Skip to main content

Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions

Abstract

The objective of this article is to incorporate the concept of the Ostrowski inequality with the Atangana–Baleanu fractional integral operator. A novel integral identity for twice-differentiable functions is established after a rigorous investigation of several basic definitions and existing ideas related to inequalities and fractional calculus. Following that, numerous Ostrowski-type inequalities are provided based on this identity, which uses Mittag–Leffler as its kernel structure. Some specific applications, such as q-digamma functions and modified Bessel functions, are also investigated. Choosing \(s=1\), we also analyze new results for convex functions as special cases. Our findings corroborate some well-documented inequalities.

1 Introduction

The hypothesis of convex functions gives us amazing standards and methods to concentrate on a wide class of issues in both pure and applied sciences. Several paragons of sciences reliably endeavor to use and benefit the original musings for the delight and beautification of the convexity hypothesis. This hypothesis assumes an important and pivotal part in applied mathematics, particularly in nonlinear programming, financial mathematics, mathematical statistics, optimization theory, and functional analysis. The theory of convexity plays a vital role in the exploration of mathematical inequalities. There exists a strong relationship between the theory of inequality, fractional integrals, and convex functions due to the behavior of their definitions and properties.

Definition 1.1

([1])

A function \(\mathcal{Q}\colon \mathcal {J}\subseteq \mathcal{R} \to \mathcal{R}\) is said to be convex if

$$ \mathcal{Q}\bigl(\varPhi \mathfrak{p} + (1-\varPhi )\mathfrak{q} \bigr)\leq \varPhi \mathcal{Q}(\mathfrak{p})+(1-\varPhi )\mathcal{Q}( \mathfrak{q}), $$
(1.1)

holds true for all \([\mathfrak{p},\mathfrak{q}] \in \mathcal {J}\) and \(\varPhi \in [0,1]\). We say that \(\mathcal{Q}\) is concave if \((-\mathcal{Q})\) is convex.

Convex functions are used to create inequalities such as the Hermite–Hadamard (\(\mathrm{H-H}\)) inequality, the Ostrowski inequality, and Simpson’s inequality. The \(\mathrm{H-H}\) double inequality is one of the most extensively researched results involving convex functions. This conclusion provides us with the necessary and sufficient conditions for a function to be convex. The \(\mathrm{H-H}\) inequality has been considered as one of the most useful results in mathematical analysis. It is also known as the \(\mathrm{H-H}\) inequality’s classical equation.

The Hermite–Hadamard inequality (see [2]) asserts that, if a mapping \(\mathcal{Q}:\mathcal {J}\subset{\mathcal{R}}\to{\mathcal{R}}\) is convex in \(\mathcal {J}\) for \(\mathfrak{p},\mathfrak{q}\in \mathcal {J}\) and \(\mathfrak{q}>\mathfrak{p}\), then

$$ \mathcal{Q} \biggl(\frac{\mathfrak{p} + \mathfrak{q}}{2} \biggr) \le \frac{1}{\mathfrak{q} - \mathfrak{p}} \int _{\mathfrak{p}}^{ \mathfrak{q}} \mathcal{Q}(\varPhi )\,d\varPhi \le \frac{\mathcal{Q}(\mathfrak{p})+\mathcal{Q}(\mathfrak{q})}{2}. $$
(1.2)

In 1938, Ostrowski [3] investigated the following interesting integral inequality as:

Let \(\mathcal{Q}\colon \mathcal {J}\subseteq \mathcal{R}\rightarrow \mathcal{R}\) be a differentiable mapping on \(\mathcal {J}^{\circ}\), such that \(\mathcal{Q}\in \mathcal{L}[\mathfrak{p},\mathfrak{q}]\), where \(\mathfrak{p},\mathfrak{q}\in {{\mathcal{J}}}\) with \(\mathfrak{q}>\mathfrak{p}\). If \(|\mathcal{Q}'(z)|\leq K\), for all \(\omega \in [\mathfrak{p},\mathfrak{q}]\), then

$$ \biggl\vert \mathcal{Q} ( \omega ) - \frac{1}{\mathfrak{q}-\mathfrak{p}} \int _{\mathfrak{p}}^{\mathfrak{q}} \mathcal{Q} ( u )\,du \biggr\vert \leq K ( \mathfrak{q}-\mathfrak{p} ) \biggl[ \frac{1}{4}+ \frac{ ( \omega -\frac{\mathfrak{p} +\mathfrak{q}}{2} ) ^{2}}{ ( \mathfrak{q}-\mathfrak{p} ) ^{2}} \biggr], $$
(1.3)

holds true.

This result in the literature is studied extensively and is famously known as the Ostrowski inequality. This inequality gives an upper bound of \(\frac{1}{\mathfrak{q}-\mathfrak{p}}\int _{\mathfrak{p}}^{ \mathfrak{q}}\mathcal{Q} ( u )\,du\) by \(\mathcal{Q} ( u )\).

Definition 1.2

([4, 5])

A function \(\mathcal{Q}:[0, +\infty )\rightarrow \mathcal{R}\) is called s-convex in the second sense, if

$$ \mathcal{Q}\bigl(\varPhi \mathfrak{p} + (1-\varPhi )\mathfrak{q} \bigr)\leq \varPhi ^{s} \mathcal{Q}(\mathfrak{p})+(1-\varPhi )^{s}\mathcal{Q}( \mathfrak{q}), $$
(1.4)

holds true \(\mathfrak{p},\mathfrak{q}\in [0, +\infty )\), \(s\in (0,1]\) and \(\varPhi \in [0,1]\).

For \(\mathcal{R} (a), \mathcal{R} (b) > 0\), the Beta function is expressed as:

$$ \beta (a,b)= \int _{0}^{1} \nu ^{a-1}(1-\nu )^{b-1}\,d\nu . $$

Dragomir et al. [4], established the following integral inequality under the assumption of an s-convex function as:

$$ 2^{s-1} \mathcal{Q} \biggl(\frac{\mathfrak{p} + \mathfrak{q}}{2} \biggr) \le \frac{1}{\mathfrak{q} - \mathfrak{p}} \int _{\mathfrak{p}}^{ \mathfrak{q}} \mathcal{Q}(\varPhi )\,d\varPhi \le \frac{\mathcal{Q}(\mathfrak{p})+\mathcal{Q}(\mathfrak{q})}{s+1}. $$
(1.5)

Dragomir and Rassias [6], investigated the Ostrowski-type inequality for convex functions as:

$$ \biggl\vert \mathcal{Q} ( \omega ) - \frac{1}{\mathfrak{q}-\mathfrak{p}} \int _{\mathfrak{p}}^{\mathfrak{q}} \mathcal{Q} ( u )\,du \biggr\vert \leq \frac{K}{ ( \mathfrak{q}-\mathfrak{p} )} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{2}+ ( \mathfrak{q}- \omega ) ^{2}}{ 2 } \biggr]. $$
(1.6)

Alomari et al. [7], investigated the Ostrowski-type inequality for an s-convex function in the second sense as:

$$ \biggl\vert \mathcal{Q} ( \omega ) - \frac{1}{\mathfrak{q}-\mathfrak{p}} \int _{\mathfrak{p}}^{\mathfrak{q}} \mathcal{Q} ( u )\,du \biggr\vert \leq \frac{K}{ ( \mathfrak{q}-\mathfrak{p} )} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{2}+ ( \mathfrak{q}- \omega ) ^{2}}{ ( s+1 ) } \biggr]. $$
(1.7)

Many mathematicians generalized the Ostrowski inequality in different directions. In particular, several scientific articles have been published in this regard taking various forms of convexities into account. For example, Alomari et al. [7] used the notion of s-convexity and İşcan et al. [8] used the notion of an harmonically s-convex function. Set [9] introduced the fractional version of the Ostrowski-type inequality employing Riemann–Liouville fractional operators. Liu [10] used the equality proved by Set to establish new refinements of the Ostrowski-type inequality for an MT-convex function. Tunç [11], studied the Ostrowski-type inequality for an h-convex function. Ozdemir et al. [12], obtained a new version of the Ostrowski-type inequality for an \((\alpha ,m)\)-convex function. Agarwal et al.[13], investigated a more generalized Ostrowski-type inequality via a Raina fractional integral operator. Sarikaya et al. [14], employed local fractional integrals to obtain new generalizations of the Ostrowski-type inequality. Gürbuz et al. [15], used a Katugampola fractional operator for a generalized version of Ostrowski inequality. Ahmad et al. [16], established some novel generalization of the Ostrowski inequality via an Atangana–Baleanu fractional operator for differentiable convex functions. To acquire detailed information about recent advancements of the Ostrowski-type inequality, we direct the readers to the following references (see [1720]).

Fractional calculus forms an important area of research in the fields of pure and applied sciences. In particular, in mathematical analysis, it is used to solve the uniqueness of various fractional differential equations and boundary value problems. It also helps in solving many real-world problems. The main motivation of fractional calculus is to propose new notions of fractional derivatives and integrals and study their properties, applications, and advantages over other fractional operators. With regard to this interest, several new variants of fractional models such as Riemann–Liouville [21], k-Riemann–Liouville [22], Katugampola [23], Caputo–Fabrizio [24], Atangana–Baleanu [25], etc. have been introduced in some of the recent articles. They all have distinct conditions and properties, which make them not identical to each other. The main focus of this article to study the correlation between mathematical inequality and fractional operators. The improvements of fractional operators are backed by presenting different types of inequalities such as \(\mathrm{H-H}\) type [26, 27], Minkowski type [28, 29], Grüss type [30, 31], Pólya–Szegö type [32], and Chebyshev type [33] employing these operators. Lately, many mathematicians have incorporated the concepts of new notions of fractional integrals and well-known inequalities. To know more about the recent developments about the theory of fractional integral inequalities, we suggest interested readers follow the articles [3438].

Before discussing our main results, let us focus on some basic definitions and related results for fractional integral inequalities.

Definition 1.3

([21, 34])

Let \(\mathcal{Q} \in \mathcal{L} {}[ \mathfrak{p},\mathfrak{q} ] \) be the set of all Lebesgue measurable functions on \({}[ \mathfrak{p},\mathfrak{q}] \). Then, for the order \(\varsigma >0 \), the left and right Riemann–Liouville (R–L) fractional integrals are defined as follows:

$$ \mathcal{I}_{\mathfrak{p}^{+}}^{\varsigma }{\mathcal{Q}} ( t ) = \frac{1}{\Gamma (\varsigma )} \int _{\mathfrak{p}}^{t}{ ( t - y )^{\varsigma - 1} \mathcal{Q} ( y )}\,dy,\quad (t > \mathfrak{p} ) $$

and

$$ \mathcal{I}_{\mathfrak{q}^{-}}^{\varsigma }{\mathcal{Q}} ( t ) = \frac{1}{\Gamma (\varsigma )} \int _{t}^{\mathfrak{q}} { ( y - t )^{\varsigma - 1}\mathcal{Q} ( y )}\,dy \quad (t < \mathfrak{q}), $$

respectively, where \(\Gamma ( \varsigma ) = \int _{0}^{\infty }{y^{ \varsigma - 1}e^{- y}}\,{dy}\) is the Euler gamma function.

Set et al. [9] proved the following equality and established several fractional Ostrowski-type inequalities.

Lemma 1.1

Suppose \(\mathcal{Q}:\mathcal {J}=[\mathfrak{p},\mathfrak{q}]\rightarrow \mathcal{R}\) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\). If \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\), then for all \(\omega \in {}[ \mathfrak{p},\mathfrak{q}]\) and \(\varsigma >0\), the following equality for AB-fractional integrals

$$\begin{aligned} & \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }- ( \mathfrak{q}-\omega ) ^{\varsigma }}{ \mathfrak{q}-\mathfrak{p}} \mathcal{Q} ( \omega ) - \frac{ \Gamma ( \varsigma +1 ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ \mathcal{I}_{\omega ^{+} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) + \mathcal{I}_{\omega ^{-} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) \bigr\} \\ & \quad = \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}}{ \mathfrak{q}-\mathfrak{p} } \int _{0}^{1}\varPhi ^{\varsigma } \mathcal{Q}^{{\prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr)\,d\varPhi \\ &\qquad {} - \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ \mathfrak{q}-\mathfrak{p} } \int _{0}^{1}\varPhi ^{\varsigma } \mathcal{Q}^{{\prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr)\,d\varPhi , \end{aligned}$$
(1.8)

holds true for \({{\varPhi }}\in [0,1]\).

Definition 1.4

([24])

Let \(\mathcal{Q}\in H^{1}(\mathfrak{p},\mathfrak{q})\), \(\mathfrak{q}>\mathfrak{p}\), \(\varsigma \in [0,1]\), then the definition of the new Caputo fractional derivative is:

$$ {}^{\mathrm{CF}}D^{\varsigma}\mathcal{Q}(t)= \frac{\mathtt{B} ( \varsigma )}{1-\varsigma} \int _{ \mathfrak{p}}^{t}\mathcal{Q}^{\prime}(y) \exp \biggl[-\frac{\varsigma}{(1-\varsigma )}(t-y) \biggr]\,dy, $$

where \(\mathtt{B} ( \varsigma )\) is a normalization function.

Definition 1.5

([39])

Let \(\mathcal{Q}\in H^{1}(\mathfrak{p},\mathfrak{q})\), \(\mathfrak{q}>\mathfrak{p}\), \(\varsigma \in [0,1]\), then the left and right Caputo–Fabrizio fractional integrals are defined as:

$$ \bigl( {}_{ \mathfrak{p}}^{\mathrm{CF}}\mathcal{I}^{\varsigma }\mathcal{Q} \bigr) (t)= \frac{1-\varsigma }{\mathtt{B} ( \varsigma )}\mathcal{Q}(t)+\frac{\varsigma }{\mathtt{B} ( \varsigma )} \int _{ \mathfrak{p}}^{t}\mathcal{Q}(y)\,dy, $$

and

$$ \bigl( {}^{\mathrm{CF}}\mathcal{I}_{\mathfrak{q}}^{\varsigma }\mathcal{Q} \bigr) (t)= \frac{1-\varsigma }{\mathtt{B} ( \varsigma )}\mathcal{Q}(t)+\frac{\varsigma }{\mathtt{B} ( \varsigma )} \int _{t}^{ \mathfrak{q}}\mathcal{Q}(y)\,dy, $$

where \(\mathtt{B} ( \varsigma )\) is a normalization function.

The Atangana–Baleanu fractional operator containing the Mittag–Leffler function in the kernel was introduced by Atangana and Baleanu in [25], which solves the problem of retrieving the original function. It is seen that the Mittag–Leffler function is more appropriate than the power law in many physical phenomena. Due to its effectiveness, many researchers have shown a keen interest in utilizing this operator. Alina et al. [40] applied the Atangana–Baleanu fractional integral operator to multiplier transformations and obtained a new operator. Refai [41] presented the weighted fractional operators associated with the Atangana–Baleanu fractional operators. Very recently, Refai and Baleanu [42] in their short article extended the fractional integral in relation to the Mittag–Leffler kernel, which admits an integrable singular kernel at the origin. They introduced some modified ABC fractional operators and also solved related differential equations. Many researchers [4347] have studied the fractional integral, which Atangana and Baleanu [25] generalized. The corresponding derivative operator in the Caputo and Liouville–Reimann senses is

Definition 1.6

([25])

Let \(\mathfrak{q}>\mathfrak{p}\), \(\varsigma \in [ 0,1]\) and \(\mathcal{Q}\in H^{1}(\mathfrak{p},\mathfrak{q})\). The new fractional derivative is given as:

$$ {}_{ \mathfrak{p}}^{ABC}D_{t}^{\varsigma } \bigl[ \mathcal{Q}(t) \bigr] = \frac{\mathtt{B} ( \varsigma )}{1-\varsigma }\int _{\mathfrak{p}}^{t}\mathcal{Q}^{\prime }(y)E_{\varsigma } \biggl[ - \varsigma \frac{(t-y)^{\varsigma }}{(1-\varsigma )} \biggr]\,dy. $$

However, in the same paper they gave the corresponding Atangana–Baleanu (A–B) fractional integral operators as:

Definition 1.7

([25])

The fractional integral operator with nonlocal kernel of a function \(\mathcal{Q}\in H^{1}(\mathfrak{p},\mathfrak{q})\) is defined as:

$$ {}_{ \mathfrak{p}}^{AB}\mathcal{I}_{t}^{\varsigma } \bigl\{ \mathcal{Q}(t) \bigr\} = \frac{1-\varsigma }{\mathtt{B} ( \varsigma )}\mathcal{Q}(t)+ \frac{\varsigma }{\mathtt{B} ( \varsigma )\Gamma (\varsigma )} \int _{\mathfrak{p}}^{t}\mathcal{Q}(y) (t-y)^{\varsigma -1} \,dy, $$

where \(\mathfrak{q}>\mathfrak{p}\), \(\varsigma \in [0,1]\).

In [48], the right-hand side of the AB-fractional integral operator was given as;

$$ {}_{ \mathfrak{q}}^{AB}\mathcal{I}_{t}^{\varsigma } \bigl\{ \mathcal{Q}(t) \bigr\} = \frac{1-\varsigma }{\mathtt{B} ( \varsigma )}\mathcal{Q}(t)+ \frac{\varsigma }{\mathtt{B} ( \varsigma )\Gamma (\varsigma )} \int _{t}^{\mathfrak{q}}\mathcal{Q}(y) (y-t)^{\varsigma -1} \,dy. $$

Here, \(\Gamma (\varsigma )\) is the Gamma function. The positivity of the normalization function \(\mathtt{B} ( \varsigma )\) implies that the fractional AB-integral of a positive function is positive. It is worth noting the case that when the order \(\varsigma \rightarrow 1\), it yields the classical integral and the case when \(\varsigma \rightarrow 0\), it provides the initial function.

Motivated by the above results and the literature, the main motivation of this article is to use the Atangana–Baleanu fractional integrals to prove some novel inequalities for twice-differentiable s-convex functions and some interesting applications related to modified Bessel functions and q-digamma functions. The rest of the paper is structured as follows: In Sect. 2, we establish a new identity and then apply it to derive new fractional Ostrowski-type inequalities for s-convex functions. Further, with the help of the improved Hölder’s inequality, results for functions with a bounded second derivative are presented in Sect. 3. In order to illustrate the efficiency of our main results, some applications to modified Bessel functions and q-digamma functions are obtained in Sect. 4. Finally, in Sect. 5 a brief conclusion and future plans are discussed.

2 Main results

In this section, first we prove an Atangana–Baleanu fractional identity for twice-differentiable functions. Then, employing this and some fundamental integral inequalities, we present our main results.

Lemma 2.1

Suppose \(\mathcal{Q}:\mathcal {J}=[\mathfrak{p},\mathfrak{q}]\rightarrow \mathcal{R}\) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\). If \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\), then for all \(\omega \in {}[ \mathfrak{p},\mathfrak{q}]\) and \(\varsigma >0\), the following equality for AB-fractional integrals

$$\begin{aligned} & \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) } \mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \\ &\quad = \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr)\,d\varPhi \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr)\,d\varPhi , \end{aligned}$$
(2.1)

holds true for \({{\varPhi }}\in [0,1]\).

Proof

Let us suppose that

$$\begin{aligned} & \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr)\,d\varPhi \\ & \quad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr)\,d\varPhi \\ & I= \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } {{\mathcal{I}_{1}}}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } {{ \mathcal{I}_{2}}} , \end{aligned}$$
(2.2)

where

$$\begin{aligned} {{\mathcal{I}_{1}}}&= \int _{0}^{1}\varPhi ^{ \varsigma +1} \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr)\,d\varPhi \\ & = \frac{\varPhi ^{\varsigma +1}\mathcal{Q}^{{\prime }} ( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} ) }{\omega -\mathfrak{p}}\bigg|_{0}^{1}- \int _{0}^{1} \frac{ ( \varsigma +1 ) \varPhi ^{\varsigma } \mathcal{Q}^{{\prime }} ( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} ) }{\omega -\mathfrak{p}}\,d\varPhi \\ & = \frac{\mathcal{Q}^{{\prime }} ( \omega ) }{\omega -\mathfrak{p}}- \frac{\varsigma +1}{\omega -\mathfrak{p}}\int _{0}^{1}\varPhi ^{\varsigma } \mathcal{Q}^{{\prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr)\,d\varPhi \\ & = \frac{\mathcal{Q}^{{\prime }} ( \omega ) }{\omega -\mathfrak{p}}- \frac{\varsigma +1}{ ( \omega -\mathfrak{p} ) ^{2}}\mathcal{Q} ( \omega ) + \frac{\varsigma ( \varsigma +1 ) }{ ( \omega -\mathfrak{p} ) ^{2}} \int _{0}^{1}\varPhi ^{\varsigma -1} \mathcal{Q} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr)\,d\varPhi \\ & = \frac{\mathcal{Q}^{{\prime }} ( \omega ) }{\omega -\mathfrak{p}}- \frac{\varsigma +1}{ ( \omega -\mathfrak{p} ) ^{2}}\mathcal{Q} ( \omega ) + \frac{\mathtt{B} ( \varsigma )\Gamma ( \varsigma +2 ) }{\varsigma ( \omega -\mathfrak{p} ) ^{\varsigma +2}} \biggl\{ {}_{\omega}^{AB}\mathcal{I}_{\mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) - \frac{1-\varsigma}{\mathtt{B} ( \varsigma )}\mathcal{Q} ( \omega ) \biggr\} . \end{aligned}$$

Similarly,

$$\begin{aligned} {{\mathcal{I}_{2}}}&= \int _{0}^{1}\varPhi ^{ \varsigma +1} \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr)\,d\varPhi \\ & = \frac{\varPhi ^{\varsigma +1}\mathcal{Q}^{{\prime }} ( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} ) }{\omega -\mathfrak{q}}\bigg|_{0}^{1}- \int _{0}^{1} \frac{ ( \varsigma +1 ) \varPhi ^{\varsigma } \mathcal{Q}^{{\prime }} ( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} ) }{\omega -\mathfrak{q}}\,d\varPhi \\ & = - \frac{\mathcal{Q}^{{\prime }} ( \omega ) }{\mathfrak{q}-\omega}- \frac{\varsigma +1}{\omega -\mathfrak{q}}\int _{0}^{1}\varPhi ^{\varsigma } \mathcal{Q}^{{\prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr)\,d\varPhi \\ & =- \frac{\mathcal{Q}^{{\prime }} ( \omega ) }{\mathfrak{q}-\omega}- \frac{\varsigma +1}{ ( \mathfrak{q}-\omega ) ^{2}}\mathcal{Q} ( \omega ) + \frac{\varsigma ( \varsigma +1 ) }{ ( \mathfrak{q}-\omega ) ^{2}} \int _{0}^{1}\varPhi ^{\varsigma -1} \mathcal{Q} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr)\,d\varPhi \\ & =- \frac{\mathcal{Q}^{{\prime }} ( \omega ) }{\mathfrak{q}-\omega}- \frac{\varsigma +1}{ ( \mathfrak{q}-\omega ) ^{2}}\mathcal{Q} ( \omega ) + \frac{\mathtt{B} ( \varsigma )\Gamma ( \varsigma +2 ) }{\varsigma ( \mathfrak{q}-\omega ) ^{\varsigma +2}} \biggl\{ {}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) - \frac{1-\varsigma}{\mathtt{B} ( \varsigma )}\mathcal{Q} ( \omega ) \biggr\} , \end{aligned}$$

using \(\mathcal{I}_{1}\) and \(\mathcal{I}_{2}\) with (2.2), we obtain (2.3). □

Theorem 2.1

Suppose \(\mathcal{Q}:\mathcal {J}\subset {}[ 0,\infty )\rightarrow \mathcal{R} \) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\) such that \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\). If \(|\mathcal{Q}^{{\prime \prime }}|\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\) for some fixed \(s\in (0,1]\), then for all \(\varsigma >0\), the following AB-fractional integral inequality

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{(\varsigma +s+2)} + \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert \beta (\varsigma +2,s+1) \biggr\} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{(\varsigma +s+2)} + \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert \beta (\varsigma +2,s+1) \biggr\} {{,}} \end{aligned}$$
(2.3)

holds true for \({{\varPhi }}\in {}[ 0,1]\).

Proof

From Lemma 2.1 and since \(|\mathcal{Q}^{{\prime \prime}}|\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert \,d\varPhi \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert d \varPhi \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert + ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{p} ) \bigr\vert \bigr\} \,d\varPhi \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert + ( 1-\varPhi )^{s} \bigl\vert \varPhi ^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert \bigr\} \,d\varPhi \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{(\varsigma +s+2)} + \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert \beta (\varsigma +2,s+1) \biggr\} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{(\varsigma +s+2)} + \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert \beta (\varsigma +2,s+1) \biggr\} . \end{aligned}$$

Therefore, the proof is completed. □

Corollary 2.1

If we set \(s=1\) in Theorem 2.1, then we have the following new Ostrowski-type inequality for a convex function:

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{\varsigma +3} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert }{ (\varsigma +2) (\varsigma +3)} \biggr\} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{\varsigma +3} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert }{ (\varsigma +2) (\varsigma +3)} \biggr\} . \end{aligned}$$

Remark 2.1

If we set \(\varsigma =1\) in Theorem 2.1, then (Theorem 4 of [49] ) is recovered;

$$\begin{aligned} & \biggl\vert \frac{1 }{\mathfrak{q}-\mathfrak{p}} \int _{ \mathfrak{p}}^{\mathfrak{q}}\mathcal{Q} ( u )\,du- \mathcal{Q} ( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \mathcal{Q}^{{\prime }} ( \omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{s+3} + \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert }{ (s+1)(s +2) (s+3)} \biggr\} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert }{s+3} + \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert }{ (s+1)(s +2) (s+3)} \biggr\} . \end{aligned}$$

Corollary 2.2

By using Corollary 2.1with \(|\mathcal{Q}^{{\prime \prime }}|\leq \mathcal{M}\), we obtain the following inequality

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \mathcal{M} \biggl( \frac{1}{ ( \varsigma +1 )(\varsigma +2) ( \mathfrak{q}-\mathfrak{p} )} \biggr) \bigl[ ( \omega -\mathfrak{p} ) ^{\varsigma +2} + ( \mathfrak{q}-\omega ) ^{\varsigma +2} \bigr]. \end{aligned}$$

Theorem 2.2

Suppose \(\mathcal{Q}:\mathcal {J}\subset {}[ 0,\infty )\rightarrow \mathcal{R} \) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\) such that \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\). If \(|\mathcal{Q}^{{\prime \prime }}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\) for some fixed \(s\in (0,1]\), \(q>1\), then for all \(\varsigma >0\), the following A-B fractional integral inequality

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \biggl( \frac{1}{ ( \varsigma +1 ) p+1} \biggr) ^{ \frac{1}{p}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{ q}} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$
(2.4)

holds true for \({{\varPhi }}\in {}[ 0,1]\), where \(q^{-1}+p^{-1}=1\).

Proof

Suppose that \(q>1\). From Lemma 2.1, by using the well-known Hölder integral inequality and the s-convexity of \(|\mathcal{Q}^{{\prime \prime}}|^{q}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {} - \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert \,d\varPhi \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert d \varPhi \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1- \varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1- \varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} . \end{aligned}$$
(2.5)

Since, \(|\mathcal{Q}^{{\prime \prime}}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\), we obtain

$$\begin{aligned} & \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \\ &\quad \leq \int _{0}^{1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1- \varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q} \bigr\} \,d\varPhi \\ &\quad = \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+1}. \end{aligned}$$
(2.6)

Also,

$$\begin{aligned} & \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \\ &\quad \leq \int _{0}^{1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1- \varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \bigr\} \,d\varPhi \\ &\quad = \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+1}. \end{aligned}$$
(2.7)

By using (2.6) and (2.7) with (2.5), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }- ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \biggl( \frac{1}{ ( \varsigma +1 ) p+1} \biggr) ^{ \frac{1}{p}} \\ &\qquad {} \times \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$

which completes the proof. □

Corollary 2.3

If we set \(s=1\) in Theorem 2.2, then we have the following Ostrowski-type inequality for a convex function:

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \biggl( \frac{1}{ ( \varsigma +1 ) p+1} \biggr) ^{ \frac{1}{p}} \\ &\qquad {}\times \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$
(2.8)

Remark 2.2

If we set \(\varsigma =1\) in Theorem 2.2, then we obtain (Theorem 5, [49] ).

$$\begin{aligned} & \biggl\vert \frac{1 }{\mathfrak{q}-\mathfrak{p}} \int _{ \mathfrak{p}}^{\mathfrak{q}}\mathcal{Q} ( u )\,du- \mathcal{Q} ( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \mathcal{Q}^{{\prime }} ( \omega ) \biggr\vert \\ &\quad \leq \biggl( \frac{1}{2 p+1} \biggr) ^{\frac{1}{p}} \\ & \qquad {}\times \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Corollary 2.4

Using Corollary 2.3with \(|\mathcal{Q}^{{\prime \prime }}|\leq \mathcal{M}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \mathcal{M} \biggl( \frac{1}{ ( \varsigma +1 ) p+1} \biggr) ^{\frac{1}{p}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggr]. \end{aligned}$$

Theorem 2.3

Suppose \(\mathcal{Q}:\mathcal {J}\subset {}[ 0,\infty )\rightarrow \mathcal{R} \) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\) such that \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\). If \(|\mathcal{Q}^{{\prime \prime }}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\) for some fixed \(s\in (0,1]\), \(q\geq 1\), then for all \(\varsigma >0\), the following inequality for A-B fractional integrals

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \biggl( \frac{1}{\varsigma +2} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+2)}+\beta (\varsigma +2,s+1){ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}} \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+2)}+\beta (\varsigma +2,s+1){ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$
(2.9)

holds true for \({{\varPhi }}\in {}[ 0,1]\).

Proof

Suppose that \(q\geq 1\). From Lemma 2.1, by using the power-mean integral inequality and the s-convexity of \(|\mathcal{Q}^{{\prime \prime }}|^{q}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {} - \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert \,d\varPhi \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert d \varPhi \\ & \quad \leq \frac{ ( \omega -a ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \int _{0}^{1}\varPhi ^{\varsigma +1}\,d\varPhi \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \int _{0}^{1}\varPhi ^{ \varsigma +1}\,d\varPhi \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} . \end{aligned}$$
(2.10)

Since \(|\mathcal{Q}^{{\prime \prime}}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\), we obtain

$$\begin{aligned} & \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \varPhi ^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,dt \\ &\quad \leq \int _{0}^{1}\varPhi ^{ \varsigma +1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q} \bigr\} \,d\varPhi \\ &\quad = \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+2)}+\beta (\varsigma +2,s+1){ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}} \end{aligned}$$
(2.11)

and

$$\begin{aligned} & \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,dt \\ &\quad \leq \int _{0}^{1}\varPhi ^{ \varsigma +1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \bigr\} \,d\varPhi \\ &\quad = \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+2)}+\beta (\varsigma +2,s+1){ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}}. \end{aligned}$$
(2.12)

By using (2.11) and (2.12) with (2.10), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {} - \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \biggl( \frac{1}{\varsigma +2} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+2)}+\beta (\varsigma +2,s+1){ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}} \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+2)}+\beta (\varsigma +2,s+1){ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$

which completes the proof. □

Corollary 2.5

If we set \(s=1\) in Theorem 2.3, then we have the following Ostrowski-type inequality for a convex function:

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {} - \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \biggl( \frac{1}{\varsigma +2} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{\varsigma +3}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{\frac{1}{q}} \\ & \qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{\varsigma +3}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{ \frac{1}{q}} \biggr]. \end{aligned}$$
(2.13)

Remark 2.3

If we set \(\varsigma =1\), in Theorem 2.3, then we recover (Theorem 6, [49] )

$$\begin{aligned} & \biggl\vert \frac{1 }{\mathfrak{q}-\mathfrak{p}} \int _{ \mathfrak{p}}^{\mathfrak{q}}\mathcal{Q} ( u )\,du- \mathcal{Q} ( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \mathcal{Q}^{{\prime }} ( \omega ) \biggr\vert \\ & \quad \leq \biggl( \frac{1}{3} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{s+3}+ \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)(s+2)(s+3)} \biggr) ^{\frac{1}{q}} \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+3)}+ \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)(s+2)(s+3) } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Corollary 2.6

Under the same assumptions of Corollary 2.5with \(|\mathcal{Q}^{{\prime \prime }}|\leq \mathcal{M}\), we obtain the following inequality

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \mathcal{M} \biggl( \frac{1}{ ( \varsigma +1 )(\varsigma +2) ( \mathfrak{q}-\mathfrak{p} )} \biggr) \bigl[ { ( \omega -\mathfrak{p} ) ^{\varsigma +2}} + { ( \mathfrak{q}- \omega ) ^{\varsigma +2}} \bigr]. \end{aligned}$$

Theorem 2.4

Suppose \(\mathcal{Q}:\mathcal {J}\subset {}[ 0,\infty )\rightarrow \mathcal{R} \) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\) such that \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\). If \(|\mathcal{Q}^{{\prime \prime }}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\) for some fixed \(s\in (0,1]\), \(q>1\), then for all \(\varsigma >0\), following the inequality for AB-fractional integrals

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {} - \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{ ( ( \varsigma +1 ) p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)q} \biggr\} \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{ ( ( \varsigma +1 ) p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)q} \biggr\} , \end{aligned}$$
(2.14)

holds true for \({{\varPhi }}\in {}[ 0,1]\).

Proof

From Lemma 2.1, we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {} - \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert \,d\varPhi \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert d \varPhi . \end{aligned}$$

By using Young’s inequality as

$$\begin{aligned} & UV < \frac{1}{p}U^{p} + \frac{1}{q}V^{q}, \\ & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{p} \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi + \frac{1}{q} \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr\} \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{p} \int _{0}^{1} \varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi + \frac{1}{q} \int _{0}^{1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr\} \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{p} \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi + \frac{1}{q} \int _{0}^{1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1- \varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q} \bigr\} \biggr\} \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{p} \int _{0}^{1} \varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi + \frac{1}{q} \int _{0}^{1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1- \varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \bigr\} \biggr\} \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{ ( ( \varsigma +1 ) p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)q} \biggr\} \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{ ( ( \varsigma +1 ) p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)q} \biggr\} , \end{aligned}$$

which completes the proof. □

Corollary 2.7

If we set \(s=1\) in Theorem 2.4, then we have the following Ostrowski-type inequality for a convex function:

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{ ( ( \varsigma +1 ) p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{2q} \biggr\} \\ & \qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{1}{ ( ( \varsigma +1 ) p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{2q} \biggr\} . \end{aligned}$$
(2.15)

Corollary 2.8

If we set \(\varsigma =1\) in Theorem 2.4, we obtain

$$\begin{aligned} & \biggl\vert \frac{1 }{\mathfrak{q}-\mathfrak{p}} \int _{ \mathfrak{p}}^{\mathfrak{q}}\mathcal{Q} ( u )\,du- \mathcal{Q} ( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \mathcal{Q}^{{\prime }} ( \omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[\frac{1}{ ( 2p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{2q} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[\frac{1}{ ( 2p+1 ) p}+ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}+ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)q} \biggr]. \end{aligned}$$

3 Further inequalities via an improved Hölder’s inequality

Theorem 3.1

Suppose \(\mathcal{Q}:\mathcal {J}\subset {}[ 0,\infty )\rightarrow \mathcal{R} \) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\) such that \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\). If \(|\mathcal{Q}^{{\prime \prime }}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\) for some fixed \(s\in (0,1]\), \(q>1\), then for all \(\varsigma >0\), the following A-B fractional integral inequality

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$
(3.1)

holds true for \(\varPhi \in {}[ 0,1]\), where \(q^{-1}+p^{-1}=1\).

Proof

From Lemma 2.1, by using the Hölder–Işcan integral inequality (see in [50] ) and the s-convexity of \(|\mathcal{Q}^{{\prime \prime}}|^{q}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert \,d\varPhi \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert d \varPhi \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ ( \varsigma +1 ) p} \,d\varPhi \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{0}^{1} ( 1-\varPhi ) \bigl\vert \mathcal{Q}^{{ \prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p+1}\,d\varPhi \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\varPhi \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1- \varPhi ) \varPhi ^{ ( \varsigma +1 ) p}\,d\varPhi \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{0}^{1} ( 1-\varPhi ) \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p+1}\,d\varPhi \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\varPhi \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \biggr] \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ ( \varsigma +1 ) p} \,d\varPhi \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{0}^{1} ( 1-\varPhi ) \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}\bigr\} \,d\varPhi \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p+1}\,d\varPhi \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\varPhi \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1- \varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}\bigr\} \,d\varPhi \biggr) ^{ \frac{1}{q}} \biggr] \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ ( \varsigma +1 ) p} \,d\varPhi \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{0}^{1} ( 1-\varPhi ) \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}\bigr\} \,d\varPhi \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{0}^{1}\varPhi ^{ ( \varsigma +1 ) p+1}\,d\varPhi \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\varPhi \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1- \varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}\bigr\} \,d\varPhi \biggr) ^{ \frac{1}{q}} \biggr]. \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{ \frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

This completes the proof. □

Corollary 3.1

If we set \(s=1\) in Theorem 3.1, then we have the following Ostrowski-type inequality for a convex function:

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{6} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+\frac{1}{3} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{3} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+\frac{1}{6} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{6} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+\frac{1}{3} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{3} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+\frac{1}{6} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Corollary 3.2

If we set \(\varsigma =1\) in Theorem 3.1, we obtain

$$\begin{aligned} & \biggl\vert \frac{1 }{\mathfrak{q}-\mathfrak{p}} \int _{ \mathfrak{p}}^{\mathfrak{q}}\mathcal{Q} ( u )\,du- \mathcal{Q} ( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \mathcal{Q}^{{\prime }} ( \omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( 2p+1 ) ( 2p+2 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ 2 p+2} \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( 2p+1 ) ( 2p+2 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{2p+2} \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Corollary 3.3

Using the same assumptions in Corollary 3.1with \(|\mathcal{Q}^{{\prime \prime }}|\leq \mathcal{M}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{\mathcal{M} }{2^{\frac{1}{q}} ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma p+p+1 ) ( \varsigma p+p+2 ) } \biggr) ^{\frac{1}{p}}+ \biggl( \frac{1}{ ( \varsigma +1 ) p+2} \biggr) ^{\frac{1}{p}} \biggr] \\ &\qquad {}\times \bigl[ ( \omega -\mathfrak{p} ) ^{\varsigma +2}+ ( \mathfrak{q}-\omega ) ^{\varsigma +2} \bigr]. \end{aligned}$$

Theorem 3.2

Suppose \(\mathcal{Q} :\mathcal {J}\subset {}[ 0,\infty )\rightarrow \mathcal{R} \) is a twice-differentiable mapping on \((\mathfrak{p},\mathfrak{q})\) with \(\mathfrak{p}<\mathfrak{q}\) such that \(\mathcal{Q}^{{\prime \prime }}\in \mathcal {L}_{1}[\mathfrak{p}, \mathfrak{q}]\). If \(|\mathcal{Q}^{{\prime \prime }}|^{q}\) is an s-convex function on \([\mathfrak{p},\mathfrak{q}]\) for some fixed \(s\in (0,1]\), \(q\geq 1\), then for all \(\varsigma >0\), the inequality for A-B fractional integrals

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times\biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( \varsigma +s+2 ) ( \varsigma +s+3 ) } +{ \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}}\beta (s+2,\varsigma +2) \biggr) ^{ \frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{\varsigma +3} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{\varsigma +s +3}+{ \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}}\beta (\varsigma +3,s+1) \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( \varsigma +s+2 ) ( \varsigma +s+3 ) }+{ \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}}\beta (s+2,\varsigma +2) \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \frac{1}{\varsigma +3} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+3)}+{ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \beta ( \varsigma +3,s+1)} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$
(3.2)

holds true for \({{\varPhi }}\in [ 0,1]\).

Proof

From Lemma 2.1, the improved power-mean integral inequality (see in [50] ), and the s-convexity of \(|\mathcal{Q}^{{\prime \prime}}|^{q}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{p} \bigr) \bigr\vert \,d\varPhi \\ &\qquad {}+\frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \int _{0}^{1}\varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert d \varPhi \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ \varsigma +1} \,d\varPhi \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times\biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{\varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1- \varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2}\,d\varPhi \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1- \varPhi ) \mathfrak{p} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1- \varPhi ) \varPhi ^{\varsigma +1}\,d\varPhi \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times\biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ \varsigma +1} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1-\varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2}\,d\varPhi \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2} \bigl\vert \mathcal{Q}^{{\prime \prime }} \bigl( \varPhi \omega + ( 1- \varPhi ) \mathfrak{q} \bigr) \bigr\vert ^{q}\,d\varPhi \biggr) ^{\frac{1}{q}} \biggr] \\ & \quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ \varsigma +1} \,d\varPhi \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times\biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{\varsigma +1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}\bigr\} \,d \varPhi \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2}\,d\varPhi \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2}\bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}\bigr\} \,d\varPhi \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \int _{0}^{1} ( 1- \varPhi ) \varPhi ^{\varsigma +1}\,d\varPhi \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times\biggl( \int _{0}^{1} ( 1-\varPhi ) \varPhi ^{ \varsigma +1} \bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}\bigr\} \,d \varPhi \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2}\,d\varPhi \biggr) ^{1- \frac{1}{q}} \biggl( \int _{0}^{1}\varPhi ^{\varsigma +2}\bigl\{ \varPhi ^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \bigr\vert ^{q}+ ( 1-\varPhi )^{s} \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}\bigr\} \,d\varPhi \biggr) ^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( \varsigma +s+2 ) ( \varsigma +s+3 ) } +{ \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}}\beta (s+2,\varsigma +2) \biggr) ^{ \frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{\varsigma +3} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{\varsigma +s +3}+{ \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \bigr\vert ^{q}}\beta (\varsigma +3,s+1) \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( \varsigma +s+2 ) ( \varsigma +s+3 ) }+{ \bigl\vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q}}\beta (s+2,\varsigma +2) \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \frac{1}{\varsigma +3} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(\varsigma +s+3)}+{ \bigl\vert \mathcal{Q}^{{ \prime \prime }} ( \mathfrak{q} ) \bigr\vert ^{q} \beta ( \varsigma +3,s+1)} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

This completes the proof. □

Corollary 3.4

If we set \(s=1\) in Theorem 3.2, then we have the following Ostrowski-type inequality for a convex function:

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ &\qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{1- \frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( \varsigma +3 ) ( \varsigma +4 ) }+ \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{ ( \varsigma +2 ) ( \varsigma +3 ) ( \varsigma +4 ) } \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{\varsigma +3} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{\varsigma +4}+\frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{ ( \varsigma +3 ) ( \varsigma +4 ) } \biggr) ^{ \frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{\varsigma +2}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( \varsigma +2 ) ( \varsigma +3 ) } \biggr) ^{1- \frac{1}{q}} \\ &\qquad {}\times\biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( \varsigma +3 ) ( \varsigma +4 ) }+ \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{ ( \varsigma +2 ) ( \varsigma +3 ) ( \varsigma +4 ) } \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{\varsigma +3} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{\varsigma +4}+\frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{ ( \varsigma +3 ) ( \varsigma +4 ) } \biggr) ^{ \frac{1}{q}} \biggr] . \end{aligned}$$

Corollary 3.5

If we set \(\varsigma =1\) in Theorem 3.2, we obtain

$$\begin{aligned} & \biggl\vert \frac{1 }{\mathfrak{q}-\mathfrak{p}} \int _{ \mathfrak{p}}^{\mathfrak{q}}\mathcal{Q} ( u )\,du - \mathcal{Q} ( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \mathcal{Q}^{{\prime }} ( \omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{ ( 2 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{12 } \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ (s+3 ) ( s+4 ) } +{ \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \\ & \qquad {}+ \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{s +4}+{ \frac{6 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{p} ) \vert ^{q}}{(s+1)(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{3}}{ ( 2 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{12} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{ ( s+3 ) (s+4 ) }+{ \frac{2 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \mathcal{Q}^{{\prime \prime }} ( \omega ) \vert ^{q}}{(s+4)}+{ \frac{6 \vert \mathcal{Q}^{{\prime \prime }} ( \mathfrak{q} ) \vert ^{q}}{(s+1)(s+2)(s+3)(s+4)} } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Corollary 3.6

Using the same assumption of Corollary 3.4with \(|\mathcal{Q}^{{\prime \prime }}|\leq \mathcal{M}\), we obtain

$$\begin{aligned} & \biggl\vert \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma +1}- ( \mathfrak{q}-\omega ) ^{\varsigma +1}}{ ( \varsigma +1 ) ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q}^{{\prime }} ( \omega ) - \frac{ ( \omega -\mathfrak{p} ) ^{\varsigma }+ ( \mathfrak{q}-\omega ) ^{\varsigma }}{ ( \mathfrak{q}-\mathfrak{p} ) }\mathcal{Q} ( \omega ) \\ & \qquad {}- \frac{\mathtt{B} ( \varsigma ) \Gamma ( \varsigma ) }{\mathfrak{q} -\mathfrak{p} } \bigl\{ {}_{\omega}^{AB} \mathcal{I}_{ \mathfrak{p} }^{\varsigma } \mathcal{Q} ( \mathfrak{p} ) +{}_{\omega}^{AB}\mathcal{I}_{\mathfrak{q} }^{\varsigma } \mathcal{Q} ( \mathfrak{q} ) \bigr\} - \frac{2(1-\varsigma )\Gamma (\varsigma )}{\mathfrak{q} -\mathfrak{p} }\mathcal{Q}(\omega ) \biggr\vert \\ &\quad \leq \frac{\mathcal{M} }{ ( \varsigma +1 ) ( \varsigma +2 ) ( \mathfrak{q}-\mathfrak{p} ) } \bigl[ ( \omega -\mathfrak{p} ) ^{\varsigma +2}+ ( \mathfrak{q}-\omega ) ^{ \varsigma +2} \bigr]. \end{aligned}$$

4 Applications

4.1 q-digamma function

The q-digamma(psi) function \(\varrho _{\rho}\), is the ρ-analog of the digamma function ϱ (see [51] ) given as:

$$\begin{aligned} \varrho _{\rho}(\gamma )&=-\ln ( 1-\rho ) + \ln \rho \sum _{k=0}^{\infty}\frac{\rho ^{k+\gamma}}{1-\rho ^{k+\gamma}} \\ & =-\ln ( 1-\rho ) + \ln \rho \sum_{{ {k=1}}}^{\infty} \frac{\rho ^{k\gamma}}{1-\rho ^{k\gamma}}. \end{aligned}$$

For \(\rho >1\) and \(\gamma >0\), ρ-digamma function \(\varrho _{\rho}\) can be given as:

$$\begin{aligned} \varrho _{\rho}(\gamma )&=-\ln ( \rho -1 ) + \ln \rho \Biggl[\gamma - \frac{1}{2} - \sum_{k=0}^{\infty} \frac{\rho ^{-(k+\gamma )}}{1-\rho ^{-(k+\gamma )}} \Biggr] \\ & =-\ln ( \rho -1 ) + \ln \rho \Biggl[\gamma - \frac{1}{2} - \sum _{{{k=1}}}^{\infty} \frac{\rho ^{-k\gamma}}{1-\rho ^{-k\gamma}} \Biggr]. \end{aligned}$$

From the definition of q-digamma functions, it is seen that \(\mathcal{Q}(x)=\varrho ^{\prime}_{\rho}(x)\) is completely monotonic on \((0,\infty )\). If we set \(\mathcal{Q}(x)=\varrho ^{\prime}_{\rho}(x)\), then \(\mathcal{Q}^{\prime \prime}(x)=\varrho ^{\prime \prime \prime}_{\rho}(x)\) is also completely monotonic on \((0,\infty )\).

Proposition 4.1

Assuming all the above conditions and applying Remark 2.1, we have

$$\begin{aligned} & \biggl\vert \frac{\varrho _{\rho}(\mathfrak{q})-\varrho _{\rho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}- \varrho ^{\prime}_{\rho}( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \varrho ^{\prime \prime}_{\rho}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert }{s+3} + \frac{2 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert }{ (s+1)(s +2) (s+3)} \biggr\} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert }{s+3} + \frac{2 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert }{ (s+1)(s +2) (s+3)} \biggr\} . \end{aligned}$$

Proposition 4.2

Considering all the conditions of Proposition 4.1and applying Remark 2.2, we have

$$\begin{aligned} & \biggl\vert \frac{\varrho _{\rho}(\mathfrak{q})-\varrho _{\rho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}- \varrho ^{\prime}_{\rho}( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \varrho ^{\prime \prime}_{\rho}(\omega ) \biggr\vert \\ &\quad \leq \biggl( \frac{1}{2 p+1} \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}+ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}+ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Proposition 4.3

Considering all the conditions of Proposition 4.1and applying Remark 2.3, we have

$$\begin{aligned} & \biggl\vert \frac{\varrho _{\rho}(\mathfrak{q})-\varrho _{\rho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}- \varrho ^{\prime}_{\rho}( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \varrho ^{\prime \prime}_{\rho}(\omega ) \biggr\vert \\ &\quad \leq \biggl( \frac{1}{3} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{s+3}+ \frac{2 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{(s+1)(s+2)(s+3)} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{(s+3)}+ \frac{2 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{(s+1)(s+2)(s+3) } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Proposition 4.4

Considering all the conditions of Proposition  4.1 and applying Corollary  2.8 we have

$$\begin{aligned} & \biggl\vert \frac{\varrho _{\rho}(\mathfrak{q})-\varrho _{\rho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}- \varrho ^{\prime}_{\rho}( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \varrho ^{\prime \prime}_{\rho}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[\frac{1}{ ( 2p+1 ) p}+ \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}+ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{2q} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[\frac{1}{ ( 2p+1 ) p}+ \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}+ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{(s+1)q} \biggr]. \end{aligned}$$

Proposition 4.5

Considering all the conditions of Proposition  4.1 and applying Corollary  3.2 we have

$$\begin{aligned} & \biggl\vert \frac{\varrho _{\rho}(\mathfrak{q})-\varrho _{\rho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}- \varrho ^{\prime}_{\rho}( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \varrho ^{\prime \prime}_{\rho}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( p+p+1 ) ( p+p+2 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ 2 p+2} \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( p+p+1 ) ( p+p+2 ) } \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{(s+1)(s+2)} + \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ 2p+2} \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{(s+2)} +{ \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Proposition 4.6

Considering all the conditions of Proposition  4.1 and applying Corollary  2.8 we have

$$\begin{aligned} & \biggl\vert \frac{\varrho _{\rho}(\mathfrak{q})-\varrho _{\rho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}- \varrho ^{\prime}_{\rho}( \omega ) + \biggl( \omega - \frac{\mathfrak{p}+\mathfrak{q}}{2} \biggr) \varrho ^{\prime \prime}_{\rho}(\omega ) \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{ ( 2 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{12 } \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{ (s+3 ) ( s+4 ) } +{ \frac{2 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{s +4}+{ \frac{6 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{p}) \vert ^{q}}{(s+1)(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{3}}{ ( 2 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{12} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{ ( s+3 ) (s+4 ) }+{ \frac{2 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \biggl( \frac{ \vert \varrho ^{\prime \prime \prime}_{\rho}(\omega ) \vert ^{q}}{(s+4)}+{ \frac{6 \vert \varrho ^{\prime \prime \prime}_{\rho}(\mathfrak{q}) \vert ^{q}}{(s+1)(s+2)(s+3)(s+4)} } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

4.2 Modified Bessel functions

Let the function \(\mathcal{K}_{\varrho}:\mathcal{R}\to [1,\infty )\) be defined [51] as

$$ \mathcal{K}_{\varrho}(u)=2^{\varrho}\Gamma (\varrho +1)u^{-\delta} \mathrm{I}_{\varrho}(u),\quad u\in \mathcal{R.}$$

Here, we consider the modified Bessel function of the first kind given by

$$ \mathrm{I}_{\varrho}(u)=\sum_{n=0}^{\infty} \frac{ (\frac{u}{2} )^{\varrho +2n}}{n!\Gamma (\varrho +n+1)}. $$

The first-, second-, and third-order derivatives are given as

$$\begin{aligned}& \mathcal{K}^{\prime}_{\varrho}(u)=\frac{u}{2(\varrho +1)} \mathcal{K}_{ \varrho +1}(u),\\& \mathcal{K}^{\prime \prime}_{\varrho}(u)=\frac{1}{4(\varrho +1)} \biggl[ \frac{u^{2}}{(\varrho +2)}\mathcal{K}_{\varrho +2}(u)+2 \mathcal{K}_{\varrho +1}(u) \biggr],\\& \mathcal{K}^{\prime \prime \prime}_{\varrho}(u)= \frac{u}{4(\varrho +1)(\varrho +2)} \biggl[ \frac{u^{2}}{(\varrho +3)} \mathcal{K}_{\varrho +3}(u)+3\mathcal{K}_{\varrho +2}(u) \biggr]. \end{aligned}$$

If we use, \(\Phi (u)=\mathcal{K}^{\prime}_{\varrho}(u)\) and the above functions, we have

Proposition 4.7

Considering all the above conditions and applying Remark  2.1 we have

$$\begin{aligned} & \biggl\vert \frac{\mathcal{K}_{\varrho}(\mathfrak{q})-\mathcal{K}_{\varrho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}-\frac{\omega}{2(\varrho +1)}\mathcal{K}_{ \varrho +1}( \omega ) + \frac{ ( \omega -\frac{\mathfrak{p}+\mathfrak{q}}{2} )}{4(\varrho +1)} \biggl[\frac{\omega ^{2}}{(\varrho +2)} \mathcal{K}_{\varrho +2}( \omega )+2\mathcal{K}_{\varrho +1}(\omega ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert {\omega} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3} (\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert }{4(\varrho +1)(\varrho +2)(s+3)} \\ &\qquad {} + \frac{ \vert {\mathfrak{p}} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert }{ {2(\varrho +1)(\varrho +2)}(s+1)(s +2) (s+3)} \biggr\} \\ &\qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl\{ \frac{ \vert {\omega} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert }{{4(\varrho +1)(\varrho +2)}(s+3)}\\ &\qquad {}+ \frac{ \vert {\mathfrak{q}} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3} (\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert }{ {2(\varrho +1)(\varrho +2)}(s+1)(s +2) (s+3)} \biggr\} . \end{aligned}$$

Proposition 4.8

Considering all the conditions of Proposition  4.7 and applying Remark  2.2 we have

$$\begin{aligned} & \biggl\vert \frac{\mathcal{K}_{\varrho}(\mathfrak{q})-\mathcal{K}_{\varrho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}-\frac{\omega}{2(\varrho +1)}\mathcal{K}_{ \varrho +1}( \omega ) + \frac{ ( \omega -\frac{\mathfrak{p}+\mathfrak{q}}{2} )}{4(\varrho +1)} \biggl[\frac{\omega ^{2}}{(\varrho +2)} \mathcal{K}_{\varrho +2}( \omega )+2\mathcal{K}_{\varrho +1}(\omega ) \biggr] \biggr\vert \\ &\quad \leq \biggl( \frac{1}{2 p+1} \biggr) ^{\frac{1}{p}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}+ \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} )} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}+ \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{s+1} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Proposition 4.9

Considering all the conditions of Proposition 4.7and applying Corollary 2.3, we have

$$\begin{aligned} & \biggl\vert \frac{\mathcal{K}_{\varrho}(\mathfrak{q})-\mathcal{K}_{\varrho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}-\frac{\omega}{2(\varrho +1)}\mathcal{K}_{ \varrho +1}( \omega ) + \frac{ ( \omega -\frac{\mathfrak{p}+\mathfrak{q}}{2} )}{4(\varrho +1)} \biggl[\frac{\omega ^{2}}{(\varrho +2)} \mathcal{K}_{\varrho +2}( \omega )+2\mathcal{K}_{\varrho +1}(\omega ) \biggr] \biggr\vert \\ &\quad \leq \biggl( \frac{1}{3} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega ) +3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{s+3} \\ &\qquad {}+ \frac{2 \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{(s+1)(s+2)(s+3)} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega ) +3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{(s+3)} \\ &\qquad {}+ \frac{2 \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{(s+1)(s+2)(s+3) } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Proposition 4.10

Considering all the conditions of Proposition 4.7and applying Corollary 2.8, we have

$$\begin{aligned} & \biggl\vert \frac{\mathcal{K}_{\varrho}(\mathfrak{q})-\mathcal{K}_{\varrho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}-\frac{\omega}{2(\varrho +1)}\mathcal{K}_{ \varrho +1}( \omega ) + \frac{ ( \omega -\frac{\mathfrak{p}+\mathfrak{q}}{2} )}{4(\varrho +1)} \biggl[\frac{\omega ^{2}}{(\varrho +2)} \mathcal{K}_{\varrho +2}( \omega )+2\mathcal{K}_{\varrho +1}(\omega ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[\frac{1}{ ( 2p+1 ) p} \\ &\qquad {}+ \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}+ \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{2q} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[\frac{1}{ ( 2p+1 ) p} \\ &\qquad {}+ \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}+ \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{(s+1)q} \biggr]. \end{aligned}$$

Proposition 4.11

Considering all the conditions of Proposition 4.7and applying Corollary 3.2, we have

$$\begin{aligned} & \biggl\vert \frac{\mathcal{K}_{\varrho}(\mathfrak{q})-\mathcal{K}_{\varrho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}-\frac{\omega}{2(\varrho +1)}\mathcal{K}_{ \varrho +1}( \omega ) + \frac{ ( \omega -\frac{\mathfrak{p}+\mathfrak{q}}{2} )}{4(\varrho +1)} \biggl[\frac{\omega ^{2}}{(\varrho +2)} \mathcal{K}_{\varrho +2}( \omega )+2\mathcal{K}_{\varrho +1}(\omega ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( 2p+1 ) ( 2p+2 ) } \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{(s+1)(s+2)} \\ &\qquad {} + \frac{ \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{ 2 p+2} \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{(s+2)} \\ &\qquad {} +{ \frac{ \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad {}+ \frac{ ( \mathfrak{q}-\omega ) ^{3}}{2 ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{ ( 2p+1 ) ( 2p+2 ) } \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{(s+1)(s+2)} \\ &\qquad {}+ \frac{ \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{s+2} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{2 p+2} \biggr) ^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{(s+2)} \\ &\qquad {}+{ \frac{ \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{(s+1)(s+2)}} \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

Proposition 4.12

Considering all the conditions of Proposition 4.7and applying Corollary 3.5, we have

$$\begin{aligned} & \biggl\vert \frac{\mathcal{K}_{\varrho}(\mathfrak{q})-\mathcal{K}_{\varrho}(\mathfrak{p}) }{\mathfrak{q}-\mathfrak{p}}-\frac{\omega}{2(\varrho +1)}\mathcal{K}_{ \varrho +1}( \omega ) + \frac{ ( \omega -\frac{\mathfrak{p}+\mathfrak{q}}{2} )}{4(\varrho +1)} \biggl[\frac{\omega ^{2}}{(\varrho +2)} \mathcal{K}_{\varrho +2}( \omega )+2\mathcal{K}_{\varrho +1}(\omega ) \biggr] \biggr\vert \\ &\quad \leq \frac{ ( \omega -\mathfrak{p} ) ^{3}}{ ( 2 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{12 } \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega ) +3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{ (s+3 ) ( s+4 ) } \\ &\qquad {}+{ \frac{2 \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p})+3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{s +4} \\ &\qquad {}+{ \frac{6 \vert \frac{\mathfrak{p}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{p}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{p}) +3\mathcal{K}_{\varrho +2}(\mathfrak{p}) ] \vert ^{q}}{(s+1)(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad {} + \frac{ ( \mathfrak{q}-\omega ) ^{3}}{ ( 2 ) ( \mathfrak{q}-\mathfrak{p} ) } \biggl[ \biggl( \frac{1}{12} \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{ ( s+3 ) (s+4 ) } \\ &\qquad {}+{ \frac{2 \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q}) +3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{(s+2)(s+3)(s+4)}} \biggr) ^{\frac{1}{q}} \\ & \qquad {} + \biggl( \frac{1}{4} \biggr) ^{1-\frac{1}{q}} \\ &\qquad {}\times \biggl( \frac{ \vert \frac{\omega}{4(\varrho +1)(\varrho +2)} [\frac{\omega ^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\omega )+3\mathcal{K}_{\varrho +2}(\omega ) ] \vert ^{q}}{(s+4)} \\ &\qquad {}+{ \frac{6 \vert \frac{\mathfrak{q}}{4(\varrho +1)(\varrho +2)} [\frac{\mathfrak{q}^{2}}{(\varrho +3)}\mathcal{K}_{\varrho +3}(\mathfrak{q})+3\mathcal{K}_{\varrho +2}(\mathfrak{q}) ] \vert ^{q}}{(s+1)(s+2)(s+3)(s+4)} } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}$$

5 Conclusion

In recent times most of the work on inequality is based on revealing new bounds of some well-known inequalities using fractional calculus. In this direction, we have investigated the correlation between the theory of inequality and fractional calculus. We have considered the Ostrowski-type inequality in the setting of Atangana–Baleanu fractional calculus. Fractional integral operators play a major role in the advancement of the theory of mathematical inequalities. For this reason, first, we established a new equality for differentiable functions, and using this we have proved our main results. The main objective is to employ Atangana–Baleanu fractional integrals and an s-convex function to provide new bounds of the Ostrowski-type inequality. Several special cases of the main results are rediscovered as well. To be more specific in our main results, if we put \(s=1\), we obtain new Ostrowski-type inequalities for the convex function. Hence, in this paper, we show results for both s-convex and convex functions. In the future, we will use the novel concepts and the modified fractional operators introduced by Refai and Baleanu [42].

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Niculescu, C.P., Persson, L.E.: Convex Functions and Their Applications. Springer, New York (2006)

    Book  MATH  Google Scholar 

  2. Hadamard, J.: Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)

    MATH  Google Scholar 

  3. Ostrowski, A.M.: Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert. Comment. Math. Helv. 10, 226–227 (1938)

    Article  MATH  Google Scholar 

  4. Dragomir, S.S., Fitzpatrick, S.: The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 32, 687–696 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Hudzik, H., Maligranda, L.: Some remarks on s-convex functions. Aequ. Math., 48100–111 (1994)

  6. Dragomir, S.S., Rassias, T.M. (eds.): Ostrowski Type Inequalities and Applications in Numerical Integration Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  7. Alomari, M., Darus, M., Dragomir, S.S., Cerone, P.: Ostrowski type inequalities for functions whose derivatives are s–convex in the second sense. Appl. Math. Lett. 23, 1071–1076 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. İşcan, İ.: Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 3(1), 63–74 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Set, E.: New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63(7), 1147–1154 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, W.: Ostrowski type fractional integral inequalities for MT-convex functions. Miskolc Math. Notes 16(1), 249–256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tunç, M.: Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013(1), 1 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ozdemir, M.E., Kavurmaci, H., Set, E.: Ostrowski’s type inequalities for \((\alpha , m)\)-convex function. Kyungpook Math. J. 50(3), 371–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Agarwal, R.P., Luo, M.J., Raina, R.K.: On Ostrowski type inequalities. Fasc. Math. 56, 5–27 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Sarikaya, M., Budak, H.: Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 145(4), 1527–1538 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gürbüz, M., Taşdan, Y., Set, E.: Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Math. 5(1), 42–53 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ahmad, H., Tariq, M., Sahoo, S.K., Askar, S., Abouelregal, A.E., Khedher, K.M.: Refinements of Ostrowski type integral inequalities involving Atangana-Baleanu fractional integral operator. Symmetry 13(11) (2021)

  17. Alomari, M., Darus, M.: Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA Res. Rep. Collect. 13, 13696936 (2010)

    Google Scholar 

  18. Dragomir, S.S.: On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Inequal. Appl. 1, 59–66 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Kashuri, A., Meftah, B., Mohammed, P.O., Lupaş, A.A., Abdalla, B., Hamed, Y.S., Abdeljawad, T.: Fractional weighted Ostrowski-Type inequalities and their applications. Symmetry 13(6) (2021)

  20. Cortez, M.V., Kashuri, A., Hernańdez, J.E.: Trapezium-type AB-fractional integral inequalities using generalized convex and ϕ-quasi convex functions. Prog. Fract. Differ. Appl. 8(1), 107–122 (2022)

    Article  Google Scholar 

  21. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order pp. 223–276. Springer, Wien (1997)

    MATH  Google Scholar 

  22. Mubeen, S., Habibullah, G.M.: k-fractional integrals and application. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  25. Atangana, A., Baleanu, D.: New fractional derivatices with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  26. Ali, R.S., Mukheimer, A., Abdeljawad, T., Mubeen, S., Ali, S., Rahman, G., Nisar, K.S.: Some new harmonically convex function type generalized fractional integral inequalities. Fractal Fract. 5(2) (2021)

  27. Samraiz, M., Nawaz, F., Abdalla, B., Abdeljawad, T., Rahman, G., Iqbal, S.: Estimates of trapezium-type inequalities for h-convex functions with applications to quadrature formulae. AIMS Math. 6(7), 7625–7648 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rahman, G., Khan, A., Abdeljawad, T., Nisar, K.S.: The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019(1), 1 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Nisar, K.S., Tassaddiq, A., Rahman, G., Khan, A.: Some inequalities via fractional conformable integral operators. J. Inequal. Appl. 2019(1), 1 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Rashid, S., Noor, M.A., Nisar, K.S., Baleanu, D., Rahman, G.: A new dynamic scheme via fractional operators on time scale. Front. Phys. 8 (2020)

  31. Rahman, G., Nisar, S., Qi, F.: Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Math. 3(4), 575–583 (2018)

    Article  MATH  Google Scholar 

  32. Mubeen, S., Ali, R.S., Nayab, I., Rahman, G., Nisar, K.S., Baleanu, D.: Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Math. 6(4), 3352–3377 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ntouyas, S.K., Agarwal, P., Tariboon, J.: On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 10(2), 491–504 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

    Article  MATH  Google Scholar 

  35. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 17, 1049–1059 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fernandez, A., Mohammed, P.O.: Hermite–Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 44, 8414–8431 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sahoo, S.K., Tariq, M., Ahmad, H., Nasir, J., Aydi, H., Mukheimer, A.: New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications. Symmetry 13 (2021)

  38. Nasir, J., Qaisar, S., Butt, S.I., Qayyum, A.: Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. AIMS Math. 7(3), 3303–3320 (2022)

    Article  MathSciNet  Google Scholar 

  39. Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80, 11–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Alb Lupaş, A., Cătaş, A.: Applications of the Atangana-Baleanu fractional integral operator. Symmetry 14(3) (2022)

  41. Al-Refai, M.: On weighted Atangana-Baleanu fractional operators. Adv. Differ. Equ. 2020(1), 1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Al-Refai, M., Baleanu, D.: On an extension of the operator with Mittag-Leffler kernel. Fractals (2022)

  43. Butt, S.I., Yousaf, S., Akdemir, A.O., Dokuyucu, M.A.: New Hadamard-type integral inequalities via a general form of fractional integral operators. Chaos Solitons Fractals 148, 111025 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sahoo, S.K., Jarad, F., Kodamasingh, B., Kashuri, A.: Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Math. 7(7), 1230–12321 (2022)

    Article  MathSciNet  Google Scholar 

  45. Cătaş, A., Lupaş, A.A.: Some subordination results for Atangana-Baleanu fractional integral operator involving Bessel functions. Symmetry 14(2) (2022)

  46. Set, E., Butt, S.I., Akdemir, A.O., Karaoğlan, A., Abdeljawad, T.: New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals 143, 110554 (2021)

    Article  MathSciNet  Google Scholar 

  47. Akdemir, A.O., Karaoğlan, A., Ragusa, M.A., Set, E.: Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions. J. Funct. Spaces 2021 (2021)

  48. Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Set, E., Sarikaya, M.Z., Ozdemir, M.E.: Some Ostrowski’ s type inequalities for functions whose second derivatives are s-convex in the second sense. Demonstr. Math. 47(1), 37–47 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Özcan, S., İşcan, İ.: Some new Hermite-Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019 (2019). https://doi.org/10.1186/s13660-019-2151-2

  51. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express a special thanks to the Editor who handled our paper.

Funding

No funding was used in this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SKS, BK, AK; Formal analysis, BK, HA, EA; Investigation, BK, HA, EA; Software, SKS, AK; Validation, SKS, AK, HA; Writing original draft, SKS, BK, AK; Funding, EA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eskandar Ameer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Kodamasingh, B., Kashuri, A. et al. Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions. J Inequal Appl 2022, 162 (2022). https://doi.org/10.1186/s13660-022-02899-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02899-6

Keywords