Skip to main content

On some variational inequality-constrained control problems

Abstract

In this paper, by considering some properties associated with scalar functionals of multiple-integral type, we study the well-posedness and generalized well-posedness for a new variational inequality-constrained optimization problems By using the set of approximating solutions, we state some characterization theorems on well-posedness and generalized well-posedness. Also, in order to validate the derived results, some examples are given.

1 Introduction

To study and solve some optimization problems by using the classical methods, in many situations, can represent a very complicated task and, moreover, such methods may (or may not) ensure exact solutions. In this regard, the well-posedness becomes extremely important for the study of optimization problems. More precisely, it is a useful technique by ensuring the convergence for the sequence of approximating solutions to the exact solution. The notion of well-posedness for unconstrained optimization problems was defined by Tykhonov [34]. Following this concept (see, for instance, [12, 28]), many types of well-posedness for variational problems were introduced, namely: well-posedness of Levitin–Polyak type [11, 17, 19, 20], and extended well-posedness (for instance, [5, 6, 9, 14, 15, 22, 2527, 38]), α-well-posedness [23, 36], and L-well-posedness [21]. Also, this tool can be useful to investigate the connected problems, namely: fixed-point problems [3], hemivariational inequality [37], variational inequality [2, 7, 18], equilibrium problems [4, 8], Nash equilibrium [24], complementary problems [10], etc.

Jayswal and Shalini [16] studied the well-posedness of some mixed vector variational inequalities. Also, Hu et al. [13] established well-posedness for split variational–hemivariational inequality problems. Bai et al. [1] studied, in a Banach space, generalized mixed elliptic hemivariational–variational inequalities and obtained a well-posedness result for the considered inequality.

In the present paper, well-posedness and generalized well-posedness are studied for new variational control problems defined by functionals of multiple-integral type. For this purpose, we consider the notions of monotonicity, hemicontinuity, pseudomonotonicity, and lower semicontinuity for functionals of multiple-integral type. The approximating solution set is used to formulate and prove some theorems on well-posedness and generalized well-posedness. Next, let us highlight the main merits of this paper. First, most of the former research papers have been investigated in finite-dimensional spaces (Hilbert spaces, Banach spaces, Euclidean spaces). The results derived in this research paper are dynamic generalizations of the static results that exist in the literature. Here, the mathematical context is defined by function spaces of infinite dimension and controlled functionals of multiple-integral type. It represents a completely new element in the field of well-posed control problems. Recently, Treanţă [32] studied some similar optimization problems that imply partial derivatives of second order, but without control functions. Also, the curvilinear case, but for the controlled variational inequality problem, is investigated in Treanţă [33]. In consequence, this paper deals with a special situation in which the optimal control problem has controlled variational inequality as a constraint.

We continue the paper as follows: in Sect. 2, we present the notions of lower semicontinuity, monotonicity, hemicontinuity, and pseudomonotonicity to functionals of multiple-integral type. We establish an auxiliary lemma that is important for the main results formulated in the paper. In Sect. 3, by defining the approximating solution set, we analyze well-posedness and generalized well-posedness. Also, under suitable assumptions, we state that well-posedness is the same as the existence and uniqueness of a solution in the aforesaid problems. Moreover, some sufficient conditions for the generalized well-posedness are provided. Illustrative examples are presented in the paper to validate the theoretical aspects. Finally (see Sect. 4), we state the conclusions of the paper and some immediate research directions.

2 Problem formulation

In this paper, in accordance with Treanţă [2933], we consider T is a domain (it is supposed to be compact) in \(\mathbb{R}^{m} \), the point \(T \ni t = (t^{\alpha})\), \(\alpha = \overline{1,m} \), means a multivariate evolution parameter, Θ is the space of piecewise-differentiable state functions \(\theta : T \to \mathbb{R}^{n} \), having the norm

$$ \Vert \theta \Vert = \Vert \theta \Vert _{\infty} + \sum _{\alpha = 1}^{m} \Vert \theta _{\alpha} \Vert _{\infty}, \quad \forall \theta \in \boldsymbol{\Theta}, $$

where \(\theta _{\alpha} := \frac{\partial \theta}{\partial t^{\alpha}}\), \(\alpha = \overline{1,m} \). Also, let \(\mathcal{P} \) be the space of piecewise-continuous control functions \(p: T \to \mathbb{R}^{k} \), together with the norm \(\| \cdot \| _{\infty} \).

In the following, consider \(\Theta \times P \) is a nonempty, closed, and convex subset of \(\boldsymbol{\Theta} \times \mathcal{P} \), with \((\theta ,p)\vert _{\partial T} = \text{given}\) and \(\theta _{\alpha} = X(t, \theta , p)= \text{given}\), and with the inner product

$$\begin{aligned} \bigl\langle (\theta ,p), (\vartheta ,q) \bigr\rangle &= \int _{T}\bigl[ \theta (t)\cdot \vartheta (t) + p(t)\cdot q(t) \bigr]\,dt\\ &= \int _{T} \Biggl[ \sum_{i=1}^{n} \theta ^{i}(t) \vartheta ^{i}(t)+ \sum _{j=1}^{k} p^{j}(t) q^{j}(t) \Biggr] \,dt, \quad \forall (\theta ,p), (\vartheta ,q) \in \boldsymbol{\Theta} \times \mathcal{P} \end{aligned}$$

and the norm induced by it. Denote by \(dt = dt^{1} \cdots dt^{m}\) the element of volume on \(\mathbb{R}^{m}\). Let \(J^{1}(\mathbb{R}^{m}, \mathbb{R}^{n}):= \lbrace ( t, \theta ( t), \theta _{\alpha}( t) ) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{mn} \rbrace \) be the jet bundle associated with \(\mathbb{R}^{m} \) and \(\mathbb{R}^{n} \). By using the real-valued continuously smooth function \(g: J^{1}(\mathbb{R}^{m}, \mathbb{R}^{n}) \times \mathbb{R}^{k} \to \mathbb{R} \), define the scalar functional governed by a multiple integral:

$$ G: \boldsymbol{\Theta} \times \mathcal{P} \to \mathbb{R}, \quad G(\theta ,p) = \int _{T} g ( t, \theta , \theta _{\alpha},p )\,dt. $$

Further, we use the notation \((\chi _{\theta ,p}(t)) := (t, \theta (t), \theta _{\alpha}(t),p(t)) \).

Definition 2.1

The functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is monotone on \(\Theta \times P\) if the following inequality

$$\begin{aligned} & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \biggl( \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial \theta} \bigl( \chi _{\vartheta ,q}(t)\bigr) \biggr) \\ &\quad {}+\bigl(p(t)-q(t)\bigr) \biggl( \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \\ &\quad {}+ \mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \biggl( \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \biggr]\,dt\geq 0 \end{aligned}$$

is true, for \(\forall (\theta ,p),(\vartheta ,q)\in \Theta \times P\), where \(\mathcal{D}_{\alpha}:= \frac {\partial}{\partial t^{\alpha}}\) is the operator of the total derivative.

Example 2.1

Consider \(n=k=1\), \(m=2 \), and \(T = [0,3]^{2}\). Let us define

$$ g\bigl(\chi _{\theta ,p}(t)\bigr) = \theta (t) + e^{p(t)}-1. $$

The functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is monotone on \(\Theta \times P = C^{1}(T,\mathbb{R})\times C(T,\mathbb{R})\) since

$$\begin{aligned} & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \biggl( \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial \theta} \bigl( \chi _{\vartheta ,q}(t)\bigr) \biggr) \\ &\qquad {}+\bigl(p(t)-q(t)\bigr) \biggl( \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \\ &\qquad {}+ \mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \biggl(\frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial \theta _{\alpha}} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \biggr]\,dt \\ &\quad = \int _{T}\bigl(p(t)-q(t)\bigr) \bigl(e^{p(t)}-e^{q(t)} \bigr)\,dt \geq 0,\quad \forall (\theta ,p), (\vartheta ,q)\in \Theta \times P \end{aligned}$$

is valid.

Definition 2.2

The functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is pseudomonotone on \(\Theta \times P\) if the following implication

$$\begin{aligned}& \begin{aligned} & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr) +\bigl(p(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\ &\quad {}+\mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt\geq 0\end{aligned} \\& \begin{aligned} \quad \Rightarrow \quad & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr) +\bigl(p(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)\\ &\quad {}+\mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr) \biggr]\,dt\geq 0 \end{aligned} \end{aligned}$$

holds, for \(\forall (\theta ,p),(\vartheta ,q)\in \Theta \times P\).

Example 2.2

Consider \(n=k=1\), \(m=2 \), and \(T = [0,3]^{2}\). Let us define

$$ g\bigl(\chi _{\theta ,p}(t)\bigr)=\sin \theta (t) + p(t)e^{p(t)}. $$

The functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is pseudomonotone on \(\Theta \times P = C^{1}(T,[-1,1])\times C(T,[-1,1]) \) since

$$\begin{aligned}& \begin{aligned} & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr) +\bigl(p(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\ &\qquad {}+\mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \\ &\quad = \int _{T} \bigl[\bigl(\theta (t)-\vartheta (t)\bigr) \cos \vartheta (t)+\bigl(p(t)-q(t)\bigr) \bigl(e^{q(t)}+q(t)e^{q(t)} \bigr) \bigr]\,dt\geq 0 \\ &\qquad \forall (\theta ,p),(\vartheta ,q)\in \Theta \times P \end{aligned} \\& \begin{aligned} \quad \Rightarrow \quad & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr) +\bigl(p(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)\\ &\qquad {}+\mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr) \biggr]\,dt \\ &\quad = \int _{T} \bigl[\bigl(\theta (t)-\vartheta (t)\bigr) \cos \theta (t)+\bigl(p(t)-q(t)\bigr) \bigl(e^{p(t)}+p(t)e^{p(t)}\bigr) \bigr]\,dt\geq 0 \\ &\qquad \forall (\theta ,p),(\vartheta ,q)\in \Theta \times P \end{aligned} \end{aligned}$$

is satisfied. However, it is not monotone on \(\Theta \times P\) since

$$\begin{aligned} & \int _{T} \biggl[\bigl(\theta (t)-\vartheta (t)\bigr) \biggl( \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial \theta} \bigl( \chi _{\vartheta ,q}(t)\bigr) \biggr) \\ &\qquad {}+\bigl(p(t)-q(t)\bigr) \biggl( \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \\ &\qquad {}+ \mathcal{D}_{\alpha}\bigl(\theta (t)-\vartheta (t)\bigr) \biggl(\frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr)- \frac {\partial g}{\partial \theta _{\alpha}} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \biggr]\,dt \\ &\quad = \int _{T} \bigl[\bigl(\theta (t)-\vartheta (t)\bigr) \bigl( \cos \theta (t)-\cos \vartheta (t)\bigr) \\ &\qquad {}+\bigl(p(t)-q(t)\bigr) \bigl(p(t)e^{p(t)}+e^{p(t)}-q(t)e^{q(t)}-e^{q(t)} \bigr) \bigr]\,dt \ngeq 0, \\ &\qquad \forall (\theta ,p),(\vartheta ,q)\in \Theta \times P. \end{aligned}$$

Taking into account Usman and Khan [35], we formulate the next definition.

Definition 2.3

The functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is hemicontinuous on \(\Theta \times P\) if

$$\begin{aligned} \lambda \rightarrow \biggl\langle \bigl(\theta (t),p(t)\bigr)-\bigl( \vartheta (t),q(t) \bigr), \biggl( \frac{\delta G}{\delta \theta _{\lambda}}(t), \frac{\delta G}{\delta p_{\lambda}}(t) \biggr) \biggr\rangle ,\quad 0 \leq \lambda \leq 1 \end{aligned}$$

is continuous at 0+, for \(\forall (\theta ,p),(\vartheta ,q)\in \Theta \times P \), where

$$\begin{aligned}& \frac{\delta G}{\delta \theta _{\lambda}}(t):= \frac{\partial g}{\partial \theta} \bigl(\chi _{\theta _{\lambda},p_{ \lambda}}(t)\bigr)- \mathcal{D}_{\alpha} \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{\lambda},p_{ \lambda}}(t)\bigr) \in \Theta ,\\& \frac{\delta G}{\delta p_{\lambda}}(t):= \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{\lambda},p_{\lambda}}(t)\bigr) \in P,\\& \theta _{\lambda} := \lambda \theta + (1-\lambda )\vartheta , \qquad p_{ \lambda} := \lambda p + (1-\lambda )q. \end{aligned}$$

Now, we formulate the following variational inequality-constrained optimization problem (for short, CP):

$$\begin{aligned} &\text{Minimize } \int _{T}g(\chi _{\theta ,p})\,dt \\ &\text{subject to } (\theta ,p) \in \Lambda , \end{aligned}$$
(CP)

where Λ is the set of solutions for the following variational inequality (for short, IP):

Find \((\theta ,p) \in \Theta \times P \) such that

$$\begin{aligned} & \int _{T} \biggl[ \frac {\partial g}{\partial \theta} (\chi _{\theta ,p}) ( \vartheta - \theta )+\frac {\partial g}{\partial \theta _{\alpha}}(\chi _{\theta ,p}) \mathcal{D}_{\alpha}( \vartheta -\theta ) \biggr]\,dt \\ &\quad{}+ \int _{T} \biggl[ \frac {\partial g}{\partial p} (\chi _{\theta ,p}) (q-p) \biggr]\,dt \geq 0, \quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$
(IP)

More precisely, the feasible solutions of (IP) are formulated as

$$\begin{aligned} \Lambda &= \biggl\{ (\theta ,p)\in \Theta \times P: \int _{T} \biggl[\bigl( \vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{ \theta ,p}(t)\bigr) \\ &\quad {}+ \mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr)+ \bigl(q(t)-p(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr) \biggr]\,dt \geq 0, \\ &\quad \forall (\vartheta ,q)\in \Theta \times P \biggr\} . \end{aligned}$$

Lemma 2.1

Let the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) be hemicontinuous and pseudomonotone on the convex and closed set \(\Theta \times P\). Then, \((\theta ,p)\in \Theta \times P\) solves (IP) if and only if it solves the variational inequality problem

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+ \bigl(q(t)-p(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$

Proof

First, let us consider that \((\theta ,p)\in \Theta \times P\) solves (IP). In consequence, it follows that

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr)+ \bigl(q(t)-p(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$

By considering the property of pseudomonotonicity of the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\), the above inequality implies

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+ \bigl(q(t)-p(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$

Conversely, let us assume that

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+ \bigl(q(t)-p(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$

Further, for \(\lambda \in (0,1] \) and \((\vartheta ,q)\in \Theta \times P\), we introduce

$$ (\vartheta _{\lambda},q_{\lambda})=\bigl((1-\lambda )\theta + \lambda \vartheta ,(1-\lambda )p+\lambda q\bigr)\in \Theta \times P. $$

Therefore, the previous inequality can be reformulated as follows

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta _{\lambda}(t)-\theta (t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta _{\lambda},q_{ \lambda}}(t)\bigr)+ \bigl(q_{\lambda}(t)-p(t)\bigr)\frac {\partial g}{\partial p} \bigl( \chi _{\vartheta _{\lambda},q_{\lambda}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta _{\lambda}(t)-\theta (t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta _{ \lambda},q_{\lambda}}(t)\bigr) \biggr]\,dt\geq 0,\quad (\vartheta ,q)\in \Theta \times P. \end{aligned}$$

Considering \(\lambda \rightarrow 0\) and using the hemicontinuity property of the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\), we obtain

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ,p}(t)\bigr)+ \bigl(q(t)-p(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta ,p}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ,p}(t)\bigr) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P, \end{aligned}$$

which shows that \((\theta ,p)\) is a solution of (IP). □

Definition 2.4

The functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is lower semicontinuous at \((\theta _{0},p_{0}) \in \Theta \times P\) if

$$ \int _{T}g\bigl(\chi _{\theta _{0},p_{0}}(t)\bigr)\,dt \leq \lim _{(\theta ,p) \to (\theta _{0},p_{0})} \inf \int _{T}g\bigl(\chi _{\theta ,p}(t)\bigr)\,dt. $$

3 Well-posedness and generalized well-posedness of (CP)

In this section, taking into account the mathematical tools in Sect. 2, we analyze the well-posedness and generalized well-posedness of (CP).

Let Φ be the solution set of (CP),

$$\begin{aligned} \Phi &= \biggl\{ (\theta ,p) \in \Theta \times P \Bigm| \int _{T}g( \chi _{\theta ,p})\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g( \chi _{\vartheta ,q})\,dt\text{ and} \\ &\quad \int _{T} \biggl[(\vartheta -\theta ) \frac {\partial g}{\partial \theta} (\chi _{\theta ,p})+ (q-p) \frac {\partial g}{\partial p} (\chi _{\theta ,p}) \\ &\quad {}+\mathcal{D}_{\alpha}(\vartheta -\theta ) \frac {\partial g}{\partial \theta _{\alpha}}(\chi _{\theta ,p}) \biggr]\,dt \geq 0, \forall (\vartheta ,q)\in \Theta \times P \biggr\} . \end{aligned}$$

For \(\rho ,\xi \geq 0\), we define the set of approximating solutions of (CP) as

$$\begin{aligned} \Phi (\rho ,\xi )&= \biggl\{ (\theta ,p) \in \Theta \times P \Bigm| \int _{T}g(\chi _{\theta ,p})\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g(\chi _{\vartheta ,q})\,dt + \rho \text{ and} \\ &\quad \int _{T} \biggl[(\vartheta -\theta ) \frac {\partial g}{\partial \theta} (\chi _{\theta ,p})+ (q-p) \frac {\partial g}{\partial p} (\chi _{\theta ,p}) \\ &\quad {}+\mathcal{D}_{\alpha}(\vartheta -\theta ) \frac {\partial g}{\partial \theta _{\alpha}}(\chi _{\theta ,p}) \biggr]\,dt + \xi \geq 0, \forall (\vartheta ,q)\in \Theta \times P \biggr\} . \end{aligned}$$

Remark 3.1

Clearly, for \((\rho ,\xi )=(0,0)\), we have \(\Phi = \Phi (\rho ,\xi )\) and, for \((\rho ,\xi )>(0,0)\), we obtain \(\Phi \subseteq \Phi (\rho ,\xi )\).

Definition 3.1

A sequence \(\{(\theta _{n}, p_{n})\}\) is an approximating sequence of (CP) if there exists a sequence of positive real numbers \(\xi _{n} \rightarrow 0 \) as \(n\rightarrow \infty \), such that

$$ \lim_{n\rightarrow \infty} \sup \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt $$

and

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+ \bigl(q(t)-p_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P \end{aligned}$$

are satisfied.

Definition 3.2

The variational problem (CP) is well-posed if:

  1. (i)

    it admits a unique solution \((\theta _{0},p_{0})\);

  2. (ii)

    an approximating sequence of (CP) converges to \((\theta _{0},p_{0})\).

Definition 3.3

The variational problem (CP) is generalized well-posed if:

  1. (i)

    \(\Phi \neq \phi \)0;

  2. (ii)

    an approximating sequence of (CP) admits a subsequence that converges to some pair of Φ.

Further, the diameter of a set B is determined as follows

$$ \operatorname{diam}B=\sup_{x,y\in B} \Vert x-y \Vert . $$

Theorem 3.1

Let the functional \(\int _{T}g(\chi _{\theta ,p} (t))\,dt\) be monotone, lower semicontinuous, and hemicontinuous on \(\Theta \times P\). The variational problem (CP) is well-posed if and only if

$$ \Phi (\rho ,\xi )\neq \phi ,\quad \forall \rho , \xi >0 \quad\textit{and}\quad \operatorname{diam}\Phi (\rho ,\xi ) \rightarrow 0\quad\textit{as }(\rho ,\xi ) \rightarrow (0,0). $$

Proof

Let us consider that (CP) is well-posed. Thus, it admits a unique solution \((\bar{\theta},\bar{p})\in \Phi \). Since \(\Phi \subseteq \Phi (\rho ,\xi )\), ρ, \(\xi >0\), we obtain \(\Phi (\rho ,\xi ) \neq \phi \), ρ, \(\xi >0\). Suppose that \(\operatorname{diam}\Phi (\rho ,\xi ) \nrightarrow 0\) as \((\rho ,\xi ) \rightarrow (0,0)\). Then, there exist \(r>0\), a natural number \(m, \rho _{n},\xi _{n}>0\) with \(\rho _{n},\xi _{n} \rightarrow 0\) and \((\theta _{n}, p_{n}),(\theta ^{\prime}_{n},p^{\prime}_{n})\in \Phi ( \rho _{n},\xi _{n})\) such that

$$ \bigl\Vert (\theta _{n}, p_{n})-\bigl(\theta ^{\prime}_{n},p^{\prime}_{n}\bigr) \bigr\Vert > r, \quad \forall n\geq m. $$
(3)

Since \((\theta _{n}, p_{n}), (\theta ^{\prime}_{n},p^{\prime}_{n})\in \Phi ( \rho _{n},\xi _{n})\), we obtain

$$\begin{aligned}& \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q) \in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt + \rho _{n},\\& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+ \bigl(q(t)-p_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P \end{aligned}$$

and

$$\begin{aligned}& \int _{T}g\bigl(\chi _{\theta ^{{\prime}}_{n},p^{{\prime}}_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt + \rho _{n},\\& \int _{T} \biggl[\bigl(\vartheta (t)-\theta ^{{\prime}}_{n}(t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta ^{{\prime}}_{n},p^{{ \prime}}_{n}}(t)\bigr)+ \bigl(q(t)-p^{{\prime}}_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta ^{{\prime}}_{n},p^{{ \prime}}_{n}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta ^{{\prime}}_{n}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta ^{{\prime}}_{n},p^{{ \prime}}_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall ( \vartheta ,q) \in \Theta \times P. \end{aligned}$$

We obtain that \(\{(\theta _{n},p_{n})\}\) and \(\{(\theta ^{\prime}_{n},p^{\prime}_{n})\}\) are approximating sequences of (CP), converging to \((\bar{\theta}, \bar{p})\) (by hypothesis, (CP) is well-posed). By direct computation, we obtain

$$\begin{aligned}& \bigl\Vert (\theta _{n}, p_{n})-\bigl(\theta ^{\prime}_{n},p^{\prime}_{n}\bigr) \bigr\Vert \\& \quad = \bigl\Vert (\theta _{n}, p_{n})-(\bar{\theta}, \bar{p})+(\bar{\theta}, \bar{p}) -\bigl(\theta ^{\prime}_{n},p^{\prime}_{n} \bigr) \bigr\Vert \\& \quad \leq \bigl\Vert (\theta _{n}, p_{n})-(\bar{\theta}, \bar{p}) \bigr\Vert + \bigl\Vert ( \bar{\theta}, \bar{p}) -\bigl(\theta ^{\prime}_{n},p^{\prime}_{n}\bigr) \bigr\Vert \leq \xi , \end{aligned}$$

which contradicts (1), for some \(\xi =r\). In consequence, \(\operatorname{diam}\Phi (\rho ,\xi ) \rightarrow 0\) as \((\rho ,\xi ) \rightarrow (0,0)\).

Now, conversely, let us consider that \(\{(\theta _{n},p_{n})\}\) is an approximating sequence of (CP). Then, there exists a sequence of positive real numbers \(\xi _{n} \rightarrow 0\) as \(n\rightarrow \infty \) such that

$$\begin{aligned}& \lim_{n\rightarrow \infty} \sup \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt, \end{aligned}$$
(4)
$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+ \bigl(q(t)-p_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P \end{aligned}$$
(5)

hold, implying \((\theta _{n},p_{n}) \in \Phi (\rho _{n},\xi _{n})\), for a sequence of positive real numbers \(\rho _{n} \rightarrow 0\) as \(n\rightarrow \infty \). Since we have \(\operatorname{diam}\Phi (\rho _{n},\xi _{n}) \rightarrow 0\) as \((\rho _{n}, \xi _{n}) \rightarrow (0,0)\), therefore \(\{(\theta _{n},p_{n})\}\) is a Cauchy sequence converging to some \((\bar{\theta}, \bar{p}) \in \Theta \times P\) (\(\Theta \times P\) is a closed set).

By hypothesis, \(\int _{T}g(\chi _{\theta ,p} (t))\,dt\) is monotone on \(\Theta \times P\). Therefore, for \((\bar{\theta}, \bar{p}),(\vartheta ,q)\in \Theta \times P\), it follows that

$$\begin{aligned}& \int _{T} \biggl[\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \biggl( \frac {\partial g}{\partial \theta} \bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)- \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr)\\& \quad {}+\bigl(\bar{p}(t)-q(t)\bigr) \biggl(\frac {\partial g}{\partial p} \bigl(\chi _{ \bar{\theta},\bar{p}}(t)\bigr)-\frac {\partial g}{\partial \theta} \bigl(\chi _{ \vartheta ,q}(t)\bigr) \biggr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \biggl( \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr)-\frac {\partial g}{\partial \theta _{\alpha}} \bigl(\chi _{ \vartheta ,q}(t)\bigr) \biggr) \biggr]\,dt\geq 0, \end{aligned}$$

or, equivalently,

$$\begin{aligned}& \int _{T} \biggl[\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)+\bigl( \bar{p}(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \biggr]\,dt \\& \quad \geq \int _{T} \biggl[\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(\bar{p}(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt. \end{aligned}$$
(6)

Taking the limit in inequality (3), we have

$$\begin{aligned}& \int _{T} \biggl[\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)+\bigl( \bar{p}(t)-q(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\bar{\theta}(t)-\vartheta (t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \biggr]\,dt \leq 0. \end{aligned}$$
(7)

On combining (4) and (5), we obtain

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)- \bar{p}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \geq 0. \end{aligned}$$

Further, by considering Lemma 2.1, it follows that

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr)+\bigl(q(t)- \bar{p}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \biggr]\,dt \geq 0, \end{aligned}$$
(8)

which implies that \((\bar{\theta},\bar{p})\in \Lambda \).

Since the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is lower semicontinuous, we obtain

$$\begin{aligned} \int _{T}g\bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)\,dt\leq \lim _{n\rightarrow \infty} \inf \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt\leq \lim _{n \rightarrow \infty} \sup \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt. \end{aligned}$$

By using (2), the above inequality reduces to

$$ \int _{T}g\bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)\,dt\leq \inf _{(\vartheta ,q) \in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt. $$
(9)

From (6) and (7), we obtain that \((\bar{\theta},\bar{p})\) solves (VPC).

Now, let us prove that \((\bar{\theta},\bar{p})\) is a unique solution of (CP). Suppose that \((\theta _{1},p_{1})\), \((\theta _{2}, p_{2})\) are two different solutions of (CP). Then,

$$\begin{aligned} 0< \bigl\Vert (\theta _{1},p_{1})-(\theta _{2}, p_{2}) \bigr\Vert \leq \operatorname{diam}\Phi ( \rho ,\xi ) \rightarrow 0 \quad \text{as } (\rho ,\xi ) \rightarrow (0,0), \end{aligned}$$

which is not possible. □

Theorem 3.2

Let the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) be monotone, lower semicontinuous, and hemicontinuous on \(\Theta \times P\). The variational problem (CP) is well-posed if and only if (CP) admits a unique solution.

Proof

Let us consider that (CP) is well-posed. Therefore, it admits a unique solution \((\theta _{0},p_{0})\). Now, conversely, we consider that (CP) has a sole solution \((\theta _{0},p_{0})\), that is,

$$\begin{aligned}& \int _{T}g(\chi _{\theta _{0},p_{0}})\,dt \leq \inf _{(\vartheta ,q) \in \Lambda} \int _{T}g(\chi _{\vartheta ,q})\,dt, \\& \int _{T} \biggl[(\vartheta -\theta _{0}) \frac {\partial g}{\partial \theta} (\chi _{\theta _{0},p_{0}})+ (q-p_{0}) \frac {\partial g}{\partial p} ( \chi _{\theta _{0},p_{0}}) \\& \quad {}+\mathcal{D}_{\alpha}(\vartheta -\theta _{0}) \frac {\partial g}{\partial \theta _{\alpha}}(\chi _{\theta _{0},p_{0}}) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P, \end{aligned}$$
(10)

but it is not well-posed. By Definition 3.2, there exists an approximating sequence \(\{(\theta _{n},p_{n})\}\) of (CP) that does not converge to \((\theta _{0},p_{0})\). On the other hand, there exist a sequence of positive real numbers \(\xi _{n}\rightarrow 0\) as \(n\rightarrow \infty \) such that the following inequalities

$$ \lim_{n\rightarrow \infty} \sup \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt $$

and

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+ \bigl(q(t)-p_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P \end{aligned}$$
(11)

are fulfilled. Further, to establish the boundedness of \(\{(\theta _{n},p_{n})\}\), we proceed by contradiction. Suppose \(\{(\theta _{n},p_{n})\}\) is not bounded, therefore, \(\|(\theta _{n},p_{n})\| \rightarrow +\infty \) as \(n\rightarrow + \infty \). Let us consider \(\delta _{n}=\frac {1}{\|(\theta _{n},p_{n})-(\theta _{0},p_{0})\|}\) and \((\underline{\theta}_{n},\underline{p}_{n})=(\theta _{0},p_{0})+ \delta _{n}[(\theta _{n},p_{n})-(\theta _{0},p_{0})]\). We have that \(\{(\underline{\theta}_{n},\underline{p}_{n}) \}\) is bounded in \(\Theta \times P\). Hence, if we pass to a subsequence if necessary, we can assume that

$$ (\underline{\theta}_{n},\underline{p}_{n}) \rightarrow ( \underline{\theta},\underline{p})\quad \text{weakly in }\Theta \times P \neq ( \theta _{0},p_{0}). $$

It is not difficult to check that \((\underline{\theta},\underline{p})\neq (\theta _{0},p_{0})\) as \(\|\delta _{n}[(\theta _{n},p_{n})-(\theta _{0},p_{0})\|=1\) for all \(n\in \mathbb{N}\). Since \((\theta _{0},p_{0})\) is a solution of (CP), therefore the inequalities in (8) are satisfied. By Lemma 2.1, we obtain

$$\begin{aligned}& \int _{T}g(\chi _{\theta _{0},p_{0}})\,dt \leq \inf _{(\vartheta ,q) \in \Lambda} \int _{T}g(\chi _{\vartheta ,q})\,dt, \\& \int _{T} \biggl[(\vartheta -\theta _{0}) \frac {\partial g}{\partial \theta} (\chi _{\vartheta ,q})+ (q-p_{0}) \frac {\partial g}{\partial p} ( \chi _{\vartheta ,q}) \\& \quad {}+\mathcal{D}_{\alpha}(\vartheta -\theta _{0}) \frac {\partial g}{\partial \theta _{\alpha}}(\chi _{\vartheta ,q}) \biggr]\,dt\geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$
(12)

By hypothesis, the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is monotone on \(\Theta \times P\). Therefore, for \((\theta _{n},p_{n}),(\vartheta ,q)\in \Theta \times P\), we have

$$\begin{aligned}& \int _{T} \biggl[\bigl(\theta _{n}(t)-\vartheta (t) \bigr) \biggl( \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)- \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr)\\& \quad {}+\bigl(p_{n}(t)-q(t)\bigr) \biggl(\frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)- \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\theta _{n}(t)-\vartheta (t) \bigr) \biggl( \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)- \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr) \biggr]\,dt\geq 0, \end{aligned}$$

or, equivalently,

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+\bigl(q(t)-p_{n}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt \\& \quad \leq \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt . \end{aligned}$$
(13)

Combining with (9) and (11), we have

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \geq -\xi _{n}, \quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$

Because \(\delta _{n}\to 0\) as \(n\to \infty \), we can take \(n_{0}\in \mathbb{N}\) to be large enough so that \(\delta _{n} < 1\), for all \(n\ge n_{0}\). By multiplying the above inequality and (10) by \(\delta _{n}>0\) and \(1-\delta _{n}>0\), respectively, we make the sum of the resulting inequalities to obtain

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\underline{ \theta}_{n}(t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t) \bigr)+\bigl(q(t)- \underline{p}_{n}(t)\bigr)\frac {\partial g}{\partial p} \bigl( \chi _{ \vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\underline{ \theta}_{n}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t) \bigr) \biggr]\,dt \geq -\xi _{n}, \quad \forall (\vartheta ,q)\in \Theta \times P, \forall n \geq n_{0}. \end{aligned}$$

Since \((\underline{\theta}_{n},\underline{p}_{n}) \rightarrow ( \underline{\theta},\underline{p}) \neq (\theta _{0},p_{0})\) and \((\underline{\theta}_{n},\underline{p}_{n})=(\theta _{0},p_{0})+ \delta_{n}[(\theta _{n},p_{n})-(\theta _{0},p_{0})]\), we have

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\underline{\theta}(t) \bigr) \frac {\partial g}{\partial \theta}\bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)- \underline{p}(t)\bigr)\frac {\partial g}{\partial p}\bigl(\chi _{\vartheta ,q}(t) \bigr)\\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\underline{\theta}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt\\& \quad =\lim_{n \rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)- \underline{ \theta}_{n}(t)\bigr)\frac {\partial g}{\partial \theta}\bigl(\chi _{ \vartheta ,q}(t)\bigr) +\bigl(q(t)-\underline{p}_{n}(t)\bigr) \frac {\partial g}{\partial p}\bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\underline{ \theta}_{n}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t) \bigr) \biggr]\,dt\\& \quad \geq -\lim_{n \rightarrow \infty} \xi _{n} = 0,\quad \forall ( \vartheta ,q)\in \Theta \times P. \end{aligned}$$

By using Lemma 2.1 and considering the lower semicontinuity property, we obtain

$$\begin{aligned}& \int _{T}g\bigl(\chi _{\underline{\theta},\underline{p}}(t)\bigr)\,dt \leq \inf _{( \vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt, \\& \int _{T} \biggl[\bigl(\vartheta (t)-\underline{\theta}(t) \bigr) \frac {\partial g}{\partial \theta}\bigl(\chi _{\underline{\theta}, \underline{p}}(t)\bigr)+\bigl(q(t)- \underline{p}(t)\bigr) \frac {\partial g}{\partial p}\bigl(\chi _{\underline{\theta}, \underline{p}}(t) \bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\underline{\theta}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{ \underline{\theta},\underline{p}}(t)\bigr) \biggr]\,dt\geq 0,\quad \forall ( \vartheta ,q)\in \Theta \times P. \end{aligned}$$
(14)

We obtain that \((\underline{\theta},\underline{p})\) is a solution of (CP), which is a contradiction with the uniqueness of \((\theta _{0},p_{0})\). Therefore, \(\{(\theta _{n},p_{n})\}\) is a bounded sequence having a convergent subsequence \(\{(\theta _{n_{k}},p_{n_{k}})\}\) that converges to \((\bar{\theta},\bar{p})\in \Theta \times P\) as \(k\rightarrow \infty \). Again, from monotonicity, for \((\theta _{n_{k}},p_{n_{k}}),(\vartheta ,q)\in \Theta \times P\), we have (see (11))

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \biggr]\,dt \\& \quad \leq \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt. \end{aligned}$$
(15)

Also, as a result of (9), we can write

$$\begin{aligned}& \lim_{k\rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \biggr]\,dt \geq 0. \end{aligned}$$
(16)

Combining (13) and (14), we have

$$\begin{aligned}& \lim_{k \rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \geq 0\\& \begin{aligned} \quad \Rightarrow\quad & \int _{T} \biggl[\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)- \bar{p}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\ &\quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \geq 0. \end{aligned} \end{aligned}$$

By using Lemma 2.1 and considering the lower semicontinuity property, we obtain

$$\begin{aligned}& \int _{T}g\bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q) \in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt,\\& \int _{T} \biggl[\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)+\bigl(q(t)- \bar{p}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\bar{\theta},\bar{p}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\bar{\theta}(t)\bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\bar{\theta}, \bar{p}}(t)\bigr) \biggr]\,dt \geq 0, \end{aligned}$$

which shows that \((\bar{\theta},\bar{p})\) is a solution of (CP). Hence, \((\theta _{n_{k}},p_{n_{k}})\rightarrow (\bar{\theta},\bar{p})\), that is, \((\theta _{n_{k}},p_{n_{k}})\rightarrow (\theta _{0},p_{0})\), involving \((\theta _{n},p_{n}) \rightarrow (\theta _{0},p_{0})\). □

Theorem 3.3

Let the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) be hemicontinuous, lower semicontinuous, and monotone on the compact and convex set \(\Theta \times P\). The variational control problem (CP) is generalized well-posed if and only if Φ is nonempty.

Proof

Let us consider that (CP) is generalized well-posed. Hence, by Definition 3.2, Φ is nonempty. Now, conversely, let \(\{(\theta _{n},p_{n})\}\) be an approximating sequence of (CP). Therefore, there exists a sequence of positive real numbers \(\xi _{n}\rightarrow 0\) such that

$$\begin{aligned}& \lim_{n\rightarrow \infty} \sup \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt, \end{aligned}$$
(17)
$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+ \bigl(q(t)-p_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P \end{aligned}$$
(18)

are satisfied. Since \(\Theta \times P\) is a compact set, \(\{(\theta _{n},p_{n})\}\) has a subsequence \(\{(\theta _{n_{k}},p_{n_{k}})\}\), converging to some pair \((\theta _{0},p_{0})\in \Theta \times P\). Since the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is monotone on \(\Theta \times P\), for

$$ (\theta _{n_{k}},p_{n_{k}}),\quad (\vartheta ,q) \in \Theta \times P, $$

it follows that

$$\begin{aligned}& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr)\\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \biggr]\,dt\\& \quad \leq \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt. \end{aligned}$$

Taking the limit \(k\rightarrow \infty \), we obtain

$$\begin{aligned}& \lim_{k\rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \biggr]\,dt \\& \quad \leq \lim_{k\rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr) \\& \qquad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt. \end{aligned}$$
(19)

Since \(\{(\theta _{n_{k}},p_{n_{k}})\}\) is an approximating subsequence in \(\Theta \times P\), by (16), we obtain

$$\begin{aligned}& \lim_{k\rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n_{k}},p_{n_{k}}}(t)\bigr) \biggr]\,dt \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned}$$
(20)

Combining (17) and (18), we obtain

$$\begin{aligned}& \lim_{k\rightarrow \infty} \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{n_{k}}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n_{k}}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \geq 0,\quad \forall \bigl(\vartheta (t),q(t)\bigr)\in \Theta \times P\\& \begin{aligned} \quad \Rightarrow \quad & \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{0}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\vartheta ,q}(t)\bigr)+\bigl(q(t)-p_{0}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\vartheta ,q}(t)\bigr)\\ &\quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{0}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\vartheta ,q}(t)\bigr) \biggr]\,dt \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P. \end{aligned} \end{aligned}$$

By using Lemma 2.1 and considering the lower semicontinuity property, we obtain

$$\begin{aligned}& \int _{T}g\bigl(\chi _{\theta _{0},p_{0}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q) \in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt,\\& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{0}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{0},p_{0}}(t)\bigr)+\bigl(q(t)-p_{0}(t) \bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{0},p_{0}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{0}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{0},p_{0}}(t)\bigr) \biggr]\,dt \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P, \end{aligned}$$

which shows that \((\theta _{0},p_{0})\in \Phi \). □

Theorem 3.4

Let the functional \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) be lower semicontinuous, hemicontinuous, and monotone on the compact and convex set \(\Theta \times P\). The variational control problem (CP) is generalized well-posed if there exists \(\xi >0\) so that \(\Phi (\xi ,\xi )\) is (nonempty) bounded.

Proof

Let \(\xi >0\) be such that \(\Phi (\xi ,\xi )\) is bounded (nonempty). Let us consider that \(\{(\theta _{n},p_{n})\}\) is an approximating sequence of (CP). Hence, there exists a sequence of positive real numbers \(\xi _{n}\rightarrow 0\) such that

$$\begin{aligned}& \lim_{n\rightarrow \infty} \sup \int _{T}g\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\,dt \leq \inf _{(\vartheta ,q)\in \Lambda} \int _{T}g\bigl(\chi _{\vartheta ,q}(t)\bigr)\,dt,\\& \int _{T} \biggl[\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)+ \bigl(q(t)-p_{n}(t)\bigr) \frac {\partial g}{\partial p} \bigl(\chi _{\theta _{n},p_{n}}(t)\bigr)\\& \quad {}+\mathcal{D}_{\alpha}\bigl(\vartheta (t)-\theta _{n}(t) \bigr) \frac {\partial g}{\partial \theta _{\alpha}}\bigl(\chi _{\theta _{n},p_{n}}(t)\bigr) \biggr]\,dt+\xi _{n} \geq 0,\quad \forall (\vartheta ,q)\in \Theta \times P \end{aligned}$$

are satisfied, involving that \((\theta _{n},p_{n})\in \Phi (\xi ,\xi )\), \(\forall n>m\) (m is a natural number). Therefore, we obtain that \(\{(\theta _{n},p_{n})\}\) is a bounded sequence having a convergent subsequence \(\{(\theta _{n_{k}},p_{n_{k}})\}\), weakly converging to \((\theta _{0},p_{0})\) as \(k\rightarrow \infty \). Proceeding in a similar way as in Theorem 3.3, we obtain \((\theta _{0},p_{0})\in \Phi \). □

Next, we provide a concrete application that can be studied only with the mathematical tools and results developed in the current paper.

Illustrative Application. Minimize the mass of the flat plate \([0,3]^{2}= [0,3]\times [0,3]\), having a controlled density given by \(p^{4}(t) + e^{\theta (t)}-\theta (t) \), that depends on the current point, such that the following controlled dynamical system \(\theta _{\alpha}(t) = p(t)\), \(\forall t \in [0,3]^{2}\), together with the boundary conditions \((\theta ,p)\vert _{\partial T} = 0 \), and the positivity property

$$\begin{aligned}& \int _{[0,3]^{2}} \bigl[4\bigl(q(t)-p(t)\bigr)p^{3}(t)+ \bigl(\vartheta (t)-\theta (t)\bigr) \bigl(e^{ \theta (t)}-1\bigr) \bigr]\,dt \geq 0,\\& \quad \forall (\vartheta ,q)\in C^{1}\bigl(T,[-5,5]\bigr)\times C \bigl(T,[-5,5]\bigr) \end{aligned}$$

are satisfied.

In order to solve the above concrete mechanical-physics problem, we take \(m=2\), \(n=k=1\), \(T = [0,3]^{2} \) (see Sect. 2), and consider

$$ g\bigl(\chi _{\theta ,p}(t)\bigr)=p^{4}(t) + e^{\theta (t)}- \theta (t) $$

and the variational inequality-constrained control problem:

$$\begin{aligned} &\text{Minimize } \int _{T}g\bigl(\chi _{\theta ,p}(t)\bigr)\,dt \\ &\text{subject to} \\ & \int _{T} \bigl[4\bigl(q(t)-p(t)\bigr)p^{3}(t)+ \bigl(\vartheta (t)-\theta (t)\bigr) \bigl(e^{ \theta (t)}-1\bigr) \bigr]\,dt \geq 0, \\ &(\theta ,p)\vert _{\partial T} = 0, \qquad \theta _{\alpha} = p, \quad \forall (\vartheta ,q)\in \Theta \times P = C^{1}\bigl(T,[-5,5]\bigr) \times C\bigl(T,[-5,5]\bigr). \end{aligned}$$
(CP-1)

We have \(\Phi =\{(0,0)\}\) and, also, it can be easily seen that \(\int _{T}g(\chi _{\theta ,p}(t))\,dt\) is monotone, lower semicontinuous, and hemicontinuous on \(\Theta \times P\). Since Theorem 3.2 is fulfilled, we conclude that the variational problem (CP-1) is well-posed. Moreover, we have \(\Phi (\rho ,\xi )=\{(0,0)\}\) and, consequently, \(\Phi (\rho ,\xi ) \neq \phi \) and \(\operatorname{diam}\Phi (\rho ,\xi ) \rightarrow 0 \) as \((\rho ,\xi ) \rightarrow (0,0)\). Taking into account Theorem 3.1, the variational problem (CP-1) is well-posed.

4 Conclusions

In this paper, we have studied the well-posedness and generalized well-posedness for new variational control problems. Namely, by using the concepts of lower semicontinuity, pseudomonotonicity, monotonicity, and hemicontinuity associated with functionals of multiple-integral type, under suitable assumptions, we have established that the well-posedness is characterized in terms of the existence and uniqueness of their solutions. Moreover, sufficient conditions were provided for the generalized well-posedness by assuming the nonemptiness and boundedness of the approximating solution set. A concrete application, which can be studied only with the mathematical tools and results developed in the current paper, was presented.

As immediate further developments of this paper, we mention the following two: (a) reformulating the main results derived in this paper by using the variational/functional derivative of integral functionals; (b) the study of the saddle-point optimality criteria associated with this type of constrained optimization problems.

Availability of data and materials

Not applicable.

References

  1. Bai, Y., Migórski, S., Zeng, S.: Well-posedness of a class of generalized mixed hemivariational-variational inequalities. Nonlinear Anal., Real World Appl. 48, 424–444 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ceng, L.C., Hadjisavvas, N., Schaible, S., Yao, J.C.: Well-posedness for mixed quasivariational-like inequalities. J. Optim. Theory Appl. 139, 109–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ceng, L.C., Yao, J.C.: Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems. Nonlinear Anal. 69, 4585–4603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J.W., Wang, Z., Cho, Y.J.: Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems. Math. Methods Oper. Res. 77, 33–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Čoban, M.M., Kenderov, P.S., Revalski, J.P.: Generic well-posedness of optimization problems in topological spaces. Mathematika 36, 301–324 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  7. Fang, Y.P., Hu, R.: Estimates of approximate solutions and well-posedness for variational inequalities. Math. Methods Oper. Res. 65, 281–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, Y.P., Hu, R., Huang, N.J.: Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furi, M., Vignoli, A.: A characterization of well-posed minimum problems in a complete metric space. J. Optim. Theory Appl. 5, 452–461 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heemels, P.M.H., Camlibel, M.K.C., Vander Schaft, A.J., Schumacher, J.M.: Well-posedness of the complementarity class of hybrid systems. In: Proc. IFAC 15th Triennial. World Congress, Barcelona (2002)

    Google Scholar 

  11. Hu, R., Fang, Y.P.: Levitin-Polyak well-posedness by perturbations of inverse variational inequalities. Optim. Lett. 7, 343–359 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, R., Sofonea, M., Xiao, Y.B.: Tykhonov triples and convergence results for hemivariational inequalities. Nonlinear Anal., Model. Control 26, 271–292 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, R., Xiao, Y.B., Huang, N.J., Wang, X.: Equivalence results of well-posedness for split variational-hemivariational inequalities. J. Nonlinear Convex Anal. 20, 447–459 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Huang, X.X.: Extended and strongly extended well-posedness of set-valued optimization problems. Math. Methods Oper. Res. 53, 101–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, X.X., Yang, X.Q.: Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jayswal, A., Jha, S.: Well-posedness for generalized mixed vector variational-like inequality problems in Banach space. Math. Commun. 22, 287–302 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, B., Zhang, J., Huang, X.X.: Levitin-Polyak well-posedness of generalized quasivariational inequalities with functional constraints. Nonlinear Anal. TMA 70, 1492–1503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lalitha, C.S., Bhatia, G.: Well-posedness for parametric quasivariational inequality problems and for optimization problems with quasivariational inequality constraints. Optimization 59, 997–1011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lalitha, C.S., Bhatia, G.: Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type. Positivity 16, 527–541 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levitin, E.S., Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problems. Sov. Math. Dokl. 7, 764–767 (1996)

    MATH  Google Scholar 

  21. Lignola, M.B.: Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 128, 119–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lignola, M.B., Morgan, J.: Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Glob. Optim. 16, 57–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lignola, M.B., Morgan, J.: Approximate solutions and α-well-posedness for variational inequalities and Nash equilibria. In: Zaccour, G. (ed.) Decision and Control in Management Science, pp. 367–378. Kluwer Academic, Dordrecht (2002)

    Chapter  Google Scholar 

  24. Lignola, M.B., Morgan, J.: α-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Glob. Optim. 36, 439–459 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, L.J., Chuang, C.S.: Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint. Nonlinear Anal. 70, 3609–3617 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lucchetti, R.: Convexity and Well-Posed Problems. Springer, New York (2006)

    Book  MATH  Google Scholar 

  27. Lucchetti, R., Patrone, F.: A characterization of Tykhonov well-posedness for minimum problems, with applications to variational inequalities. Numer. Funct. Anal. Optim. 3, 461–476 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sofonea, M., Xiao, Y.B.: On the well-posedness concept in the sense of Tykhonov. J. Optim. Theory Appl. 183, 139–157 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Treanţă, S.: Some results on \((\rho , b, d)\)-variational inequalities. J. Math. Inequal. 14, 805–818 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Treanţă, S.: On well-posed isoperimetric-type constrained variational control problems. J. Differ. Equ. 298, 480–499 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Treanţă, S.: Well-posedness of new optimization problems with variational inequality constraints. Fractal Fract. 5, 123 (2021)

    Article  Google Scholar 

  32. Treanţă, S.: On well-posedness of some constrained variational problems. Mathematics 9, 2478 (2021)

    Article  Google Scholar 

  33. Treanţă, S., Jha, S.: On well-posedness associated with a class of controlled variational inequalities. Math. Model. Nat. Phenom. 16, 52 (2021)

    Article  MathSciNet  Google Scholar 

  34. Tykhonov, A.N.: On the stability of the functional optimization problems. USSR Comput. Math. Math. Phys. 6, 631–634 (1966)

    Google Scholar 

  35. Usman, F., Khan, S.A.: A generalized mixed vector variational-like inequality problem. Nonlinear Anal. 71, 5354–5362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Virmani, G., Srivastava, M.: On Levitin-Polyak α-well-posedness of perturbed variational-hemivariational inequality. Optimization 64, 1153–1172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiao, Y.B., Yang, X.M., Huang, N.J.: Some equivalence results for well-posedness of hemivariational inequalities. J. Glob. Optim. 61, 789–802 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The Deanship of Scientific Research (DR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (RG-7-130-43).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed egually to the manuscript.

Corresponding author

Correspondence to Savin Treanţă.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treanţă, S., Antczak, T. & Saeed, T. On some variational inequality-constrained control problems. J Inequal Appl 2022, 156 (2022). https://doi.org/10.1186/s13660-022-02895-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02895-w

MSC

Keywords