{*}=\lambda _{2}I_{{\mathcal {H}}_{2}} \end{aligned}$$

and

$$\begin{aligned} \sum_{k\in J}A_{21}^{k} {A_{21}^{k}}^{*}+ \sum _{k\in J}A_{22}^{k} {A_{22}^{k}}^{*}=I_{{ \mathcal {H}}_{2}}, \end{aligned}$$

we have \(A_{21}^{k}=0\). Hence \(X\in \mathcal {A}^{\prime}\). The proof is completed. □

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Arias, A., Gheondea, A., Gudder, S.: Fixed points of quantum operations. J. Math. Phys. 43, 5872–5881 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64, 311–355 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, Y.: Fixed points of dual quantum operations. Math. Phys. Anal. Geom. 382, 172–179 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Li, Y.: Characterizations of fixed points of quantum operations. J. Math. Phys. 52, 052103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Magajna, B.: Fixed points of normal completely positive maps on \(\mathcal {B}({\mathcal {H}})\). J. Math. Anal. Appl. 389, 1291–1302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  8. Popescu, G.: Similarity and ergodic theory of positive linear maps. J. Reine Angew. Math. 561, 87–129 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Prunaru, B.: Toeplitz operators associated to commuting row contractions. J. Funct. Anal. 254, 1626–1641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, H.Y., Ji, G.X.: A note on fixed points of general quantum operations. Rep. Math. Phys. 70, 111–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, H.Y., Xue, M.Z.: Fixed points of trace preserving completely positive maps. Linear Multilinear Algebra 64(3), 404–411 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her useful comments and suggestions.

Funding

This paper is supported by the National Natural Science Foundation of China (No. 12061031) and the Natural Science Basic Research Plan of Shaanxi Province (No. 2021JM-189).

Author information

Authors and Affiliations

Authors

Contributions

Haiyan Zhang and Yanni Dou wrote the main manuscript text and all authors reviewed the manuscript.

Corresponding author

Correspondence to Haiyan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Dou, Y. Fixed points of completely positive maps and their dual maps. J Inequal Appl 2022, 163 (2022). https://doi.org/10.1186/s13660-022-02903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02903-z

MSC

Keywords