Skip to main content

Exponential stability of an alternate control system with double impulses

Abstract

In this paper, we propose a new system called an alternate control system with double impulses. The present system is a cyclic control system, composed of four parts in a circle: to the first and last halves of each period of the system we add different continuous controls, and at the half-period time and the end of each period of the system we add different impulses. We then investigate the exponential stability of the considered system. An example based on Chua’s circuit is provided to confirm the effectiveness of the theoretical result.

1 Introduction

Throughout this paper, let \(R^{n}\) denote an n-dimensional real Euclidean space with norm \(\Vert \cdot \Vert \). \(R^{m \times n}\) refers to the set of all \(m \times n\)-dimensional real matrices. \(\lambda _{\max } ( A ) \), \(\lambda _{\min } ( A ) \), \(A^{T} \), and \(A^{-1}\) stand for the maximum, the minimum eigenvalue, the transpose, and the inverse of matrix A, respectively. I is the identity matrix with proper dimension. We use \(A > 0\) to mean that A is a positive-definite matrix. Let \(f ( {x ( {a^{-} } )} ) = \mathop {\lim } _{t \to a^{-} } f ( {x ( t )} )\).

There are many methods to make a nonlinear system stable, for instance, sliding mode control [1], fuzzy control [2], feedback control [3], adaptive control [4], alternate control [5, 6], impulsive control [7, 8], etc. Taking into account the engineering applications, the cost of continuous control is high. Through intermittent control, the control cost and the amount of transmitted information can be greatly reduced. As is known, impulsive control is a discontinuous control method.

A class of nonlinear systems can be described as

$$ \textstyle\begin{cases} \dot{x}(t) = Ax ( t ) + f ( {x ( t )} )+w(t), \\ x(t_{0})=x_{0}, \end{cases} $$
(1.1)

where \(x ( t )\in R^{n}\) is the state vector, \(A\in R^{n \times n}\) is a constant matrix, \(f: R^{n}\rightarrow R^{n}\) is a continuous nonlinear function satisfying \(f(0)=0\) and \(\Vert {f ( x )} \Vert \le l \Vert x \Vert \), \(l\ge 0\) is a constant. \(w ( t ) \) is the control input. Without loss of generality, let \(t_{0}=0\), \(x_{0} \in R^{n}\) is a given vector.

In order to stabilize system (1.1) at the origin by means of an alternate control system with double impulses, we set four kinds of control in one period, i.e., \(t \in (kT,kT + \frac{T}{2})\), we set \(w(t)=B_{1}x(t)\), where \(B_{1}\in R^{n \times n} \) is a known matrix, \(t \in (kT + \frac{T}{2},(k + 1)T)\), we set \(w(t)=B_{2}x(t)\), where \(B_{2}\in R^{n \times n} \) is a constant matrix, at the same time, at time \(t= kT+\frac{T}{2}\), an impulse \(J_{1}\) is given, and an impulse \(J_{2}\) is given to the system at time \(t= (k+1)T\). Hence, system (1.1) is rewritten as

$$ \textstyle\begin{cases} \dot{x}(t) = Ax(t)+f(x(t))+B_{1}x(t),\quad kT< t< kT+\frac{T}{2}, \\ {x}(t) = x(t^{-})+J_{1} x(t^{-}),\quad t= kT+\frac{T}{2}, \\ \dot{x}(t) = Ax(t)+f(x(t))+B_{2}x(t),\quad kT+\frac{T}{2}< t< (k+1)T, \\ {x}(t) = x(t^{-})+J_{2} x(t^{-}),\quad t= (k+1)T, \\ {x}(t_{0}) = x_{0},\quad t_{0}=0, \end{cases} $$
(1.2)

where \(T>0\) is a control cycle and k is a nonnegative integer.

Remark 1.1

When \(B_{2}=0\), the system (1.2) becomes the alternate continuous-control system with double impulses [9].

For more information on stability and applications of nonlinear systems that have been investigated in the literature, for instance, see [1014].

2 Main result

We begin this section with two lemmas that will turn out to be useful in the proof of our main result.

Lemma 2.1

([15])

Suppose that any \(x,y \in R^{n}\), then

$$ \bigl\vert {x^{T} y} \bigr\vert \le \Vert x \Vert \Vert y \Vert . $$

Lemma 2.2

([15])

Let \(A \in R^{n \times n} \) be a symmetric matrix, then for all \(x \in R^{n}\),

$$ \lambda _{\min } ( A )x^{T} x \le x^{T} Ax \le \lambda _{ \max } ( A )x^{T} x. $$

Theorem 2.1

Let \(0 < P \in R^{n \times n} \) such that the following conditions are satisfied:

  1. (1)

    \(u_{1}<0\),

  2. (2)

    \((\frac{u_{1}+u_{2}}{2} )T+\ln \beta +\ln \gamma <0\),

where \(\beta = \lambda _{\max } ( {P^{ - 1} ( {I + J_{1}} )^{T} P ( {I + J_{1}} ) } )\), \(\gamma = \lambda _{\max } ( {P^{ - 1} ( {I + J_{2}} )^{T} P ( {I + J_{2}} ) } )\), \(\beta _{1} = \lambda _{\max } ( P^{ - 1} ( PA+ A^{T}P+PB_{1}+B_{1}^{T}P ) )\), \(\beta _{2} = \lambda _{\max } ( P )\), \(\beta _{3} = \lambda _{\min } ( P )\), \(\beta _{4} = \lambda _{\max } ( {P^{ - 1} ( {PA+A^{T}P++PB_{2}+B_{2}^{T}P} )} )\), \(u_{1} = \beta _{1} + 2l\sqrt {\frac{{\beta _{2} }}{{\beta _{3} }}} \), \(u_{2} = \beta _{4} + 2l\sqrt {\frac{{\beta _{2} }}{{\beta _{3} }}} \). Then, system (1.2) is exponentially stable at the origin.

Proof

Define

$$ V \bigl( x ( t ) \bigr) = x^{T} ( t )Px ( t ). $$

For \(t \in ( {kT,kT+\frac{T}{2} } )\), using Lemmas 2.1 and 2.2, we obtain

$$\begin{aligned} D^{+} \bigl( {V \bigl( {x ( t )} \bigr)} \bigr) &= 2x^{T} ( t )P \bigl( {Ax ( t ) + f \bigl( {x ( t )} \bigr)}+B_{1}{x ( t )} \bigr) \\ &= 2x^{T} ( t )PAx ( t ) + 2x^{T} ( t )Pf \bigl( {x ( t )} \bigr)+ 2x^{T} ( t )PB_{1}x ( t ) \\ &= x^{T} ( t ) \bigl( {PA + A^{T} P+PB_{1}+B_{1}^{T}P} \bigr)x ( t ) + 2x^{T} ( t ) P^{\frac{1}{2}} P^{\frac{1}{2}} f \bigl( {x ( t )} \bigr) \\ &\le \beta _{1} x^{T} ( t )Px ( t ) + 2\sqrt {x^{T} ( t )Px ( t )f^{T} \bigl( {x ( t )} \bigr)Pf \bigl( {x ( t )} \bigr)} \\ &\le \beta _{1} x^{T} ( t )Px ( t ) + 2\sqrt {x^{T} ( t )Px ( t )\beta _{2} f^{T} \bigl( {x ( t )} \bigr)f \bigl( {x ( t )} \bigr)} \\ &\le \beta _{1} x^{T} ( t )Px ( t ) +2\sqrt {x^{T} ( t )Px ( t )\beta _{2} l^{2} x^{T} ( t )x ( t )} \\ &\le \beta _{1} x^{T} ( t )Px ( t ) +2l\sqrt {x^{T} ( t )Px ( t ) \frac{{\beta _{2} }}{{\beta _{3} }}x^{T} ( t )Px ( t )} \\ &= u_{1}V \bigl( {x ( t )} \bigr), \end{aligned}$$

which implies that

$$ V \bigl( {x ( t )} \bigr) \le V \bigl( {x ( {kT} )} \bigr)e^{u_{1} ( {t - kT} )}. $$
(2.1)

For \(t = kT +\frac{T}{2} \), we obtain

$$ \begin{aligned} V \bigl( {x ( t )} \bigr) &= \bigl( {x \bigl( {t^{-} } \bigr) + J_{1}x \bigl( {t^{-} } \bigr)} \bigr)^{T} P \bigl( {x \bigl( {t^{-} } \bigr) + J_{1}x \bigl( {t^{-} } \bigr)} \bigr) \\ &= x^{T} \bigl( {t^{-} } \bigr) ( {I + J_{1}} )^{T}P ( {I + J_{1}} )x \bigl( {t^{-} } \bigr) \\ &= x^{T} \bigl( {t^{-} } \bigr)P^{\frac{1}{2}} P^{ - \frac{1}{2}} ( {I + J_{1}} )^{T}P ( {I + J_{1}} )P^{ - \frac{1}{2}} P^{\frac{1}{2}} x \bigl( {t^{-} } \bigr) \\ &\le \beta V \bigl( {x \bigl( {t^{-} } \bigr)} \bigr). \end{aligned} $$
(2.2)

For \(t \in ( {kT+\frac{T}{2} ,(k+1)T} )\), using Lemmas 2.1 and 2.2, we obtain

$$\begin{aligned} D^{+} \bigl( {V \bigl( {x ( t )} \bigr)} \bigr) &= 2x^{T} ( t )P \bigl( {Ax ( t ) + f \bigl( {x ( t )} \bigr)}+B_{2}{x ( t )} \bigr) \\ &= 2x^{T} ( t )PAx ( t ) + 2x^{T} ( t )Pf \bigl( {x ( t )} \bigr)+ 2x^{T} ( t )PB_{2}x ( t ) \\ &= x^{T} ( t ) \bigl( {PA + A^{T} P+PB_{2}+B_{2}^{T}P} \bigr)x ( t ) + 2x^{T} ( t ) P^{\frac{1}{2}} P^{\frac{1}{2}} f \bigl( {x ( t )} \bigr) \\ &\le \beta _{4} x^{T} ( t )Px ( t ) + 2\sqrt {x^{T} ( t )Px ( t )f^{T} \bigl( {x ( t )} \bigr)Pf \bigl( {x ( t )} \bigr)} \\ &\le \beta _{4} x^{T} ( t )Px ( t ) + 2\sqrt {x^{T} ( t )Px ( t )\beta _{2} f^{T} \bigl( {x ( t )} \bigr)f \bigl( {x ( t )} \bigr)} \\ &\le \beta _{4} x^{T} ( t )Px ( t ) +2\sqrt {x^{T} ( t )Px ( t )\beta _{2} l^{2} x^{T} ( t )x ( t )} \\ &\le \beta _{4} x^{T} ( t )Px ( t ) +2l\sqrt {x^{T} ( t )Px ( t ) \frac{{\beta _{2} }}{{\beta _{3} }}x^{T} ( t )Px ( t )}, \end{aligned}$$

which implies that

$$ V \bigl( {x ( t )} \bigr) \le V \biggl( {x \biggl( {kT+ \frac{T}{2} } \biggr)} \biggr)e^{u_{2} ( {t - kT-\frac{T}{2} } )}.\vadjust{\goodbreak} $$
(2.3)

By (2.2) and (2.3), we deduce that

$$ V \bigl( {x ( t )} \bigr) \le \beta V \biggl( {x \biggl( { \biggl( {kT + \frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)e^{u_{2} ( {t - kT - \frac{T}{2} } )}, $$
(2.4)

where \(t \in [ {kT + \frac{T}{2} ,(k+1)T } ) \).

For \(t =(k+1)T \), we obtain

$$ \begin{aligned} V \bigl( {x ( t )} \bigr) &= \bigl( {x \bigl( {t^{-} } \bigr) + J_{2}x \bigl( {t^{-} } \bigr)} \bigr)^{T} P \bigl( {x \bigl( {t^{-} } \bigr) + J_{2}x \bigl( {t^{-} } \bigr)} \bigr) \\ &= x^{T} \bigl( {t^{-} } \bigr) ( {I + J_{2}} )^{T}P ( {I + J_{2}} )x \bigl( {t^{-} } \bigr) \\ &= x^{T} \bigl( {t^{-} } \bigr)P^{\frac{1}{2}} P^{ - \frac{1}{2}} ( {I + J_{2}} )^{T}P ( {I + J_{2}} )P^{ - \frac{1}{2}} P^{\frac{1}{2}} x \bigl( {t^{-} } \bigr) \\ &\le \gamma V \bigl( {x \bigl( {t^{-} } \bigr)} \bigr). \end{aligned} $$
(2.5)

When \(k=0\), for \(t \in ( {0 ,\frac{T}{2} } )\), from (2.1), we can obtain

$$ V \bigl( {x ( t )} \bigr) \le V \bigl( {x ( 0 )} \bigr)e^{u_{1}t}. $$

Consequently,

$$ V \biggl( {x \biggl( { \biggl( {\frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)\le V \bigl( {x ( 0 )} \bigr)e^{ \frac{u_{1}T}{2} } . $$
(2.6)

For \(t \in [ {\frac{T}{2} , T} )\), applying (2.4) and (2.6), we obtain

$$\begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta V \biggl( {x \biggl( { \biggl( {\frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)e^{u_{2} ( {t - \frac{T}{2} } )} \\ &\le \beta V \bigl( {x ( 0 )} \bigr)e^{ \frac{u_{1}T}{2}+u_{2} ( {t - \frac{T}{2} } )} . \end{aligned}$$

Consequently,

$$ V \bigl( {x \bigl( T^{-} \bigr)} \bigr) \le \beta V \bigl( {x ( 0 )} \bigr)e^{\frac{u_{1}T+u_{2}T}{2}} . $$
(2.7)

For \(t=T\), applying (2.5) and (2.7), we obtain

$$ \begin{aligned} V \bigl( {x ( T )} \bigr) &\le \gamma V \bigl( {x \bigl( T^{-} \bigr)} \bigr) \\ &\le \beta \gamma V \bigl( {x ( 0 )} \bigr)e^{ \frac{u_{1}T+u_{2}T}{2}} . \end{aligned} $$
(2.8)

When \(k=1\), for \(t \in ( {T ,T+\frac{T}{2} } )\), applying (2.1) and (2.8), we obtain

$$\begin{aligned} V \bigl( {x ( t )} \bigr) &\le V \bigl( {x \bigl( T^{+} \bigr)} \bigr)e^{u_{1} ( {t - T} )} \\ &\le V \bigl( {x ( T )} \bigr)e^{u_{1} ( {t - T} )} \\ &\le \beta \gamma V \bigl( {x ( 0 )} \bigr)e^{u_{1}(t- \frac{T}{2})+\frac{u_{2}T}{2}} . \end{aligned}$$

Consequently,

$$ V \biggl( {x \biggl( { \biggl( {T+\frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)\le \beta \gamma V \bigl( {x ( 0 )} \bigr)e^{u_{1}T+ \frac{u_{2}T}{2}}. $$
(2.9)

For \(t \in [ {T+\frac{T}{2} , 2T} )\), applying (2.4) and (2.9), we obtain

$$\begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta V \biggl( {x \biggl( { \biggl( {T+\frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)e^{u_{2} ( {t - \frac{3T}{2} } )} \\ &\le \beta ^{2}\gamma V \bigl( {x ( 0 )} \bigr)e^{u_{1}T+u_{2}(t-T)} . \end{aligned}$$

Consequently,

$$ V \bigl( {x \bigl( (2T)^{-} \bigr)} \bigr) \le \beta ^{2}\gamma V \bigl( {x ( 0 )} \bigr)e^{(u_{1}+u_{2})T} . $$
(2.10)

For \(t=2T\), applying (2.5) and (2.10), we obtain

$$ \begin{aligned} V \bigl( {x ( 2T )} \bigr) &\le \gamma V \bigl( {x \bigl( (2T)^{-} \bigr)} \bigr) \\ &\le \beta ^{2}\gamma ^{2} V \bigl( {x ( 0 )} \bigr)e^{(u_{1}+u_{2})T} . \end{aligned} $$
(2.11)

When \(k=2\), for \(t \in ( {2T ,2T+\frac{T}{2} } )\), applying (2.1) and (2.11), we obtain

$$\begin{aligned} V \bigl( {x ( t )} \bigr) &\le V \bigl( {x ( {2T} )^{+}} \bigr)e^{u_{1} ( {t - 2T} )} \\ &\le V \bigl( {x ( 2T )} \bigr)e^{u_{1} ( {t - 2T} )} \\ &\le \beta ^{2}\gamma ^{2} V \bigl( {x ( 0 )} \bigr)e^{u_{1}(t-T)+u_{2}T} . \end{aligned}$$

Consequently,

$$ V \biggl( {x \biggl( { \biggl( {2T+\frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)\le \beta ^{2}\gamma ^{2} V \bigl( {x ( 0 )} \bigr)e^{\frac{3u_{1}T}{2}+u_{2}T}. $$
(2.12)

For \(t \in [ {2T+\frac{T}{2} , 3T} )\), applying (2.4) and (2.12), we obtain

$$\begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta V \biggl( {x \biggl( { \biggl( {2T+\frac{T}{2} } \biggr)^{-} } \biggr)} \biggr)e^{u_{2} ( {t - \frac{5T}{2} } )} \\ &\le \beta ^{3}\gamma ^{2} V \bigl( {x ( 0 )} \bigr)e^{ \frac{3u_{1}T}{2} +u_{2}(t-\frac{3T}{2})} . \end{aligned}$$

Consequently,

$$ V \bigl( {x \bigl( (3T)^{-} \bigr)} \bigr) \le \beta ^{3}\gamma ^{2} V \bigl( {x ( 0 )} \bigr)e^{\frac{3u_{1}T+3u_{2}T}{2}} . $$
(2.13)

For \(t=3T\), applying (2.5) and (2.13), we obtain

$$\begin{aligned} V \bigl( {x ( 3T )} \bigr) &\le \gamma V \bigl( {x \bigl( (3T)^{-} \bigr)} \bigr) \\ &\le \beta ^{3}\gamma ^{3} V \bigl( {x ( 0 )} \bigr)e^{ \frac{3u_{1}T+3u_{2}T}{2}} . \end{aligned}$$

By induction, when \(k = m,~m = 0,1, \ldots \) , for \(t \in ( {mT , mT+\frac{T}{2} } )\), we obtain

$$ V \bigl( {x ( t )} \bigr) \le \beta ^{m} \gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{u_{1}(t-\frac{mT}{2})+ \frac{u_{2}mT}{2}}. $$
(2.14)

For \(t \in [ {mT+\frac{T}{2} ,(m+1)T} )\), we obtain

$$ V \bigl( {x ( t )} \bigr) \le \beta ^{m+1}\gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2} +u_{2} (t-\frac{(m+1)T}{2} )}. $$
(2.15)

For \(t =(m+1)T\), we obtain

$$ V \bigl( {x ( t )} \bigr) \le \beta ^{m+1}\gamma ^{m+1} V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2} + \frac{(m+1) u_{2}T}{2} }. $$
(2.16)

By (2.14), for \(t \in ( {mT , mT+\frac{T}{2} } )\), let \(t=mT\)

$$ \begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta ^{m} \gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{u_{1}(t-\frac{mT}{2})+ \frac{u_{2}mT}{2}} \\ &\le \beta ^{m} \gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{( \frac{u_{1}+u_{2}}{2})mT} \\ &= e^{ (\ln \beta +\ln \gamma )m}V \bigl( {x ( 0 )} \bigr)e^{(\frac{u_{1}+u_{2}}{2})mT} \\ &= V \bigl( {x ( 0 )} \bigr) e^{ (( \frac{u_{1}+u_{2}}{2})T+\ln \beta +\ln \gamma )m}. \end{aligned} $$
(2.17)

By (2.15), for \(t \in [mT+\frac{T}{2} , (m+1)T )\), we have

Case 1. When \(u_{2}>0\), let \(t=(m+1)T\)

$$ \begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta ^{m+1}\gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2} +u_{2} (t-\frac{(m+1)T}{2} )}. \\ &\le \beta ^{m+1} \gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{(\frac{u_{1}+u_{2}}{2})(m+1)T} \\ &= V \bigl( {x ( 0 )} \bigr)e^{(\frac{u_{1}+u_{2}}{2})(m+1)T+(m+1) \ln \beta +m\ln \gamma} \\ &= V \bigl( {x ( 0 )} \bigr) e^{ (( \frac{u_{1}+u_{2}}{2})T+\ln \beta +\ln \gamma )m+( \frac{u_{1}+u_{2}}{2})T+\ln \beta}. \end{aligned} $$
(2.18)

Case 2. When \(u_{2}\leq 0\), let \(t=mT+\frac{T}{2}\)

$$ \begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta ^{m+1}\gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2} +u_{2} (t-\frac{(m+1)T}{2} )}. \\ &\le \beta ^{m+1} \gamma ^{m} V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2}+\frac{m u_{2}T}{2}} \\ &= V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2}+ \frac{m u_{2}T}{2}+(m+1)\ln \beta +m\ln \gamma} \\ &= V \bigl( {x ( 0 )} \bigr) e^{ (( \frac{u_{1}+u_{2}}{2})T+\ln \beta +\ln \gamma )m+ \frac{ u_{1} T}{2}+\ln \beta}. \end{aligned} $$
(2.19)

By (2.16), for \(t =(m+1)T\), we have

$$ \begin{aligned} V \bigl( {x ( t )} \bigr) &\le \beta ^{m+1}\gamma ^{m+1} V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2} + \frac{(m+1) u_{2}T}{2} } \\ &= V \bigl( {x ( 0 )} \bigr)e^{\frac{(m+1) u_{1}T}{2}+ \frac{(m+1) u_{2}T}{2}+(m+1)\ln \beta +(m+1)\ln \gamma} \\ &= V \bigl( {x ( 0 )} \bigr) e^{ (( \frac{u_{1}+u_{2}}{2})T+\ln \beta +\ln \gamma )(m+1)}. \end{aligned} $$
(2.20)

From (2.17)–(2.20), we conclude that the system (1.2) is exponentially stable at the origin.

This completes the proof. □

3 A numerical example

In this section, we study the control of Chua’s oscillator by applying Theorem 2.1.

Example 3.1

Consider Chua’s system [16]:

$$ \textstyle\begin{cases} \dot{x}_{1} = \alpha (x_{2} - x_{1} - h(x_{1})), \\ \dot{x}_{2} = x_{1} - x_{2} + x_{3} , \\ \dot{x}_{3} = - \beta x_{2}, \end{cases} $$
(3.1)

where α and β are two parameters,

$$ h(x_{1})=bx_{1}+\frac{1}{2}(a-b) \bigl( \vert x_{1}+1 \vert - \vert x_{1}-1 \vert \bigr), $$

where a and b are two given constants satisfying \(a< b<0\).

In order to apply Theorem 2.1, we may rewrite system (3.1) as

$$ \dot{x}(t) = Ax+f (x ), $$

where

$$\begin{aligned} &A= \begin{bmatrix} -\alpha -\alpha b & \alpha & 0 \\ 1 & -1 & 1 \\ 0 & -\beta & 0 \end{bmatrix},\\ &f ( x )= \begin{bmatrix} -\frac{1}{2}\alpha (a-b)( \vert x_{1}+1 \vert - \vert x_{1}-1 \vert ) \\ 0 \\ 0 \end{bmatrix}. \end{aligned}$$

By easy computation, we obtain

$$\begin{aligned} \bigl\Vert f ( x ) \bigr\Vert ^{2}={}& \frac{1}{4}\alpha ^{2}(a-b)^{2}\bigl[(x_{1}+1)^{2} \\ &{}+ (x_{1}-1)^{2}-2 \bigl\vert (x_{1}+1) (x_{1}-1) \bigr\vert \bigr] \\ ={}&\frac{1}{2}\alpha ^{2}(a-b)^{2} \bigl(x_{1}^{2}+1- \bigl\vert x_{1}^{2}-1 \bigr\vert \bigr) \\ ={}&\textstyle\begin{cases} \alpha ^{2}(a-b)^{2},& x_{1}^{2}>1 \\ \alpha ^{2}(a-b)^{2}x^{2},&x_{1}^{2}\leq 1 \end{cases}\displaystyle \\ \leq {}& \alpha ^{2}(a-b)^{2}x_{1}^{2} \\ \leq {}& \alpha ^{2}(a-b)^{2}\bigl(x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \bigr) . \end{aligned}$$

Hence, we choose \(l^{2}=\alpha ^{2}(a-b)^{2} \).

In the initial condition \(x(0)=(22, -2, -15)^{T}\), Chua’s system exhibits chaotic phenomenon when

$$ \alpha = 9.2156,\qquad \beta = 15.9946,\qquad a = - 1.24905,\qquad b = - 0.75735 , $$

as shown in Fig. 1.

Figure 1
figure 1

The chaotic phenomenon of (3.1) with the initial condition \(x(0)=(22, -2, -15)^{T}\)

Meanwhile, for simplicity of calculation, we choose \(P=I\), \(J_{1} = J_{2}=\operatorname{diag}( 0.3, 0.3, 0.3)\), \(B_{1} = \operatorname{diag}( - 49, - 42, - 32)\), \(B_{2} = \operatorname{diag}( - 1, - 1, - 1)\). A small calculation shows that \(\beta =\gamma =1.69 \), \(\beta _{1} = -55.0889\), \(\beta _{2} = \beta _{3} =1\), \(\beta _{4} = 15.4359\), \(l = 4.5313\), \(u_{1}= -46.0263\), \(u_{2}= 24.4985\). By the condition of Theorem 2.1, we have \(T>0.0975\). Thus, in the initial condition \(x(0)=(22, -2, -15)^{T}\), system (3.1) is exponentially stable by Theorem 2.1, The simulation results with \(T=0.1000\) are shown in Fig. 2.

Figure 2
figure 2

Time response curves of (3.1) via an alternate control system with double impulses

4 Conclusions

The paper presents a new model of a control system, namely an alternate control system with double impulses. Theorem 2.1 gives the exponential stability criteria of the considered system. The stability conditions avoid solving linear matrix inequalities. Moreover, the chaotic Chua’s circuit can be controlled by Theorem 2.1.

Availability of data and materials

Not applicable.

References

  1. He, S., Song, J., Liu, F.: Robust finite-time bounded controller design of time-delay conic nonlinear systems using sliding mode control strategy. IEEE Trans. Syst. Man Cybern. 48, 1863–1873 (2018)

    Article  Google Scholar 

  2. Pan, Y., Yang, G.: A novel event-based fuzzy control approach for continuous-time fuzzy systems. Neurocomputing 338, 55–62 (2019)

    Article  Google Scholar 

  3. Cardinali, T., Rubbioni, P.: The controllability of an impulsive integro-differential process with nonlocal feedback controls. Appl. Math. Comput. 347, 29–39 (2019)

    MathSciNet  MATH  Google Scholar 

  4. He, W., Meng, T.: Adaptive control of a flexible string system with input hysteresis. IEEE Trans. Control Syst. Technol. 26, 693–700 (2018)

    Article  Google Scholar 

  5. Feng, Y., Li, C., Huang, T., Zhao, W.: Alternate control systems. Adv. Differ. Equ. 2014, Article ID 305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, X., Nie, L.: Exponential stability of nonlinear systems via alternate control. Ital. J. Pure Appl. Math. 40, 671–678 (2018)

    MATH  Google Scholar 

  7. Zou, L., Peng, Y., Feng, Y., Tu, Z.: Impulsive control of nonlinear systems with impulse time window and bounded gain error. Nonlinear Anal., Model. Control 23, 40–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X., Yang, X., Huang, T.: Persistence of delayed cooperative models: impulsive control method. Appl. Math. Comput. 342, 130–146 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Hu, X., Wu, H., Feng, Y., Xiong, J.: Alternate-continuous-control systems with double-impulse. Adv. Differ. Equ. 2017, Article ID 298 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Bohner, M., Wang, C.: Impulsive differential equations: periodic solutions and applications. Automatica 52, 173–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Song, Q., Cao, J.: Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn. 67, 1695–1707 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H., Liao, X., Huang, T., Li, C.: Improved weighted average prediction for multi-agent networks. Circuits Syst. Signal Process. 33, 1721–1736 (2014)

    Article  MathSciNet  Google Scholar 

  13. Zou, L., Peng, Y., Feng, Y., Tu, Z.: Stabilization and synchronization of memristive chaotic circuits by impulsive control. Complexity 2017, Article ID 5186714 (2017)

    Article  MATH  Google Scholar 

  14. Chien, F.S., Chowdhury, A.R., Nik, H.S.: Competitive modes and estimation of ultimate bound sets for a chaotic dynamical financial system. Nonlinear Dyn. 106, 3601–3614 (2021)

    Article  Google Scholar 

  15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  16. Shilnikov, L.P.: Chau’s circuit: rigorous results and furture problems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 489–519 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere thanks to the referees and editor for their enthusiastic guidance and help.

Funding

This research is supported by the Fund for Fostering Talents in Kunming University of Science and Technology (No. KKZ3202007048).

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Xingkai Hu.

Ethics declarations

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X. Exponential stability of an alternate control system with double impulses. J Inequal Appl 2022, 159 (2022). https://doi.org/10.1186/s13660-022-02898-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02898-7

MSC

Keywords