Skip to main content

Fractional version of Ostrowski-type inequalities for strongly p-convex stochastic processes via a k-fractional Hilfer–Katugampola derivative

Abstract

In the present research, we introduce the notion of convex stochastic processes namely; strongly p-convex stochastic processes. We establish a generalized version of Ostrowski-type integral inequalities for strongly p-convex stochastic processes in the setting of a generalized k-fractional Hilfer–Katugampola derivative by using the Hölder and power-mean inequalities. By using our main results, we derived some known results as special cases and many well-known existing results are also recaptured. It is assumed that this research will offer new guidelines in fractional calculus.

1 Introduction and preliminaries

The theory of inequalities has undergone rapid developments because of its widespread use in pure and applied mathematics. Recently, the role of fractional calculus made this area more interesting for researchers (see [13]). As classical convexity is being used in less applied problems, it is always appropriate to explore new versions of convexity. A consensus of the history of the Hermite–Hadamard integral inequality can be found in the literature [4]. In optimization and probability theory, the Hermite–Hadamard inequality has become a helpful tool [5].

In 1971, the research on convex stochastic processes began when Nagy [6] employed a characterization of measurable stochastic processes to resolve a generalization of the Cauchy functional equation. At the end of the twentieth century, Nikodem introduced the convex stochastic processes, and Skowronski derived several advanced results on convex stochastic processes that generalize further well-known properties, [79]. Further, Kotrys [10] presented the Hermite–Hadamard inequality for convex stochastic processes in 2012. Many studies have been done by several researchers on different classes of convex stochastic processes and also Hermite–Hadamard inequalities for convex stochastic processes in the literature [1113]. The well-reputed Hermite–Hadamard inequality for convex stochastic processes is defined as follows:

Let \(\eta :I \times \Omega \rightarrow \mathbb{R}\) be Jensen-convex and mean-square continuous in \(I \times \Omega \), then

$$\begin{aligned} \eta \biggl( \frac{b_{1}+b_{2}}{2},\cdot \biggr) \leq \frac{1}{b_{2}-b_{1}} \int _{b_{1}}^{b_{2}}\eta (y,\cdot )\,dy\leq \frac{\eta (b_{1},\cdot )+\eta (b_{2},\cdot )}{2} \quad \text{(a.e.)}, \end{aligned}$$
(1.1)

for any \(c_{1},d_{1} \in I \), \(c_{1} < d_{1} \).

In 2014, the authors of [14] considered Hermite–Hadamard integral-type inequalities for stochastic processes. Katugampola, considered a fractional integral operator that generalizes the Hadamard and Riemann–Liouville integrals into a single form and many authors use these results in the area of convexity, generalized convexity, and so on (see [15, 16]). Recently, different Hermite–Hadamard-type inequalities via fractional integrals have been presented [1719].

The classical Ostrowski inequality was proposed in [20] and, recently, the Ostrowski inequality has attracted the attention of many researchers; many remarkable generalizations, extensions, variants, and applications can be found in the literature [2129].

The purpose of this article is to develop some integral inequalities of Ostrowski-type for a strongly p-convex stochastic process using the generalized k-fractional Hilfer–Katugampola derivative.

Definition 1.1

([19, 30])

A stochastic process is a family of random variables \(\eta (\kappa ) \) parameterized by \(\kappa \in I \), where \(I \subset \mathbb{R} \). When \(I=\{1,2,\ldots\} \), then \(\eta (\kappa ) \) is known as a stochastic process in discrete time. When \(I=[0,\infty ) \), then \(\eta (\kappa ) \) is a stochastic process in continuous time.

For any \(\vartheta \in \Omega \) the function \(I \ni \kappa \longmapsto \eta (\kappa ,\vartheta ) \) is termed a path of \(\eta (\kappa ) \).

Definition 1.2

([19, 30])

A family \(\mathbb{G}_{k} \) of α-fields on Ω parameterized by \(k \in I \), where \(I \subset \mathbb{R} \), is said to be a filtration if

$$ \mathbb{G}_{t}\subset \mathbb{G}_{k}\subset \mathbb{G} $$

for any \(\rho ,\kappa \in I \) such that \(\rho \leq \kappa \).

Definition 1.3

([19, 30])

A stochastic process \(\eta (\kappa ) \) parameterized by \(\kappa \in T \) is said to be martingale (supermartingale, submartingale) with respect to a filtration \(\mathbb{G}_{\kappa} \) if

1) \(\eta (\kappa )\) is integrable for each \(\kappa \in I \);

2) \(\eta (\kappa )\) is \(\mathbb{G}_{\kappa} \)-measurable for each \(\kappa \in I \);

3) \(\eta (\rho ) = \mathbb{E}(\eta (\kappa )|\mathbb{G}_{\rho}) \) (respectively, ≤ or ≥) for every \(\rho ,\kappa \in I \) such that \(\rho \leq \kappa \).

Definition 1.4

([19, 31])

Consider \((\Omega , A, P) \) to be an arbitrary probability space and \(I \subset \mathbb{R} \). A stochastic process \(X : \Omega \rightarrow \mathbb{R} \) is termed

1) Stochastically continuous in I, if \(\forall \kappa _{\circ}\in I \)

$$\begin{aligned} P-\lim_{\kappa \rightarrow \kappa _{\circ}} \eta (\kappa , \cdot ) = \eta (\kappa _{\circ}, \cdot ), \end{aligned}$$

where \(P-\lim \) represents the limit in probability.

2) Mean-square continuous in I, if \(\forall \kappa _{\circ}\in I \)

$$\begin{aligned} P-\lim_{\kappa \rightarrow \kappa _{\circ}}\mathbb{E}\bigl( \eta ( \kappa , \cdot )-\eta ( \kappa _{\circ}, \cdot )\bigr)=0, \end{aligned}$$

where \(\mathbb{E}(\eta (\kappa , \cdot )) \) represent the expectation value of the random variable \(\eta (\kappa , \cdot ) \).

3) Increasing (decreasing) if \(\forall b_{1}, b_{2} \in I \), \(b_{1} < b_{2} \)

$$\begin{aligned} \eta (b_{1}, \cdot ) \leq \eta (b_{2}, \cdot ), \qquad \eta (b_{1}, \cdot ) \geq \eta (b_{2}, \cdot ) \quad \text{(a.e.)}. \end{aligned}$$

4) It is said to be monotonic if it is increasing or decreasing.

5) If there exists a random variable \(\eta ^{\prime }(\kappa , \cdot ) : I \times \Omega \rightarrow \mathbb{R} \) then it is differentiable at a point \(\kappa \in I \), such that

$$\begin{aligned} \eta ^{\prime }(\kappa , \cdot ) = P- \lim_{\kappa \rightarrow \kappa _{\circ}} \frac{\eta (\kappa , \cdot )-\eta (\kappa _{\circ}, \cdot )}{\kappa -\kappa _{\circ}}. \end{aligned}$$

A stochastic process \(X:I\times \Omega \rightarrow \mathbb{R} \) is known as continuous (differentiable) if it is continuous (differentiable) at every point of I.

Definition 1.5

([19, 31])

Let \((\Omega , A, P) \) be a probability space and \(I\subset \mathbb{R} \) with \(\mathbb{E}(\eta (\vartheta )^{2})<\infty \) \(\forall \theta \in I\). If \([\kappa _{1},\kappa _{2}]\subset I\), \(\kappa _{1}=\vartheta _{0}< \vartheta _{1}<\theta _{2}< \cdots < \vartheta _{n}=\kappa _{2} \) is a partition of \([\kappa _{1},\kappa _{2}] \) and \(\varphi \in [\vartheta _{\rho -1}, \vartheta _{\rho}] \) for \(\rho =1,2,\ldots,n \). A random variable \(Y:\Omega \rightarrow \mathbb{R} \) is said to be a mean-square integral of the process \(\eta (\vartheta ,\cdot ) \) on \([\kappa _{1},\kappa _{2}] \) if

$$\begin{aligned} \lim_{n\rightarrow \infty}\mathbb{E} \Biggl[ \sum _{\rho =1}^{ \infty}\eta (\varphi _{\rho},\cdot ) ( \vartheta _{\rho},\vartheta _{ \rho -1})-Y(\cdot ) \Biggr]^{2}= 0, \end{aligned}$$

then

$$\begin{aligned} \int _{\kappa _{1}}^{\kappa _{2}}\eta (\vartheta ,\cdot )\,d\vartheta =Y( \cdot ) \quad \text{(a.e.)}. \end{aligned}$$

A mean-square integral operator is increasing, thus,

$$\begin{aligned} \int _{\kappa _{1}}^{\kappa _{2}}\eta (\vartheta ,\cdot )\,d\vartheta \leq \int _{\kappa _{1}}^{\kappa _{2}} Y(\vartheta ,\cdot ) \quad \text{(a.e.)}, \end{aligned}$$

here \(X(\vartheta ,\cdot )\leq Z(\vartheta ,\cdot ) \) in \([k_{1},k_{2}] \).

Definition 1.6

([7, 19])

Let \(( \Omega , A, P ) \) be a probability space and \(I \subseteq R \). A stochastic process \(\eta :I \times \Omega \rightarrow R \) is said to be a convex stochastic process, if

$$\begin{aligned}& \eta \bigl( \xi b_{1} +(1-\xi ) b_{2}, \cdot \bigr) \leq \xi \eta ( b_{1},\cdot ) +(1-\xi )\eta ( b_{2},\cdot )\quad \text{(a.e.)} \end{aligned}$$
(1.2)

holds for all \(b_{1},b_{2} \in I \) and \(\kappa \in [0,1] \).

It is natural to view the new versions of convexity in stochastic processes settings, hence we introduce the strongly p-convex stochastic processes as follows:

Definition 1.7

Let \(c:\Omega \rightarrow \mathbb{R} \) be a positive random variable. A stochastic process \(\eta :I \times \Omega \rightarrow \mathbb{R} \) is said to be strongly p-convex with modulus \(c (\cdot ) \), if

$$\begin{aligned} \begin{aligned} &\eta \bigl( \bigl[ \xi b_{1}^{p}+(1-\xi )b_{2}^{p} \bigr]^{\frac{1}{p}}, \cdot \bigr)\\ &\quad \leq \xi \eta (b_{1},\cdot )+(1-\xi )\eta (b_{2},\cdot )-c( \cdot )\xi (1- \xi ) (b_{2}-b_{1})^{2}\quad \text{(a.e.)} \end{aligned} \end{aligned}$$
(1.3)

holds for all \(b_{1},b_{2} \in I \) and \(\kappa \in [0,1] \).

Remark 1.8

1) Taking \(p=1 \) in the above definition, we obtain a strongly convex stochastic process [11].

2) Taking \(c (\cdot )=0 \) in the above definition, we obtain ap-convex stochastic process [32].

3) Taking \(p=1 \) and \(c(\cdot )=0 \) in the above definition, we obtain a convex stochastic process [7].

Definition 1.9

([33, 34])

Let \([b_{1},b_{2}] \) be finite on the real axis \(\mathbb{R}=(-\infty ,\infty ) \). Then, the Lebesgue measurable functions of η on \([b_{1},b_{2}] \) of complex value are denoted by \(M_{q}=(b_{1},b_{2}) \).

$$\begin{aligned} Mq(b_{1},b_{2})=\biggl\{ \eta : \Vert \eta _{q} \Vert =\sqrt[q]{ \int \bigl\vert \eta (y) \bigr\vert ^{q}\,dy}< + \infty \biggr\} , \quad 1\leq q < \infty . \end{aligned}$$

For \(q=1\), one has that \(M_{q}(b_{1},b_{2}) = M(b_{1},b_{2})\).

Definition 1.10

([34, 35])

The k-Gamma function is defined as;

$$\begin{aligned} \Gamma _{\kappa}(y)= \int _{0}^{\infty}\xi ^{y-1}e^{- \frac{\xi ^{\kappa}}{\kappa}}\,d\xi , \end{aligned}$$
(1.4)

where, \(y,\kappa > 0 \). We can observe that

$$ \Gamma _{\kappa}(y+\kappa )=y\Gamma _{\kappa}(y) $$

and

$$ \Gamma _{\kappa}(y)=\kappa ^{\frac{y}{\kappa}-1}\Gamma \biggl( \frac{y}{\kappa} \biggr).$$

Definition 1.11

([34, 36])

The left-hand and right-hand generalized k-fractional integrals of order w with \(z-1 < w \leq z\), \(z \in \mathbb{N}\), \(\kappa > 0\), \(\xi > 0\), \(w > 0 \) are defined as

$$\begin{aligned}& \bigl( {}^{\xi}_{\kappa}I^{w}_{b_{1}} \eta \bigr) ( y ) = \frac{\xi ^{1-\frac{w}{\kappa}}}{\kappa \Gamma _{\kappa (w)}} \int _{b_{1}}^{y}\bigl(y^{p}-x^{p} \bigr)^{ \frac{w}{\kappa}-1}x^{\xi -1}\eta (x)\,dx, \quad y > b_{1}, \end{aligned}$$
(1.5)
$$\begin{aligned}& \bigl( {}^{\xi}_{\kappa}I^{w}_{b_{2}} \eta \bigr) ( y ) = \frac{\xi ^{1-\frac{w}{\kappa}}}{\kappa \Gamma _{\kappa (w)}} \int _{y}^{b_{2}}\bigl(x^{p}-y^{p} \bigr)^{ \frac{w}{\kappa}-1}x^{\xi -1}\eta (x)\,dx, \quad y > b_{2}. \end{aligned}$$
(1.6)

Definition 1.12

([34, 37])

The left-hand and right-hand generalized k-fractional derivatives having order w are defined as;

$$\begin{aligned}& {}_{\kappa}^{\xi}D^{\phi}_{b_{1}} \eta (y)= \biggl( y^{1-\xi} \frac{d}{dy} \biggr)^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{ \kappa n -w}_{b_{1}} \eta \bigr),\quad y > b_{1}, \\ \end{aligned}$$
(1.7)
$$\begin{aligned}& {}_{\kappa}^{\xi}D^{\phi}_{b_{2}} \eta (y)= \biggl( y^{1-\xi} \frac{d}{dy} \biggr)^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{ \kappa n -w}_{b_{2}} \eta \bigr),\quad y > b_{2}. \end{aligned}$$
(1.8)

Definition 1.13

([34, 38])

Consider \(z-1 < w \leq z\), \(0\leq \vartheta \leq 1\), \(z \in \mathbb{N}\), \(\kappa > 0\), \(\xi > 0 \) and \(\eta \in M_{q}[(b_{1},b_{2})] \). Then, the left-hand and right-hand generalized k-fractional Hilfer–Katugampola derivatives are defined as;

$$\begin{aligned}& \bigl( {}_{\kappa}^{\xi}D^{w,\vartheta}_{b_{1}} \eta \bigr) (y)= \biggl( {}^{\xi}_{\kappa}I^{\vartheta (\kappa n -w)}_{b_{1}} \biggl( y^{1- \xi}\frac{d}{dy} \biggr) ^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{(1- \vartheta )(\kappa n -w)}_{b_{1}} \eta \bigr) \biggr) (y), \end{aligned}$$
(1.9)
$$\begin{aligned}& \bigl( {}_{\kappa}^{\xi}D^{w,\vartheta}_{b_{2}} \eta \bigr) (y)= \biggl( {}^{\xi}_{\kappa}I^{\vartheta (\kappa n -w)}_{b_{2}} \biggl( y^{1- \xi}\frac{d}{dy} \biggr) ^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{(1- \vartheta )(\kappa n -w)}_{b_{2}} \eta \bigr) \biggr) (y), \end{aligned}$$
(1.10)

where I is the integral presented in definition (1.6).

Lemma 1.14

([34])

Consider \(z-1 < w \leq z\), \(0\leq \vartheta \leq 1\), \(z \in \mathbb{N}\), \(\kappa > 0\), \(\xi > 0 \) and \(\eta \in M_{q}[(b_{1},b_{2})] \), then

$$\begin{aligned} {}^{\xi}_{\kappa}D^{w,\vartheta}_{b_{1}}\eta (y) =& \biggl( {}^{\xi}_{\kappa}I^{\vartheta (\kappa n -w)}_{b_{1}} \biggl( y^{1-\xi} \frac{d}{dy} \biggr) ^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{(1- \vartheta )(\kappa n -w)}_{b_{1}} \eta \bigr) \biggr) (y) \\ =& \biggl( {}^{\xi}_{\kappa}I^{\vartheta (\kappa n -w)}_{b_{1}} \biggl( y^{1- \xi}\frac{d}{dy} \biggr) ^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{ \kappa n -w-\vartheta (\kappa n -w)}_{b_{1}} \bigr) \biggr) \eta (y) \\ =& \biggl( {}^{\xi}_{\kappa}I^{\vartheta (\kappa n -w)}_{b_{1}} \biggl( y^{1- \xi}\frac{d}{dy} \biggr) ^{n} \bigl( \kappa ^{n} \,{}_{.\kappa}^{\xi}I^{ \kappa n -\{w+\vartheta (\kappa n -w)\}}_{b_{1}} \eta \bigr) \biggr) (y) \\ =& \bigl( {}^{\xi}_{\kappa}I^{\vartheta (\kappa n -w)}_{b_{1}}{}_{ \kappa}^{\xi}D^{w+\vartheta (\kappa n-w)}_{b_{1}} \eta \bigr) (y)\quad(\textit{by using (1.7)}) \\ =& \bigl( {}^{\xi}_{\kappa}I^{\phi -w}_{b_{1}}{}{}_{\kappa}^{\xi}D^{\phi}_{b_{1}} \eta \bigr) (y) \\ =& \bigl( {}^{\xi}_{\kappa}I^{\phi -w}_{b_{1}}\eta ^{(\phi )} \bigr) (y) \\ =& \frac{\xi ^{1-\frac{\phi -w}{\kappa}}}{\kappa \Gamma _{\kappa}(\phi -w)} \int _{b_{1}}^{y} \bigl( y^{p}-x^{p} \bigr) ^{\frac{\phi -w}{\kappa}-1}x^{ \xi -1}\eta ^{(\phi )}(x)\,dx\quad(\textit{by using (1.5)}), \end{aligned}$$
(1.11)

where \(\phi =w+\vartheta (\kappa n -w) \), \(w > 0 \) and \(\eta ^{(\phi )} \) is the derivative of η presented in (1.7).

Thus, the generalized k-fractional Hilfer–Katugampola derivative can be presented as:

$$\begin{aligned}& \bigl( {}^{\xi}_{\kappa}D^{w,\vartheta}_{b_{1}}\eta \bigr) (y)= \frac{\xi ^{1-\frac{\phi -w}{\kappa}}}{\kappa \Gamma _{\kappa}(\phi -w)} \int _{b_{1}}^{y} \bigl( y^{p}-x^{p} \bigr) ^{\frac{\phi -w}{\kappa}-1}x^{ \xi -1}\eta ^{(\phi )}(x)\,dx, \quad z > b_{1}, \end{aligned}$$
(1.12)
$$\begin{aligned}& \bigl( {}^{\xi}_{\kappa}D^{w,\vartheta}_{b_{2}}\eta \bigr) (y)= \frac{\xi ^{1-\frac{\phi -w}{\kappa}}}{\kappa \Gamma _{\kappa}(\phi -w)} \int _{y}^{b_{2}} \bigl( x^{p}-y^{p} \bigr) ^{\frac{\phi -w}{\kappa}-1}x^{ \xi -1}\eta ^{(\phi )}(x)\,dx, \quad z < b_{2}. \end{aligned}$$
(1.13)

Definition 1.15

([34])

The beta function denoted by B is defined as;

$$\begin{aligned}& B(b_{1},b_{2})= \frac{\Gamma (b_{1})\Gamma (b_{2})}{\Gamma (b_{1}+b_{2})}= \int _{0}^{1} \xi ^{b_{1}-1}(1-\xi )^{b_{2}-1}\,d\xi , \quad (b_{1},b_{2} > 0), \end{aligned}$$
(1.14)

and the Gaussian hypergeometric function denoted by \(F_{1} \) is defined as;

$$\begin{aligned}& F_{1}(b_{1},b_{2};b_{3},b)= \frac{1}{B(b_{2},b_{3}-b_{2})} \int _{0}^{1} \xi ^{b_{2}-1}(1-\xi )^{b_{3}-b_{2}-1}(1-b\xi )^{-b_{1}}\,d\xi , \\& \bigl(b_{3} > b_{2} > 0, \vert b \vert < 1\bigr), \end{aligned}$$
(1.15)

where \(\Gamma (b)=\int _{0}^{\infty}e^{-\xi}\xi ^{b-1}\,d\xi \) is the well-known Euler Gamma function.

2 Ostrowski-type inequalities for a strongly p-convex stochastic process

The Ostrowski-type inequality for a strongly p-convex stochastic process in the setting of a generalized k-fractional Hilfer–Katugampola derivative is established in this section.

Lemma 2.1

Let a differentiable stochastic process \(\mu >0 \) with \(p\in \mathbb{R} \backslash \{0\} \) and \(\eta ^{(\mu )}:I \times \Omega \rightarrow \mathbb{R} \) defined on the \(I^{\circ} \) such that \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \) and \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \), then the following inequality holds almost everywhere:

$$\begin{aligned}& \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {}-\frac{\Gamma _{\kappa}(\mu +\kappa )}{b_{2}-b_{1}} \bigl[ \bigl( {}^{p}_{\kappa}D^{\mu}_{b_{1}^{+}} \eta \bigr) (y,\cdot )+ \bigl( {}^{p}_{\kappa}D^{\mu}_{b_{2}^{-}} \eta \bigr) (y,\cdot ) \bigr] \\& \quad =-\frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \int _{0}^{1}\xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}}\eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr)\,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \int _{0}^{1}\xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}}\eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr)\,d\xi . \end{aligned}$$
(2.1)

Proof

Integrating by parts, we can write

$$\begin{aligned}& \int _{0}^{1}\xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{ \frac{1-p}{p}}\eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}}, \cdot \Bigr)\,d\xi \\& \quad = \biggl[ \frac{p\xi ^{\mu}\eta ( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot )}{b_{1}^{p}-y^{p}} \biggr] ^{1}_{0}- \int _{0}^{1} \frac{p\mu \xi ^{\mu -1}\eta ( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot )}{b_{1}^{p}-y^{p}}\,d \xi \\& \quad =\frac{p\eta (b_{1},\cdot )}{b_{1}^{p}-y^{p}}- \int _{0}^{1} \frac{p\mu \xi ^{\mu -1}\eta ( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot )}{b_{1}^{p}-y^{p}}\,d \xi \\& \quad =\frac{p\eta (b_{1},\cdot )}{b_{1}^{p}-y^{p}}- \frac{p^{2}\mu}{y^{p}-b_{1}^{p}} \int _{y}^{b_{1}} \biggl( \frac{y^{p}-w^{p}}{y^{p}-b_{1}^{p}} \biggr) ^{\mu -1}\eta (w,\cdot ) \frac{w^{p-1}}{y^{p}-b_{1}^{p}}\,dw \quad \Bigl[ w=\sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}} \Bigr] \\& \quad =\frac{p\eta (b_{1},\cdot )}{b_{1}^{p}-y^{p}}+ \frac{p^{2}\mu}{(y^{p}-b_{1}^{p})^{\mu +1}} \int _{b_{1}}^{y}\bigl(y^{p}-w^{p} \bigr)^{ \mu -1}\eta (w,\cdot )w^{p-1}\,dw \\& \quad =\frac{p\eta (b_{1},\cdot )}{b_{1}^{p}-y^{p}}+ \frac{p^{2}\mu \Gamma _{\kappa}(\mu )}{p^{1-\mu}(y^{p}-b_{1}^{p})^{\mu +1}} \frac{p^{1-\mu}}{\Gamma _{\kappa}(\mu )} \int _{b_{1}}^{y}w^{p-1}\bigl(y^{p}-w^{p} \bigr)^{ \mu -1}\eta (w,\cdot )\,dw \\& \quad =\frac{p\eta (b_{1},\cdot )}{b_{1}^{p}-y^{p}}+ \frac{p^{1+\mu}\Gamma _{\kappa}(\mu +\kappa )}{(y^{p}-b_{1}^{p})^{\mu +1}} \frac{p^{1-\mu}}{\Gamma _{\kappa}(\mu )} \int _{b_{1}}^{y}w^{p-1}\bigl(y^{p}-w^{p} \bigr)^{ \mu -1}\eta (w,\cdot )\,dw \\& \quad =\frac{p\eta (b_{1},\cdot )}{b_{1}^{p}-y^{p}}+ \frac{p^{1+\mu}\Gamma _{\kappa}(\mu +\kappa )}{(y^{p}-b_{1}^{p})^{\mu +1}} \bigl( {}^{p}_{\kappa}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ). \end{aligned}$$
(2.2)

Similarly,

$$\begin{aligned}& \int _{0}^{1}\xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{ \frac{1-p}{p}}\eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}}, \cdot \Bigr)\,d\xi \\& \quad =\frac{p\eta (b_{2},\cdot )}{b_{2}^{p}-y^{p}}- \frac{p^{1+\mu}\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}^{p}-y^{p})^{\mu +1}} \bigl( {}^{p}_{\kappa}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y, \cdot ). \end{aligned}$$
(2.3)

For both sides of (2.2) and (2.3), multiplying by \(\frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \) and \(\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \), respectively, we obtain

$$\begin{aligned}& \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr)\,d\xi \\& \quad =- \frac{(y^{p}-b_{1}^{p})^{\mu}\eta (b_{1},\cdot )}{p^{\mu}(b_{2}-b_{1})}+ \frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl( {}^{p}_{\kappa}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y,\cdot ), \end{aligned}$$
(2.4)

and

$$\begin{aligned}& \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr)\,d\xi \\& \quad = \frac{(b_{2}^{p}-y^{p})^{\mu}\eta (b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})}- \frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl( {}^{p}_{\kappa}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ). \end{aligned}$$
(2.5)

From (2.4) and (2.5), we obtain the inequality (2.1). □

Theorem 2.2

For a differentiable stochastic process \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \), and \(\eta ^{(\mu )}: I \times \Omega \subset (0, \infty ) \rightarrow \mathbb{R} \) on \(I^{\circ} \) such that \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \) and \(\vert \eta ^{(\mu +1)} \vert \) a strongly p-convex stochastic process with modulus \(c(\cdot ) \) satisfying \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \), \(\forall y \in [b_{1},b_{2}] \), the following inequality holds almost everywhere for all \(y \in [b_{1},b_{2}] \) and \(p \in (0, \infty ) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{b_{1}^{1-p}}{p^{1+\mu}} \biggl[ \frac{\mathbb{Q}}{\mu +1} \biggl( \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggr) \\& \qquad {} -\frac{c(\cdot )}{(\mu +2)(\mu +3)} \biggl( \frac{(y^{p}-b_{1}^{p})^{\mu +1}(y-b_{1})^{2}+(b_{2}^{p}-y^{p})^{\mu +1}(y-b_{2})^{2}}{(b_{2}-b_{1})} \biggr) \biggr], \end{aligned}$$
(2.6)

and the following inequality holds almost everywhere for all \(y\in (b_{1},b_{2}) \) and \(p \in (-\infty ,0)\cup (0,1) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{b_{2}^{1-p}}{p^{1+\mu}} \biggl[ \frac{\mathbb{Q}}{\mu +1} \biggl( \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggr) \\& \qquad {} -\frac{c(\cdot )}{(\mu +2)(\mu +3)} \biggl( \frac{(y^{p}-b_{1}^{p})^{\mu +1}(y-b_{1})^{2}+(b_{2}^{p}-y^{p})^{\mu +1}(y-b_{2})^{2}}{(b_{2}-b_{1})} \biggr) \biggr]. \end{aligned}$$
(2.7)

Proof

By using Lemma 2.1, to prove inequality (2.6) of Theorem 2.2 for a strongly p-convex stochastic process of \(\vert \eta ^{(\mu +1)} \vert \) yields

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \\& \qquad {}\times \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{1}, \cdot ) \bigr\vert +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert -c(\cdot ) \xi (1-\xi ) (y-b_{1})^{2} \bigr]\,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \\& \qquad {}\times \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{2}, \cdot ) \bigr\vert +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert -c(\cdot ) \xi (1-\xi ) (y-b_{2})^{2} \bigr]\,d\xi \quad \text{(a.e.)}. \end{aligned}$$

As \(p \in (1,\infty ) \), we can deduce that

$$\begin{aligned} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}}\leq \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}}\leq b_{1}^{1-p}. \end{aligned}$$
(2.8)

We proceed by simplifying

$$\begin{aligned}& \int _{0}^{1}\xi ^{\mu} \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{1}, \cdot ) \bigr\vert +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert -c( \cdot )\xi (1-\xi ) (y-b_{1})^{2} \bigr]\,d\xi \\& \quad = \biggl[ \frac{\mathbb{Q}}{\mu +1}- \frac{c(\cdot )}{(\mu +2)(\mu +3)}(y-b_{1})^{2} \biggr]\quad \text{(a.e.)}. \end{aligned}$$

Similarly,

$$\begin{aligned}& \int _{0}^{1}\xi ^{\mu} \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{2}, \cdot ) \bigr\vert +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert -c( \cdot )\xi (1-\xi ) (y-b_{2})^{2} \bigr]\,d\xi \\& \quad = \biggl[ \frac{\mathbb{Q}}{\mu +1}- \frac{c(\cdot )}{(\mu +2)(\mu +3)}(y-b_{2})^{2} \biggr] \quad \text{(a.e.)}. \end{aligned}$$

The inequality (2.6) of Theorem 2.2 is proved.

Now, to prove inequality (2.7), we consider \(p \in (-\infty ,0)\cup (0,1) \) that yields

$$\begin{aligned} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}}\leq \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}}\leq b_{2}^{1-p}. \end{aligned}$$
(2.9)

This completes the proof. □

Theorem 2.3

For a differentiable stochastic process \(\delta ,\lambda > 1 \) with \(\delta ^{-1}+\lambda ^{-1}=1 \), \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \), and \(\eta ^{(\mu )}: I \times \Omega \subset (0, \infty ) \rightarrow \mathbb{R} \) on \(I^{\circ} \) such that \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \) and \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) a strongly p-convex stochastic process with modulus \(c(\cdot ) \) satisfying \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \), \(\forall y \in [b_{1},b_{2}] \), the following inequality holds almost everywhere for all \(y \in [b_{1},b_{2}] \) and \(p \in (0, \infty ) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{b_{1}^{1-p}}{p^{1+\mu}(1+\delta \mu )^{\frac{1}{\delta}}} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl( \mathbb{Q}^{ \lambda}-\frac{c(\cdot )}{6}(y-b_{1})^{2} \biggr) ^{ \frac{1}{\lambda}} \\& \qquad {}+ \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl( \mathbb{Q}^{\lambda}- \frac{c(\cdot )}{6}(y-b_{2})^{2} \biggr) ^{ \frac{1}{\lambda}} \biggr], \end{aligned}$$
(2.10)

and the following inequality holds almost everywhere for all \(y\in (b_{1},b_{2}) \) and \(p \in (-\infty ,0)\cup (0,1) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{b_{2}^{1-p}}{p^{1+\mu}(1+\delta \mu )^{\frac{1}{\delta}}} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl( \mathbb{Q}^{ \lambda}-\frac{c(\cdot )}{6}(y-b_{1})^{2} \biggr) ^{ \frac{1}{\lambda}} \\& \qquad {} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl( \mathbb{Q}^{\lambda}- \frac{c(\cdot )}{6}(y-b_{2})^{2} \biggr) ^{\frac{1}{\lambda}} \biggr]. \end{aligned}$$
(2.11)

Proof

From Lemma 2.1, (2.8), and Hölder’s inequality to prove (2.10) of Theorem 2.3 yields

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \quad \leq \frac{b_{1}^{1-p}(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1}\xi ^{\mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert \,d\xi \\& \qquad {}+ \frac{b_{1}^{1-p}(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1}\xi ^{\mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert \,d\xi \\& \quad \leq \frac{b_{1}^{1-p}(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \biggl( \int _{0}^{1}\xi ^{\delta \mu}\,d\xi \biggr) ^{ \frac{1}{\delta}} \biggl( \int _{0}^{1} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d \xi \biggr) ^{\frac{1}{\lambda}} \\& \qquad {}+ \frac{b_{1}^{1-p}(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \biggl( \int _{0}^{1}\xi ^{\delta \mu}\,d\xi \biggr) ^{ \frac{1}{\delta}} \biggl( \int _{0}^{1} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d \xi \biggr)^{\frac{1}{\lambda}}\quad \text{(a.e.)}. \end{aligned}$$

As \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) is a strongly p-convex stochastic process and \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \) for all \(y \in [b_{1},b_{2}] \), we have

$$\begin{aligned}& \int _{0}^{1} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d\xi \\& \quad \leq \int _{0}^{1} \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{1}, \cdot ) \bigr\vert ^{\lambda} +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert ^{\lambda}-c(\cdot ) \xi (1-\xi ) (y-b_{1})^{2} \bigr]\,d\xi \\& \quad \leq \mathbb{Q}^{\lambda}-\frac{c(\cdot )}{6}\bigl(y-b_{1}^{2} \bigr)\quad \text{(a.e.)}, \end{aligned}$$

and

$$\begin{aligned}& \int _{0}^{1} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d\xi \leq \mathbb{Q}^{ \lambda}-\frac{c(\cdot )}{6}(y-b_{2})^{2}\quad \text{(a.e.)}. \end{aligned}$$

The remaining proof is simple. □

Theorem 2.4

For a differentiable stochastic process \(\delta ,\lambda > 1 \) with \(\delta ^{-1}+\lambda ^{-1}=1 \), \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \), and \(\eta ^{(\mu )}: I \times \Omega \subset (0, \infty ) \rightarrow \mathbb{R} \) on \(I^{\circ} \) such that \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \) and \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) a strongly p-convex stochastic process with modulus \(c(\cdot ) \) satisfying \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \), \(\forall y \in [b_{1},b_{2}] \), the following inequality holds almost everywhere for all \(y \in [b_{1},b_{2}] \) and \(p \in (0, \infty ) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{b_{1}^{1-p}}{p^{1+\mu}} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl( \frac{\mathbb{Q}^{\lambda}}{1+\lambda \mu}- \frac{c(\cdot )}{(\lambda \mu +2)(\lambda \mu +3)}(y-b_{1})^{2} \biggr) ^{\frac{1}{\lambda}} \\& \qquad {} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl(\frac{\mathbb{Q}^{\lambda}}{1+\lambda \mu}- \frac{c(\cdot )}{(\lambda \mu +2)(\lambda \mu +3)}(y-b_{2})^{2} \biggr) ^{\frac{1}{\lambda}} \biggr], \end{aligned}$$
(2.12)

and the following inequality holds almost everywhere for all \(y\in (b_{1},b_{2}) \) and \(p \in (-\infty ,0)\cup (0,1) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{b_{2}^{1-p}}{p^{1+\mu}} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl( \frac{\mathbb{Q}^{\lambda}}{1+\lambda \mu}- \frac{c(\cdot )}{(\lambda \mu +2)(\lambda \mu +3)}(y-b_{1})^{2} \biggr) ^{\frac{1}{\lambda}} \\& \qquad {} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{(b_{2}-b_{1})} \biggl(\frac{\mathbb{Q}^{\lambda}}{1+\lambda \mu}- \frac{c(\cdot )}{(\lambda \mu +2)(\lambda \mu +3)}(y-b_{2})^{2} \biggr) ^{\frac{1}{\lambda}} \biggr]. \end{aligned}$$
(2.13)

Proof

From Lemma 2.1, (2.8), and the power-mean inequality to prove (2.12) of Theorem 2.4 yields

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \quad \leq \frac{b_{1}^{1-p}(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1}\xi ^{\mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert \,d\xi \\& \qquad {}+ \frac{b_{1}^{1-p}(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1}\xi ^{\mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert \,d\xi \\& \quad \leq \frac{b_{1}^{1-p}(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl( \int _{0}^{1}\xi ^{\lambda \mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{ \lambda} \,d\xi \biggr)^{\frac{1}{\lambda}} \\& \qquad {}+ \frac{b_{1}^{1-p}(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl( \int _{0}^{1}\xi ^{\lambda \mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{ \lambda} \,d\xi \biggr) ^{\frac{1}{\lambda}}\quad \text{(a.e.)}. \end{aligned}$$

As \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) is a strongly p-convex stochastic process and \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \) for all \(y \in [b_{1},b_{2}] \), we obtain

$$\begin{aligned}& \int _{0}^{1}\xi ^{\lambda \mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d \xi \\& \quad \leq \int _{0}^{1}\xi ^{\lambda \mu} \bigl[ \xi \bigl\vert \eta ^{( \mu +1)}(b_{1},\cdot ) \bigr\vert ^{\lambda} +(1-\xi ) \bigl\vert \eta ^{( \mu +1)}(y,\cdot ) \bigr\vert ^{\lambda}-c(\cdot )\xi (1-\xi ) (y-b_{1})^{2} \bigr]\,d \xi \\& \quad =\frac{\mathbb{Q}^{\lambda}}{\lambda \mu +1}- \frac{c(\cdot )}{(\lambda \mu +2)(\lambda \mu +3)}(y-b_{1})^{2} \quad \text{(a.e.)}. \end{aligned}$$

Similarly,

$$\begin{aligned}& \int _{0}^{1}\xi ^{\lambda \mu} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d \xi \\& \quad \leq \frac{\mathbb{Q}^{\lambda}}{\lambda \mu +1}- \frac{c(\cdot )}{(\lambda \mu +2)(\lambda \mu +3)}(y-b_{2})^{2} \quad \text{(a.e.)}. \end{aligned}$$

By combining all the above inequalities we obtain our desired result. □

Theorem 2.5

Let the differentiable stochastic process \(\delta ,\lambda > 1 \) with \(\delta ^{-1}+\lambda ^{-1}=1 \), \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \), and \(\eta ^{(\mu )}: I \times \Omega \subset (0, \infty ) \rightarrow \mathbb{R} \) on \(I^{\circ} \) such that \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \) and \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) a strongly p-convex stochastic process with modulus \(c(\cdot ) \) satisfying \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \), \(\forall y \in [b_{1},b_{2}] \), the following inequality holds almost everywhere for all \(y \in [b_{1},b_{2}] \) and \(p \in (0, \infty ) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \frac{b_{1}^{\delta (1-p)}}{\delta (\delta \mu +1)}+ \frac{\mathbb{Q}^{\lambda}}{\lambda} \biggr] \\& \qquad {}-\frac{c(\cdot )\lambda}{6} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{1})^{2} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{2})^{2} \biggr], \end{aligned}$$
(2.14)

and the following inequality holds almost everywhere for all \(y\in (b_{1},b_{2}) \) and \(p \in (-\infty ,0)\cup (0,1) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \frac{b_{2}^{\delta (1-p)}}{\delta (\delta \mu +1)}+ \frac{\mathbb{Q}^{\lambda}}{\lambda} \biggr] \\& \qquad {}-\frac{c(\cdot )\lambda}{6} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{1})^{2} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{2})^{2} \biggr]. \end{aligned}$$
(2.15)

Proof

The Young’s inequality is \(mn\leq \frac{1}{\delta}m^{\delta}+\frac{1}{\lambda}n^{\lambda} \), \(m,n \geq 0 \), \(\delta ,\lambda > 1 \), \(\delta ^{-1}+\lambda ^{-1}=1 \). By using Lemma 2.1, to prove (2.14) of Theorem 2.5, and taking the definition of a strongly p-convex stochastic process of \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) yields

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \int _{0}^{1} \biggl( \frac{1}{\delta} \bigl\vert \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \bigr\vert ^{ \delta}+ \frac{1}{\lambda} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{ \xi b_{1}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \biggr) \,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \int _{0}^{1} \biggl(\frac{1}{\delta} \bigl\vert \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \bigr\vert ^{ \delta}+ \frac{1}{\lambda} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{ \xi b_{2}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \biggr) \,d\xi \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \int _{0}^{1} \biggl( \frac{\xi ^{\delta \mu}}{\delta} \bigl\vert \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \bigr\vert ^{ \delta} \\& \qquad {} +\frac{1}{\lambda} \bigl\lbrace \xi \bigl\vert \eta ^{(\mu +1)}(b_{1},\cdot ) \bigr\vert ^{\lambda} +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert ^{\lambda}-c(\cdot ) \xi (1-\xi ) (y-b_{1})^{2} \bigr\rbrace \biggr)\,d\xi \biggr] \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \int _{0}^{1} \biggl( \frac{\xi ^{\delta \mu}}{\delta} \bigl\vert \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \bigr\vert ^{ \delta} \\& \qquad {} +\frac{1}{\lambda} \bigl\lbrace \xi \bigl\vert \eta ^{(\mu +1)}(b_{2},\cdot ) \bigr\vert ^{\lambda} +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert ^{\lambda}-c(\cdot ) \xi (1-\xi ) (y-b_{2})^{2} \bigr\rbrace \biggr)\,d\xi \biggr] \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \frac{b_{1}^{\delta (1-p)}}{\delta (\delta \mu +1)}+ \frac{\mathbb{Q}^{\lambda}}{\lambda} \biggr] \\& \qquad {}-\frac{c(\cdot )}{6 \lambda} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{1})^{2} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{2})^{2} \biggr]\quad \text{(a.e.)}. \end{aligned}$$

Continuing in the same way, we can prove (2.15). □

Theorem 2.6

For a differentiable stochastic process \(\delta ,\lambda > 1 \) with \(\delta ^{-1}+\lambda ^{-1}=1 \), \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \), and \(\eta ^{(\mu )}: I \times \Omega \subset (0, \infty ) \rightarrow \mathbb{R} \) on \(I^{\circ} \) such that \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \) and \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) a strongly p-convex stochastic process with modulus \(c(\cdot ) \) satisfying \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \), \(\forall y \in [b_{1},b_{2}] \), the following inequality holds almost everywhere for all \(y \in [b_{1},b_{2}] \) and \(p \in (0, \infty ) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \frac{b_{1}^{1-p}\delta}{(\mu +1)}+\lambda \mathbb{Q} \biggr] \\& \qquad {}-\frac{c(\cdot )\lambda}{6} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{1})^{2} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{2})^{2} \biggr], \end{aligned}$$
(2.16)

and the following inequality holds almost everywhere for all \(y\in (b_{1},b_{2}) \) and \(p \in (-\infty ,0)\cup (0,1) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \frac{b_{2}^{1-p}\delta}{(\mu +1)}+\lambda \mathbb{Q} \biggr] \\& \qquad {}-\frac{c(\cdot )\lambda}{6} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{1})^{2} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{2})^{2} \biggr]. \end{aligned}$$
(2.17)

Proof

To prove this result, we will use the following inequality:

$$\begin{aligned} m^{\delta}n^{\lambda}\leq \delta m +\lambda n, \qquad m,n \geq 0, \qquad \delta ,\lambda > 0,\qquad \delta +\lambda =1. \end{aligned}$$

By using (2.1) and taking the definition of a strongly p-convex stochastic process of \(\vert \eta ^{(\mu +1)} \vert ^{\lambda}\) yields

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\ & \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\ & \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\ & \qquad {}\times \int _{0}^{1} \bigl[ \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1- \xi )y^{p} \bigr) ^{\frac{1-p}{p}} \bigr] ^{\delta} \Bigl[ \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert \Bigr] ^{\lambda} \,d\xi \\ & \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\ & \qquad {}\times \int _{0}^{1} \bigl[ \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1- \xi )y^{p} \bigr) ^{\frac{1-p}{p}} \bigr] ^{\delta} \Bigl[ \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert \Bigr] ^{\lambda} \,d\xi \\ & \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\ & \qquad {}\times \biggl[ \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1- \xi )y^{p} \bigr) ^{\frac{1-p}{p}}\,d \xi \\ & \qquad {} + \int _{0}^{1}\lambda \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert \,d\xi \biggr] \\ & \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\ & \qquad {}\times \biggl[ \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1- \xi )y^{p} \bigr) ^{\frac{1-p}{p}}\,d\xi \\ & \qquad {} + \int _{0}^{1}\lambda \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert \,d\xi \biggr] \\ & \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \int _{0}^{1}b_{1}^{1-p}\delta \xi ^{\mu}\,d\xi \\ & \qquad {} + \int _{0}^{1}\lambda \bigl\lbrace \xi \bigl\vert \eta ^{( \mu +1)}(b_{1},\cdot ) \bigr\vert +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y, \cdot ) \bigr\vert -c(\cdot )\xi (1-\xi ) (y-b_{1})^{2} \bigr\rbrace \,d \xi \biggr] \\ & \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \int _{0}^{1}b_{1}^{1-p}\delta \xi ^{\mu}\,d\xi \\ & \qquad {} + \int _{0}^{1}\lambda \bigl\lbrace \xi \bigl\vert \eta ^{( \mu +1)}(b_{2},\cdot ) \bigr\vert +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y, \cdot ) \bigr\vert -c(\cdot )\xi (1-\xi ) (y-b_{2})^{2} \bigr\rbrace \,d \xi \biggr] \\ & \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}+(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \frac{b_{1}^{1-p}\delta}{(\mu +1)}+\lambda \mathbb{Q} \biggr] \\ & \qquad {}-\frac{c(\cdot )\lambda}{6} \biggl[ \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{1})^{2} + \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})}(y-b_{2})^{2} \biggr]\quad \text{(a.e.)}. \end{aligned}$$

Continuing in the same manner, we can also prove (2.17). □

Theorem 2.7

For a differentiable stochastic process \(\delta ,\lambda > 1 \) with \(\delta ^{-1}+\lambda ^{-1}=1 \), \(b_{1},b_{2} \in I \) with \(b_{1} < b_{2} \), and \(\eta ^{(\mu )}: I \times \Omega \subset (0, \infty ) \rightarrow \mathbb{R} \) on \(I^{\circ} \) such that \(\eta ^{(\mu +1)} \in M([b_{1},b_{2}]) \) and \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) a strongly p-convex stochastic process with modulus \(c(\cdot ) \) satisfying \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \), \(\forall y \in [b_{1},b_{2}] \), the following inequality holds almost everywhere for all \(y \in [b_{1},b_{2}] \) and \(p \in (0, \infty ) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \bigl[ \bigl( \varPi _{1}(b_{1},y;p) \bigr) ^{ \frac{1}{\delta}}+ \bigl(\varPi _{2}(b_{1},y;p) \bigr) ^{ \frac{1}{\delta}} \bigr] \biggl( \frac{\mathbb{Q}^{\lambda}}{2}- \frac{c(\cdot )}{12}(y-b_{1})^{2} \biggr)^{\frac{1}{\lambda}}, \end{aligned}$$
(2.18)

and the following inequality holds almost everywhere for all \(y\in (b_{1},b_{2}) \) and \(p \in (-\infty ,0)\cup (0,1) \):

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \bigl[ \bigl( \varPi _{3}(b_{2},y;p) \bigr) ^{ \frac{1}{\delta}}+ \bigl(\varPi _{4}(b_{2},y;p) \bigr) ^{ \frac{1}{\delta}} \bigr] \biggl( \frac{\mathbb{Q}^{\lambda}}{2}- \frac{c(\cdot )}{12}(y-b_{2})^{2} \biggr)^{\frac{1}{\lambda}}. \end{aligned}$$
(2.19)

Here,

$$\begin{aligned}& \varPi _{1}(b_{1},y;p)= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{1}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{1}} ) ^{p} ) ] }{b_{1}^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p\in (1, \infty ), \end{cases}\displaystyle \\& \varPi _{2}(b_{1},y;p)= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ) , \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{1}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{1}} ) ^{p} ) ] }{b_{1}^{\delta (p-1)}(\delta \mu +2)},& p\in (1, \infty ), \end{cases}\displaystyle \\& \varPi _{3}(b_{2},y;p)= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{2}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{2}} ) ^{p} ) ] }{b_{2}^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p\in (1, \infty ), \end{cases}\displaystyle \end{aligned}$$

and

$$\begin{aligned}& \varPi _{4}(b_{2},y;p)= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ) , \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{2}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{2}} ) ^{p} ) ] }{b_{2}^{\delta (p-1)}(\delta \mu +2)},& p\in (1, \infty ). \end{cases}\displaystyle \end{aligned}$$

Proof

By using Lemma 2.1, to prove the first part of Theorem 2.7 and from the Hölder–İşcan inequality yields

$$\begin{aligned}& \biggl\vert \frac{(y^{p}-b_{1}^{p})^{\mu}\eta ^{(\mu )}(b_{1},\cdot )+(b_{2}^{p}-y^{p})^{\mu}\eta ^{(\mu )}(b_{2},\cdot )}{p^{\mu}(b_{2}-b_{1})} \\& \qquad {} -\frac{\Gamma _{\kappa}(\mu +\kappa )}{(b_{2}-b_{1})} \bigl[ \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{1}^{+}} \eta \bigr) ( y, \cdot ) + \bigl( {}_{\kappa}^{p}D^{\mu}_{b_{2}^{-}} \eta \bigr) ( y,\cdot ) \bigr] \biggr\vert \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \qquad {}+\frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \int _{0}^{1} \xi ^{\mu} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\frac{1-p}{p}} \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}}, \cdot \Bigr) \Bigr\vert \,d\xi \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \biggl( \int _{0}^{1}\xi ^{\delta \mu}(1-\xi ) \bigl( \xi b_{1}^{p}+(1- \xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d \xi \biggr) ^{\frac{1}{\delta}} \\& \qquad {}\times \biggl( \int _{0}^{1}(1-\xi ) \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{ \lambda}\,d\xi \biggr) ^{\frac{1}{\lambda}} \\& \qquad {}+ \biggl( \int _{0}^{1}\xi ^{\delta \mu +1} \bigl( \xi b_{1}^{p}+(1- \xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d \xi \biggr) ^{\frac{1}{\delta}} \\& \qquad {} \times \biggl( \int _{0}^{1}\xi \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{ \lambda}\,d\xi \biggr) ^{\frac{1}{\lambda}} \biggr]\\& \qquad {}+ \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \biggl[ \biggl( \int _{0}^{1}\xi ^{\delta \mu}(1-\xi ) \bigl( \xi b_{2}^{p}+(1- \xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) }\,d\xi \biggr) ^{\frac{1}{\delta}} \\& \qquad {}\times \biggl( \int _{0}^{1}(1-\xi ) \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{ \lambda}\,d\xi \biggr) ^{\frac{1}{\lambda}} \\& \qquad {}+ \biggl( \int _{0}^{1}\xi ^{\delta \mu +1} \bigl( \xi b_{2}^{p}+(1- \xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d \xi \biggr) ^{\frac{1}{\delta}} \\& \qquad {} \times \biggl( \int _{0}^{1}\xi \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{ \lambda}\,d\xi \biggr) ^{\frac{1}{\lambda}} \biggr] \\& \quad \leq \frac{(y^{p}-b_{1}^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \biggl[ \bigl( \varPi _{1}(b_{1},y;p) \bigr) ^{ \frac{1}{\delta}} \biggl( \int _{0}^{1}(1-\xi ) \Bigl\vert \eta ^{( \mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda}\,d\xi \biggr) ^{\frac{1}{\lambda}} \\& \qquad {}+ \bigl(\varPi _{2}(b_{1},y;p) \bigr) ^{\frac{1}{\delta}} \biggl( \int _{0}^{1}\xi \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda}\,d \xi \biggr) ^{\frac{1}{\lambda}} \biggr] \\& \qquad {}+ \frac{(b_{2}^{p}-y^{p})^{\mu +1}}{p^{1+\mu}(b_{2}-b_{1})} \\& \qquad {}\times \biggl[ \bigl(\varPi _{3}(b_{2},y;p) \bigr) ^{ \frac{1}{\delta}} \biggl( \int _{0}^{1}(1-\xi ) \Bigl\vert \eta ^{( \mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda}\,d\xi \biggr) ^{\frac{1}{\lambda}} \\& \qquad {}+ \bigl( \varPi _{4}(b_{2},y;p) \bigr) ^{\frac{1}{\delta}} \biggl( \int _{0}^{1}\xi \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1-\xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda}\,d \xi \biggr) ^{\frac{1}{\lambda}} \biggr]\quad \text{(a.e.)}. \end{aligned}$$

As \(\vert \eta ^{(\mu +1)} \vert ^{\lambda} \) is a strongly p-convex stochastic process and \(\vert \eta ^{(\mu +1)}(y,\cdot ) \vert \leq \mathbb{Q} \) for all \(y \in [b_{1},b_{2}] \), we obtain

$$\begin{aligned}& \int _{0}^{1}(1-\xi ) \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{ \xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d\xi \\& \quad \leq \int _{0}^{1}(1-\xi ) \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{1}, \cdot ) \bigr\vert ^{\lambda} +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert ^{\lambda}-c(\cdot ) \xi (1-\xi ) (y-b_{1})^{2} \bigr]\,d\xi \\& \quad =\frac{\mathbb{Q}^{\lambda}}{2}-\frac{c(\cdot )}{12}(y-b_{1})^{2} \quad \text{(a.e.)}, \\& \int _{0}^{1}\xi \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{1}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d\xi \\& \quad \leq \int _{0}^{1}\xi \bigl[ \xi \bigl\vert \eta ^{(\mu +1)}(b_{1}, \cdot ) \bigr\vert ^{\lambda} +(1-\xi ) \bigl\vert \eta ^{(\mu +1)}(y,\cdot ) \bigr\vert ^{\lambda}-c(\cdot ) \xi (1-\xi ) (y-b_{1})^{2} \bigr]\,d\xi \\& \quad =\frac{\mathbb{Q}^{\lambda}}{2}-\frac{c(\cdot )}{12}(y-b_{1})^{2} \quad \text{(a.e.)}, \end{aligned}$$

Similarly, we have

$$\begin{aligned}& \int _{0}^{1}(1-\xi ) \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{ \xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d\xi \\& \quad \leq \frac{\mathbb{Q}^{\lambda}}{2}-\frac{c(\cdot )}{12}(y-b_{2})^{2} \quad \text{(a.e.)},\\& \int _{0}^{1}\xi \Bigl\vert \eta ^{(\mu +1)} \Bigl( \sqrt[p]{\xi b_{2}^{p}+(1- \xi )y^{p}},\cdot \Bigr) \Bigr\vert ^{\lambda} \,d\xi \\& \quad \leq \frac{\mathbb{Q}^{\lambda}}{2}-\frac{c(\cdot )}{12}(y-b_{2})^{2} \quad \text{(a.e.)}. \end{aligned}$$

We now have the result that

$$\begin{aligned}& \begin{aligned}[t] \varPi _{1}(b_{1},y;p)&= \int _{0}^{1}\xi ^{\delta \mu}(1-\xi ) \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d \xi \\ &= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{1}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{1}} ) ^{p} ) ] }{b_{1}^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p\in (1, \infty ), \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(2.20)
$$\begin{aligned}& \begin{aligned}[t] \varPi _{2}(b_{1},y;p)&= \int _{0}^{1}\xi ^{\delta \mu +1} \bigl( \xi b_{1}^{p}+(1-\xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d \xi \\ &= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ) , \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{1}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{1}} ) ^{p} ) ] }{b_{1}^{\delta (p-1)}(\delta \mu +2)},& p\in (1, \infty ), \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(2.21)
$$\begin{aligned}& \begin{aligned}[t] \varPi _{3}(b_{2},y;p)&= \int _{0}^{1}\xi ^{\delta \mu}(1-\xi ) \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d\xi \\ &= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{2}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{2}} ) ^{p} ) ] }{b_{2}^{\delta (p-1)}(\delta \mu +1)(\delta \mu +2)},& p\in (1, \infty ), \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(2.22)
$$\begin{aligned}& \begin{aligned}[t] \varPi _{4}(b_{2},y;p)&= \int _{0}^{1}\xi ^{\delta \mu +1} \bigl( \xi b_{2}^{p}+(1-\xi )y^{p} \bigr) ^{\delta ( \frac{1-p}{p} ) } \,d\xi \\ &= \textstyle\begin{cases} \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ) , \delta \mu +1, \delta \mu +3, 1- ( \frac{b_{2}}{y} ) ^{p} ) ] }{y^{\delta (p-1)}(\delta \mu +2)},& p \in (-\infty , 0)\cup (0, 1), \\ \frac{ [ 2F_{1} ( \delta ( 1-\frac{1}{p} ), \delta \mu +1, \delta \mu +3, 1- ( \frac{y}{b_{2}} ) ^{p} ) ] }{b_{2}^{\delta (p-1)}(\delta \mu +2)},& p\in (1, \infty ). \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(2.23)

Combining all above inequalities, we obtain the desired result (2.18) and (2.19). □

3 Conclusion

In the present note, we introduced the notion of a strongly p-convex stochastic process. We established Ostrowski-type inequalities for a strongly p-convex stochastic process. Also, we established some integral inequalities of Ostrowski-type via the generalized k-fractional Hilfer–Katugampola derivative.

Availability of data and materials

All data required for this research are included within this paper.

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Gorenflo, R., Mainardi, F.: Fractional calculus. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Vienna (1997)

    MATH  Google Scholar 

  3. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  4. Mitrinović, D.S., Lacković, I.B.: Hermite and convexity. Aequ. Math. 28(1), 229–232 (1985)

    MATH  Google Scholar 

  5. Kumar, P.: Hermite-Hadamard inequalities and their applications in estimating moments. In: Inequality Theory and Applications, vol. 2. Nova Science, New York (2002)

    Google Scholar 

  6. Nagy, B.: On a generalization of the Cauchy equation. Aequ. Math. 10(2), 165–171 (1974)

    MATH  Google Scholar 

  7. Nikodem, K.: On convex stochastic processes. Aequ. Math. 20(1), 184–197 (1980)

    MATH  Google Scholar 

  8. Skowronski, A.: On some properties of J-convex stochastic processes. Aequ. Math. 44(2), 249–258 (1992)

    MATH  Google Scholar 

  9. Skowronski, Z.: On Wright-convex stochastic processes. Ann. Math. Sil. 9, 29–32 (1995)

    MATH  Google Scholar 

  10. Kotrys, D.: Hermite–Hadamard inequality for convex stochastic processes. Aequ. Math. 83(1), 143–151 (2012)

    MATH  Google Scholar 

  11. Kotrys, D.: Remarks on strongly convex stochastic processes. Aequ. Math. 86(1), 91–98 (2013)

    MATH  Google Scholar 

  12. Kotrys, D.: Remarks on Jensen, Hermite–Hadamard and Fejer inequalities for strongly convex stochastic processes. Math. Æterna 5(1), 95–104 (2015)

    Google Scholar 

  13. Barráez, D., González, L., Merentes, N., Moros, A.: On h-convex stochastic processes. Math. Æterna 5(4), 571–581 (2015)

    Google Scholar 

  14. Set, N., Tomar, M., Maden, N.: Hermite-Hadamard type inequalities for s-convex stochastic processes in the second sense. Turk. J. Anal. Number Theory 2(6), 202–207 (2014)

    Google Scholar 

  15. Chen, H., Katugampola, U.N.: Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446(2), 1274–1291 (2017)

    MATH  Google Scholar 

  16. Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493–497 (2010)

    MATH  Google Scholar 

  17. Liu, W., Wen, W., Park, J.: Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 9(3), 766–777 (2016)

    MATH  Google Scholar 

  18. Tuba, C., Budak, H., Fuat, A., Sarikaya, M.Z.: On new generalized fractional integral operators and related fractional inequalities. Konuralp J. Math. 8(2), 268–278 (2020)

    Google Scholar 

  19. Vivas Cortez, M., Shoaib Saleema, M., Sajid, S.: Some mean square integral inequalities for preinvexity involving the beta function. Int. J. Nonlinear Anal. Appl. 12, 617–632 (2021)

    Google Scholar 

  20. Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937)

    MATH  Google Scholar 

  21. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018(1), 70, 1–14 (2018)

    MATH  Google Scholar 

  22. Ali, M.A., Budak, H., Akkurt, A., Chu, Y.M.: Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 19(1), 440–449 (2021)

    MATH  Google Scholar 

  23. Al Qurashi, M., Rashid, S., Khalid, A., Karaca, Y., Chu, Y.M.: New computations of Ostrowski-type inequality pertaining to fractal style with applications. Fractals 29(5), 2140026 (2021)

    MATH  Google Scholar 

  24. Ali, M.A., Chu, Y.M., Budak, H., Akkurt, A., Yildirim, H., Zahid, M.A.: Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021(1), 25, 1–26 (2021)

    MATH  Google Scholar 

  25. Naz, S., Naeem, M.N., Chu, Y.M.: Ostrowski–type inequalities for n-polynomial P-convex function for k fractional Hilfer–Katugampola derivative. J. Inequal. Appl. 2021(1), 117, 1–23 (2021)

    MATH  Google Scholar 

  26. Rashid, S., Noor, M.A., Noor, K.I., Chu, Y.M.: Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions. AIMS Math. 5(3), 2629–2645 (2020)

    MATH  Google Scholar 

  27. Kalsoom, H., Idrees, M., Baleanu, D., Chu, Y.M.: New estimates of-Ostrowski-type inequalities within a class of-polynomial prevexity of functions. J. Funct. Spaces 2020, Article ID 3720798 (2020). https://doi.org/10.1155/2020/3720798

    Article  MATH  Google Scholar 

  28. Chu, Y.M., Awan, M.U., Talib, S., Noor, M.A., Noor, K.I.: New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right \((p, q) \)–derivatives and definite integrals. Adv. Differ. Equ. 2020(1), 634, 1–15 (2020)

    MATH  Google Scholar 

  29. Park, C., Chu, Y.M., Saleem, M.S., Mukhtar, S., Rehman, N.: Hermite–Hadamard–type inequalities for \(\eta _{h} \)–convex functions via Riemann–Liouville fractional integrals. Adv. Differ. Equ. 2020(1), 602, 1–14 (2020)

    MATH  Google Scholar 

  30. Brzezniak, Z., Zastawniak, T.: Basic Stochastic Processes: A Course Through Exercises. Springer, Berlin (2000)

    MATH  Google Scholar 

  31. Sobczyk, K.: Stochastic Differential Equations: With Applications to Physics and Engineering, Vol. 40. Springer, Berlin (2001)

    MATH  Google Scholar 

  32. Okur, N., Iscan, I., Dizdar, E.Y.: Hermite–Hadamard type inequalities for p-convex stochastic processes. Int. J. Optim. Control Theor. Appl. 9(2), 148–153 (2019)

    Google Scholar 

  33. Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations, Vol. 204. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  34. Naz, S., Naeem, M.N., Chu, Y.M.: Some k-fractional extension of Grüss–type inequalities via generalized Hilfer–Katugampola derivative. Adv. Differ. Equ. 2021(1), 29, 1–16 (2021)

    MATH  Google Scholar 

  35. Diaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol (2004). arXiv preprint. arXiv:math/0405596

  36. Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F.: \((k, s)\)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016)

    MATH  Google Scholar 

  37. Nisar, K.S., Rahman, G., Baleanu, D., Mubeen, S., Arshad, M.: The \((k, s) \)-fractional calculus of k-Mittag–Leffler function. Adv. Differ. Equ. 2017(1), 118, 1–12 (2017)

    MATH  Google Scholar 

  38. Naz, S., Naeem, M.N.: On the generalization of κ-fractional Hilfer–Katugampola derivative with Cauchy problem. Turk. J. Math. 45(1), 110–124 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the innovative engineering scientific research supportive project of the Communist Party School of the Shandong Provincial CCP Committee (Shandong Administration College) (2021cx035); the innovative project of the Shandong Administrative College. The second and fourth authors are thankful to the University of Okara for the wonderful research environment provided to the researchers. The authors are also very thankful to the reviewers and editor for their valuable suggestions that helped us to improve the quality of this paper.

Funding

There was no funding available for this research.

Author information

Authors and Affiliations

Authors

Contributions

H.Q. proposed the problem and analyzed the results, M.S.S revised the paper, verified the results and arrange the funding for this paper, I.A. proved the main results, S.S. wrote the first version of the paper and W.N. supervised the work and verified the results. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Waqas Nazeer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Saleem, M.S., Ahmed, I. et al. Fractional version of Ostrowski-type inequalities for strongly p-convex stochastic processes via a k-fractional Hilfer–Katugampola derivative. J Inequal Appl 2023, 12 (2023). https://doi.org/10.1186/s13660-022-02901-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02901-1

Keywords