- Research
- Open Access
- Published:
q-ROF mappings and Suzuki type common fixed point results in b-metric spaces with application
Journal of Inequalities and Applications volume 2022, Article number: 155 (2022)
Abstract
In the present paper the concepts of q-rung orthopair fuzzy mappings (q-ROF mapping) and q-rung \(( \alpha ,\beta ) \)-cuts are introduced. Some common fixed point results for q-ROF mappings are presented in b-metric spaces using Suzuki-type contractive conditions. Examples in support of obtained results are also presented. We have also presented an application of our result for the existence of solution of nonlinear fractional integral inclusion. The results are of their own kind in the literature of q-ROF sets and will pave the way for further research in the area.
1 Introduction
The concept of fuzzy sets was introduced by Zadeh [55] to pave a path for the better interpretation of data in real life problems. The key concept given by him was to award a membership grade from \([0,1]\) to the specific attribute. Since then various ideas and applications of fuzzy sets towards decision making, game theory, control systems, engineering, robotics, image processing, optimization theory, etc. have been initiated. There are situations where just membership grade is not enough to deal with, and on this account a grade against the membership of an attribute to a specific trait was introduced. Such sets are defined as orthopair fuzzy sets represented by \(\langle \mu _{A},\nu _{A} \rangle \), where \(\mu _{A} \) stands for grade of membership while \(\nu _{A}\) for nonmembership. Generalizations of orthopair fuzzy sets have been introduced as intuitionistic fuzzy sets (IFS) and Pythagorean fuzzy sets [11, 12]. The difference between these two types is that for the first case, the sum of membership and nonmembership grades is bounded by 1, while for the second case the sum of squares of membership and nonmembership grades is bounded by 1.
Yager then, in 2017, gave a further generalization of orthopair fuzzy sets known as q- rung orthopair fuzzy sets (q-ROF sets) where \(( \mu _{A} ) ^{q}+ ( \nu _{A} ) ^{q}\leq 1\) [54]. The main advantage of a q-ROF set is that it increases the bounding space of selection of belongingness and non-belongingness grade of a trait for a given set. Several mathematicians have further studied q-ROF sets and have applied the concept in decision making problems and artificial intelligence, especially in the filed of medicine and agriculture. Multi-attribute decision making is an important aspect of decision sciences. It is a process that can give the ranking results for the finite alternatives according to the attribute values of different alternatives. The concept of q-ROF sets is combined with many existing aggregation operators for the improved management of evaluating information and decision making [40, 45, 53, 56].
Ever since, in the history of fixed point theory, mathematicians have introduced several contractive conditions and mappings for more improved fixed point results. In this regard several contractions have been developed like Banach contraction, Chatterjea contraction [26], Kannan contraction [36], α-ψ type contractions [51], \((\theta ,L)\)-weak contraction [22], etc. Suzuki [52] in 2008 introduced Suzuki-type contractive condition, which generalizes Banach contraction and characterizes the metric completeness of the underlying space. Since then the concept has been extended in various directions, and fixed point, common fixed point results along with applications have been presented, for example, [1, 6, 7, 21, 23, 34, 38, 39, 41, 42, 50]. In 2015 Saleem et al. [49] presented fixed point results for Suzuki-type contractive conditions utilizing multivalued mappings in fuzzy metric spaces with applications. Recently Gopal and Moreno [31] presented the concept of Suzuki-type fuzzy Z-contractive mappings, which is a generalization of Fuzzy \(\mathcal{Z}\)-contractive mappings, and obtained fixed point results.
The notion of fuzzy mappings was initiated by Heilpern [33], and he proved a fixed point result for fuzzy contractive mappings to generalize Nadler’s result [43]. Afterwards, the idea of fuzzy mappings has been extended in various directions [3, 5, 16, 17, 19, 20, 32, 46–48].
Moreover, fixed points results for various metric spaces using contractive conditions for single-valued and multivalued mappings have been studied. Czerwik introduced b-metric spaces [28], and since then various fixed point results have been obtained using various contractive conditions, e.g., [2, 4, 8, 9, 13, 14, 29, 37, 44] in b-metric spaces.
In the following article we introduce the notion of q-rung orthopair fuzzy mapping as a generalization of fuzzy mapping and q-rung \(( \alpha ,\beta ) \)-level sets and hence prove some common fixed point results for a pair of q-rung orthopair fuzzy mapping in b-metric space.
2 Preliminaries
Consider \((X,d)\) to be a metric space and \(CB(X)\) denotes the family of all closed and bounded subsets of X. Consider that H denotes the Hausdorff metric induced by d defined as
where \(A,B \in CB(X)\) and \(d(x,B)=\inf_{y\in B}d(x,y)\).
Lemma 1
([43])
If \(A,B\in CB(X)\) and \(x\in A\), then for any real number \(l\geq 1\) there exists \(y\in B\) such that \(d(x,y)\leq l.H(A,B)\). Also \(d(x,B)\leq H(A,B)\).
Czerik introduced the generalized notion of b-metric space by changing the triangular inequality in a metric space.
Definition 1
([28])
Consider \(X\neq \emptyset \) and \(s\geq 1\). A function \(d:X\times X\rightarrow {}[ 0,\infty )\) will be b-metric on X if for all \(x,y,z\in X\) the following hold:
- \((i)\):
-
\(d ( x,y ) =0\) if and only if \(x=y\) (indistancy);
- \((\mathit{ii})\):
-
\(d ( x,y ) =d ( y,x ) \), (symmetry);
- \((\mathit{iii})\):
-
\(d ( x,z ) \leq s [ d ( x,y ) +d ( y,z ) ] \) (b-triangular inequality).
Definition 2
([35])
Consider \(\{ x_{n} \} \) to be a sequence in a b-metric space \(( X,d ) \). Then,
- \((a)\):
-
\(\{ x_{n} \} \) is called b-convergent if \(x\in X\) so that \(d ( x_{n},x ) \rightarrow 0\) as \(n\rightarrow \infty \).
- \((b)\):
-
\(\{ x_{n} \} \) is a b-Cauchy sequence if \(d ( x_{n},x_{m} ) \rightarrow 0\) as \(n,m\rightarrow \infty \).
A b-metric space is complete if and only if each b-Cauchy sequence in the space is b-convergent.
Example 1
([24])
Let \(X={0,1,2}\) and \(d:X\times X\rightarrow \mathbb{R}_{+}\) such that \(d(0,1)=d(1,0)+d(0,2)=d(2,0)=1\), \(d(1,2)=d(2,1)=\tau \geq 2\), \(d(0,0)=d(1,1)=d(2,2)=0\). Then
Then \((X,d)\) is a b-metric space. If \(\tau >2\), the ordinary triangular inequality does not hold and \((X,d)\) is not a metric space.
Zadeh [55] introduced fuzzy sets by defining the membership grade of an instinct to a trait which in real life does not have precisely defined criteria of membership for that particular trait.
Definition 3
Let X be a nonempty set. Then \(\mu :X\rightarrow {}[ 0,1]\) is a fuzzy set defining the grades of membership of elements of X.
Definition 4
An α-level set of a fuzzy set μ is defined as
A fuzzy set μ is convex if and only if the sets \(\mu _{\alpha }\) are convex.
Atanassov [11] presented intuitionistic fuzzy sets as a generalized notion of fuzzy sets. Intuitionistic fuzzy set depicts the grade of membership of an element for a set and its grade of nonmembership. Atanassov [12] then in 1993 introduced another type of orthopair fuzzy sets known as Pythagorean fuzzy sets in which the sum of squares of grades of membership and nonmembership of element is bounded by 1. Yager [54] in 2017 generalized the class of orthopair fuzzy sets called q-rung orthopair fuzzy sets or q-ROF sets.
Following concepts are defined by Yager in [54].
Definition 5
A q-rung orthopair fuzzy subset A of X, denoted as a q-ROF set, is an orthopair.
where \(\mu _{A},\eta _{A}:X\rightarrow {}[ 0,1]\) indicate the grade of belongingness and non-belongingness of elements in A respectively, which fulfills
-
1.
\(q\geq 1\);
-
2.
\(\mu _{A}(x)\in {}[ 0,1]\) and \(\eta _{A}(x)\in {}[ 0,1]\);
-
3.
\((\mu _{A}(x))^{q}+ ( \eta _{A}(x) ) ^{q}\leq 1\).
Heilpern [33] in 1981 introduced fuzzy contractive mappings and extended Banach contraction theorem for fuzzy contractive mappings. Further this concept has been extended in various directions; for example, see [15, 16, 20, 25, 27, 46, 48]. Following are the concepts defined in [33].
Definition 6
A fuzzy subset A of X is called an approximate quantity if and only if its α-level set is a compact convex subset of X for each \(\alpha \in {}[ 0,1]\) and \(\sup A(x)=1\) for all \(x\in X\).
\(W(X)\) denotes the collection of approximate quantities of X. When \(A\in W(X)\) and \(A(x_{0})=1\) for some \(x_{0}\in X\), then A is identified as an approximation of \(x_{0}\).
Let \(A,B\in W(X)\). An approximate quantity A is more accurate than B, denoted by \(A\subset B\), if and only if \(A(x)\leq B(x)\) for all \(x\in X\).
Let \(A,B\in W(X)\), \(\alpha \in {}[ 0,1]\), then the distance between A and B is defined as follows:
Let X be a set and Y be a metric linear space. F is called fuzzy mapping if F is a mapping from the set X into \(W(Y)\), i.e., \(F(x)\) is an approximate quantity.
Lemma 2
Let \(x\in X\), \(A\in W(X)\) and \(\{x\}\) be a fuzzy set with membership function equal to the characteristic function of set \(\{x\}\). If \(\{x\} \subset A\), then \(p_{\alpha }(x,A)=0\).
Lemma 3
For any \(x,y\in X\),
In 2008, Suzuki [52] presented a fixed point theorem generalizing the Banach contraction theorem and characterizing the metric completeness.
Theorem 1
Consider \((X,d)\) to be a complete metric space and \(T:X\rightarrow X\). A nonincreasing function \(\theta :[0,1)\rightarrow ( \frac{1}{2},1 ] \) is given by
Suppose that there is \(r\in {}[ 0,1)\) so that
for all \(x,y\in X\). Then there exists a unique fixed point of T. Moreover, \(\lim_{n}T^{n}x=z\) for all \(x\in X\).
Suzuki contraction theorem is extended in various directions, e.g., [10, 23, 49]. Doric and Lazovic [30] presented the following fixed point theorem for multivalued mappings using Suzuki contraction.
Theorem 2
Consider a nonincreasing function defined as \(\varphi :[0,1)\rightarrow (0,1]\):
Consider \((X,d)\) to be a complete metric space and \(T:X\rightarrow CB(X)\). Suppose that there is \(r\in {}[ 0,1)\) so that \(\varphi (r)d(x,Tx)\leq d(x,y)\) implies
for all \(x,y\in X\). Then \(z\in X\) so that \(z\in Tz\).
3 q-ROF mappings and level sets
On the basis of well-known fuzzy notions existing in the literature, we have dedicated the following section to some new concepts defined for q-ROF sets such as q-rung α-level sets, q-rung \(( \alpha ,\beta ) \)-level sets, and q-rung orthopair fuzzy mappings. A common fixed point result for a pair of q-rung orthopair fuzzy mappings in the settings of b-metric space is also presented using Suzuki-type contractive condition. An example in the support of our main result is also given.
Throughout this article the class of all q-ROF subsets of X will be denoted by \(F^{q} ( X )\) and \(\varphi :[0,1)\rightarrow (0,1]\) is a nonincreasing function defined as
Definition 7
Let \(A\in F^{q} ( X ) \) and \(x\in X\), then q-rung α-level set of A is
Definition 8
Consider \(\alpha ,\beta \in [ 0,1 ] \) and \(\alpha +\beta \leq 1\), then q–rung \(( \alpha ,\beta ) \)-level sets of A is
and
Definition 9
Consider X to be an arbitrary set, Y a metric space. A mapping \(T:X\rightarrow F^{q} ( Y ) \) is called q-rung orthopair fuzzy mapping.
Since we claim that q-rung orthopair fuzzy mapping is a generalization of intuitionistic fuzzy mapping, so below is an example in support of the claim.
Example 2
Consider \(X=[0,1]\) and let \(T:X\rightarrow F^{q} ( X ) \) be defined as
Clearly T is a q-rung orthopair fuzzy mapping for \(q=6\) and is not an intuitionistic fuzzy mapping.
Definition 10
Let X be a metric space. A point \(x^{\ast }\in X\) is called fixed point of a q-rung orthopair fuzzy mapping \(T:X\rightarrow F^{q} ( X ) \) if there exist \(\alpha ,\beta \in [ 0,1 ] \) such that \(x^{\ast }\in [ Tx^{\ast } ] _{ ( \alpha ,\beta ) }^{q}\) for some \(x^{\ast }\in X\).
Definition 11
A q-ROF set \(A= \langle \mu _{A},\eta _{A} \rangle _{q}\) in a b-metric linear space X will be an approximate quantity if and only if \([A ] _{ ( \alpha ,\beta ) }^{q}\) is compact and convex in X for each \(\alpha ,\beta \in ( 0,1 ] \) along with
\(\text{\textit{\c{K}}}( X ) = \{ A\in F^{q} ( X ) :A \text{ is an approximate quantity} \} \).
Definition 12
Consider \(( X,d ) \) to be a b-metric space with a constant \(s\geq 1\). For \(A,B\in \text{\textit{\c{K}}}( X ) \) and \(\alpha ,\beta \in [ 0,1 ] \), define
The following results are the generalizations of the results defined in [33] which will be helpful in proving fixed point theorems for q-ROF mappings in b-metric spaces.
Lemma 4
Let \(x\in X\), \(A\in \textit{\textit{\c{K}}}( X ) \), and \(\{ x \} \) be a q-ROF set as its membership function is equal to \(\chi _{ \{ x \} }\) (the characteristic function of \(\{ x \} \)) and nonmembership function is equal to \(1-\chi _{ \{ x \} }\) defined as
for some \(e\in \{x\}\). Clearly, \(( \mu (x) ) ^{q}+ ( \eta (x) ) ^{q}\leq 1\). If \(\{ x \} \subset A\), then \(p_{(\alpha ,\beta )}^{q}(x,A)=0\) for each \(\alpha ,\beta \in {}[ 0,1]\).
Proof
If \(\{ x \} \subset A\), then \(x\in [ A ] _{ ( \alpha ,\beta ) }^{q}\) for each \(\alpha ,\beta \in {}[ 0,1]\).
□
Lemma 5
Let \(x\in X\), \(A\in \textit{\textit{\c{K}}}( X ) \), then for \(s\geq 1\),
Proof
□
Lemma 6
Let \(A\in \textit{\textit{\c{K}}}( X ) \) and \(\{x_{0}\} \subseteq A\). Then
for each \(B\in \textit{\textit{\c{K}}}( X ) \) and \(\alpha ,\beta \in [ 0,1 ] \).
Proof
Since \(\{x_{0}\} \subseteq A\), therefore \(x_{0}\in [ A ] _{ ( \alpha ,\beta ) }^{q}\) for all \(\alpha ,\beta \in [ 0,1 ] \). Hence
□
Lemma 7
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), and let \(T:X\rightarrow \textit{\textit{\c{K}}}(X)\) be a q-rung orthopair fuzzy mapping. Consider that for each \(x\in X\) and each pair \(( \alpha ,\beta ) \in [ 0,1 ] ^{2}\), \([ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q}\), \([ Ta ] _{ ( \alpha ,\beta ) _{Ta}}^{q}\) are nonempty. Then we have
Proof
□
Theorem 3
Consider \((X,d)\) to a complete b-metric linear space, \(s\geq 1\), and \(T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be a q- rung orthopair fuzzy mapping. For each element \(x\in X\) and each pair \(( \alpha ,\beta ) \in [ 0,1 ] \times [ 0,1 ] \), \([ T x ] _{ ( \alpha ,\beta ) _{Tx}}^{q}\) is nonempty. Assume that \(r\in {}[ 0,1)\) such that
implies
for all \(x,y\in X\). Then there exists \(z\in X\) such that \(z\in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\).
Proof
Consider \(x_{1}\in X\). Then \(( \alpha ,\beta ) _{Tx_{1}}\in [ 0,1 ] ^{2}\) so that \([ Tx_{1} ] _{ ( \alpha ,\beta ) _{Tx_{1}}}^{q}\) is nonempty. Let \(x_{2}\in [ Tx_{1} ] _{ ( \alpha ,\beta ) _{Tx_{1}}}^{q}\), then
As \(\varphi (r)\leq 1\), this implies
Then from (3.2) we have
Since \(r<1\), so \(d ( x_{2}, [ Tx_{2} ] _{ ( \alpha ,\beta ) _{Tx_{2}}}^{q} ) \leq r d(x_{1},x_{2})\). Hence there exists \(x_{3}\in X\) such that \(d ( x_{2},x_{3} ) \leq r d(x_{1},x_{2})\). Thus we can construct a sequence \(\{ x_{n} \} \) in X such that \(x_{n+1}\in [ Tx_{n} ] _{ ( \alpha ,\beta ) _{Tx_{n}}}^{q} \) and \(d ( x_{n},x_{n+1} ) \leq r d(x_{n-1},x_{n})\), and hence
This implies \(\{ x_{n} \} \) is a Cauchy sequence. As X is complete, \(z\in X\) so that \(\lim_{n\rightarrow \infty }x_{n}=z\).
Next it is proved that
Since \(x_{n}\rightarrow z\), \(n_{0}\in \mathbb{N} \) so that \(d ( z,x_{n} ) \leq \frac{1}{3s^{2}}d(z,y)\) \(\forall n\geq n_{0}\). Then we have
Thus
Since \(\frac{2}{3s}d(y,z)=\frac{1}{s} ( d(y,z)-\frac{1}{3}d(y,z) ) \leq \frac{1}{s} ( d(y,z)-sd ( z,x_{n} ) ) \leq d(x_{n},y) \). Hence \(\varphi (r)d ( x_{n}, [ Tx_{n} ] _{ ( \alpha , \beta ) _{Tx_{n}}}^{q} ) \leq d(x_{n},y)\). Then from (3.2)
Since \(x_{n+1}\in [ Tx_{n} ] _{ ( \alpha ,\beta ) _{Tx_{n}}}^{q}\), then
Then from (3.4) we get
for all natural numbers with \(n\geq n_{0}\). Letting \(n\rightarrow \infty \), we obtain (3.3).
Next it is shown that \(z\in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\). First consider \(0\leq r<\frac{1}{2}\). Suppose that \(z\notin [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\). Let \(\wp \in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\), so \(2sr d(\wp ,z)< d ( z, [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q} ) \). Since \(\wp \in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\) implies ℘ is not equal to z, hence from (3.3) we have
Also, since \(\varphi (r)d ( z, [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q} ) \leq d ( z, [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q} ) \leq d(z,\wp )\), then from (3.2) we have
Hence
Hence \(d ( \wp , [ T\wp ] _{ ( \alpha ,\beta ) _{T \wp}}^{q} ) \leq r d(z,\wp )< d(z,\wp )\) and from (3.5), \(d ( z, [ T\wp ] _{ ( \alpha ,\beta ) _{T\wp}}^{q} ) \leq r d(z,wp)\).
Therefore, by Lemma 7, we obtain
A contradiction, hence \(z\in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\).
Now, for the case \(\frac{1}{2}\leq r<1\), we will first prove
If \(x=z\), then (3.6) holds. Let \(x\neq z\), then for every n belonging to natural numbers, there is a sequence \(y_{n}\in [ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q}\) so that \(sd(z,y_{n})\leq d ( z, [ Tx ] _{ ( \alpha , \beta ) _{Tx}}^{q} ) +\frac{1}{n}d(x,z)\). Now from (3.3) we have
If \(d(x,z)>d ( x, [ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q} ) \), then
Letting \(n\rightarrow \infty \), we have \(d ( x, [ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q} ) \leq (s+r)d(x,z)\).
If \(d(x,z)< d ( x, [ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q} ) \), then
and therefore, we have
Now letting \(n\rightarrow \infty \), \(\varphi (r)d ( x, [ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q} ) \leq d(x,z)\). Then we have (3.6). Finally, from (3.6) we have
Since \(\frac{1}{2}\leq r<1\), we obtain \(d ( z, [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q} ) =0\) implying \(z\in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q}\). Hence this completes the proof. □
Example 3
Let \(X=[0,1]\), \(d:X\times X\rightarrow \mathbb{R} \) such that \(d(x,y)= \vert x-y \vert \), where \(x,y\in X\). \(( \alpha _{1},\beta _{1} ) \in [ 0,1 ] \times [ 0,1 ] \) and \(T:X\rightarrow F^{q}(X)\) is a q-ROF mapping defined as follows:
If \(x=0\), then we have
If \(x\neq 0\), then we have
q-rung \(( \alpha ,\beta ) \) of T will be:
for \(x=0\),
for \(x\neq 0\),
This implies that
Then, for \(q=5\), \(r=0.999\), \(s=4\) all the conditions of Theorem 3 are satisfied.
Corollary 1
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), and let \(T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be an intuitionistic fuzzy mapping. Consider T to satisfy the same contractive conditions as in Theorem 3, then T has a fixed point.
Corollary 2
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), and let \(T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be a fuzzy mapping. Consider T to satisfy the same contractive conditions as in Theorem 3, then T has a fixed point.
Theorem 4
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), \(S,T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be any two q-rung orthopair fuzzy mappings. For each element \(x\in X\) and each pair \(( \alpha ,\beta ) \in ( 0,1 ] ^{2}\), \([ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q}\), \([ Sx ] _{ ( \alpha ,\beta ) _{Sx}}^{q}\) are nonempty. Assume that \(r\in {}[ 0,1)\) such that
implies
Then \(z\in X\) so that \(z\in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q} \cap [ Sz ] _{ ( \alpha ,\beta ) _{Sz}}^{q}\).
Proof
Starting with \(x_{0}\in X\) and since \([ Tx_{0} ] _{ ( \alpha ,\beta ) _{Tx_{0}}}^{q}\) is nonempty, there exists \(x_{1}\in X\) such that \(x_{1}\in [ Tx_{0} ] _{ ( \alpha ,\beta ) _{Tx_{0}}}^{q}\). For the ease of notation, assume \(( \alpha ,\beta ) _{Tx_{0}}= ( \alpha ^{1},\beta ^{1} ) \) and \(x_{1}\in [ Tx_{0} ] _{ ( \alpha ^{1},\beta ^{1} ) }^{q}\). Similarly, for \(x_{1}\), we have \(x_{2}\in X\) such that \(x_{2}\in [ Sx_{1} ] _{ ( \alpha ,\beta ) _{Sx_{1}}}^{q}\). Let \(( \alpha ,\beta ) _{Sx_{1}}= ( \alpha ^{2},\beta ^{2} ) \), and so \(x_{2}\in [ Sx_{1} ] _{ ( \alpha ^{2},\beta ^{2} ) }^{q}\). So in general
By using Lemma 1 and condition (3.7) either for \(d ( x_{2n-1}, [ Sx_{2n-1} ] _{ ( \alpha ^{2n}, \beta ^{2n} ) }^{q} ) \leq d ( x_{2n-1},x_{2n} ) \) or \(d ( x_{2n}, [ Tx_{2n} ] _{ ( \alpha ^{2n+1}, \beta ^{2n+1} ) }^{q} ) \leq d ( x_{2n-1},x_{2n} ) \), we have
This implies
where \(\nu =kr<1\). Hence
Similarly, we have \(d ( x_{2n+1},x_{2n+2} ) \leq \nu d ( x_{2n},x_{2n+1} ) \). This implies
and therefore \(\{x_{n}\}\) is a Cauchy sequence such that \(x_{n}\rightarrow \omega \in X\).
Next it will be proved that
for all \(y\in X-\{ \omega \}\).
Since \(x_{n}\rightarrow \omega \), so \(n_{0}\in \mathbb{N} \) such that \(d(\omega ,x_{n})\leq \frac{1}{3s^{2}}d(\omega ,y)\) for \(\omega \neq y\). Then
Now either \(d ( x_{2n-1}, [ Sx_{2n-1} ] _{ ( \alpha ^{2n}, \beta ^{2n} ) }^{q} ) < d ( y, [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) \) or \(d ( y, [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) < d ( x_{2n-1}, [ Sx_{2n-1} ] _{ ( \alpha ^{2n},\beta ^{2n} ) }^{q} ) \), we have
And hence,
Letting \(n\rightarrow \infty \), we have \(d ( \omega , [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) \leq r d ( y, [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) \). Similarly, it can be shown that \(d ( \omega , [ Sy ] _{ ( \alpha ,\beta ) _{Sy}}^{q} ) \leq r d ( y, [ Sy ] _{ ( \alpha , \beta ) _{Sy}}^{q} ) \) for all \(y\in X-\{ \omega \}\).
Now we show that \(\omega \in [T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\cap [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\).
Consider \(0\leq r<\frac{1}{2}\) and let \(\omega \notin [ T\omega ] _{ ( \alpha ,\beta ) _{T\omega }}^{q}\) and \(\omega \notin [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\). Then there is an element \(\mu \in X\) so that \(\mu \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\) and \(\omega \neq \mu \). From (3.9) we have \(d ( \omega , [ T\mu ] _{ ( \alpha ,\beta ) _{T\mu }}^{q} ) \leq r d ( \mu , [ T\mu ] _{ ( \alpha ,\beta ) _{T\mu }}^{q} ) \). On the other hand,
Also
implying that
Also from (3.9) we have
Now,
implies
that is, \(\frac{1-rs-r^{2}s}{1-rs}d ( \omega , [ T\omega ] _{ ( \alpha ,\beta ) _{T\omega }}^{q} ) \leq 0\), and since \(\frac{1-r s-r^{2}s}{1-r s}\geq 0\) therefore \(\omega \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\). Similarly, \(\omega \in [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\).
Now consider \(\frac{1}{2}\leq r<1\). Firstly it will be proved that whenever \(\omega \neq \mu \),
Consider that for \(n\in \mathbb{N} \) there exists \(z_{n}\in [ S\mu ] _{ ( \alpha ,\beta ) _{S \mu }}^{q}\) such that \(sd(\omega ,z_{n})\leq d ( \omega , [ S\mu ] _{ ( \alpha ,\beta ) _{S\mu }}^{q} ) + \frac{1}{n}d ( \mu ,\omega ) \). Therefore,
This implies
Letting \(n\rightarrow \infty \),
And hence, we have \(\varphi (r)d ( \mu , [ S\mu ] _{ ( \alpha , \beta ) _{S\mu }}^{q} ) \leq d ( \mu ,\omega ) \). This implies
Let \(\mu =x_{2n-1}\), then we have
Taking \(n\rightarrow \infty \),
Hence \(\omega \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\). Similarly, we can easily prove that \(\omega \in [ S\omega ] _{ ( \alpha ,\beta ) _{S \omega }}^{q}\), and hence \(\omega \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\cap [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\). □
Example 4
Let \(X=[1,2]\), \(d:X\times X\rightarrow \mathbb{R} \) such that \(d(x,y)= \vert x-y \vert \), where \(x,y\in X\). \(( \alpha _{1},\beta _{1} ) , ( \alpha _{2},\beta _{2} ) \in [ 0,1 ] \times [ 0,1 ] \) and \(T:X\rightarrow F^{q}(X) \) is a q-ROF mapping defined as follows:
Then \([ Tx ] _{ ( \frac{\alpha _{1}}{2},0 ) }^{q}= [ 1,\frac{5}{4} ] \), \([ Sy ] _{ ( \frac{\alpha _{2}}{3},0 ) }^{q}= [ 1,\frac{33}{25} ] \), \(x\in [ Tx ] _{ ( \frac{\alpha _{1}}{2},0 ) }^{q}\cap [ Sy ] _{ ( \frac{\alpha _{2}}{3},0 ) }^{q}\), and \(H ( [ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q}, [ Sy ] _{ ( \alpha ,\beta ) _{Sy}}^{q} ) =0.07\). Hence all conditions of Theorem 4 are satisfied for \(r=0.9\) and \(q=6\).
Corollary 3
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), \(S, T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be intuitionistic fuzzy mappings. Then S and T have a common fixed point under the contractive conditions as in Theorem 4.
Corollary 4
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), \(S, T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be fuzzy mappings. Then S and T have a common fixed point under the contractive conditions as in Theorem 4.
Theorem 5
Consider \((X,d)\) to be a complete b-metric linear space, \(s\geq 1\), \(S,T:X\rightarrow \textit{\textit{\c{K}}}( X ) \) be a pair of q-rung orthopair fuzzy mappings. For each element \(x\in X\) and each pair \(( \alpha ,\beta ) \in ( 0,1 ] ^{2}\), \([ Tx ] _{ ( \alpha ,\beta ) _{Tx}}^{q}\), \([ Sx ] _{ ( \alpha ,\beta ) _{Sx}}^{q}\) are nonempty. Assume that \(r\in {}[ 0,1)\) so that
implies
Then \(z\in X\) so that \(z\in [ Tz ] _{ ( \alpha ,\beta ) _{Tz}}^{q} \cap [ Sz ] _{ ( \alpha ,\beta ) _{Sz}}^{q}\).
Proof
Starting with \(x_{0}\in X\) and since \([ Tx_{0} ] _{ ( \alpha ,\beta ) _{Tx_{0}}}^{q}\) is nonempty, there exists \(x_{1}\in X\) such that \(x_{1}\in [ Tx_{0} ] _{ ( \alpha ,\beta ) _{Tx_{0}}}^{q}\). For the ease of notation, assume \(( \alpha ,\beta ) _{Tx_{0}}= ( \alpha ^{1},\beta ^{1} ) \) and \(x_{1}\in [ Tx_{0} ] _{ ( \alpha ^{1},\beta ^{1} ) }^{q}\). Similarly, for \(x_{1}\), we have \(x_{2}\in X\) such that \(x_{2}\in [ Sx_{1} ] _{ ( \alpha ,\beta ) _{Sx_{1}}}^{q}\). Let \(( \alpha ,\beta ) _{Sx_{1}}= ( \alpha ^{2},\beta ^{2} ) \) and so \(x_{2}\in [ Sx_{1} ] _{ ( \alpha ^{2},\beta ^{2} ) }^{q}\). So, in general,
By using Lemma 1 and condition (3.11) either for \(d ( x_{2n-1}, [ Sx_{2n-1} ] _{ ( \alpha ^{2n}, \beta ^{2n} ) }^{q} ) \leq d ( x_{2n-1},x_{2n} ) \) or \(d ( x_{2n}, [ Tx_{2n} ] _{ ( \alpha ^{2n+1}, \beta ^{2n+1} ) }^{q} ) \leq d ( x_{2n-1},x_{2n} ) \), we have
This implies
where \(\nu =kr<1\). Hence
Similarly, we have \(d ( x_{2n+1},x_{2n+2} ) \leq \nu d ( x_{2n},x_{2n+1} ) \). This implies
and therefore \(\{x_{n}\}\) is a Cauchy sequence such that \(x_{n}\rightarrow \omega \in X\).
Next it will be proved that
for all \(y\in X-\{ \omega \}\).
Since \(x_{n}\rightarrow \omega \), so \(n_{0}\in \mathbb{N} \) such that \(d(\omega ,x_{n})\leq \frac{1}{3s^{2}}d(\omega ,y)\) for \(\omega \neq y\). Then
Now either \(d ( x_{2n-1}, [ Sx_{2n-1} ] _{ ( \alpha ^{2n}, \beta ^{2n} ) }^{q} ) < d ( y, [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) \) or \(d ( y, [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) < d ( x_{2n-1}, [ Sx_{2n-1} ] _{ ( \alpha ^{2n},\beta ^{2n} ) }^{q} ) \), we have
And hence,
Letting \(n\rightarrow \infty \), we have \(d ( \omega , [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) \leq r d ( y, [ Ty ] _{ ( \alpha ,\beta ) _{Ty}}^{q} ) \). Similarly, it can be shown that \(d ( \omega , [ Sy ] _{ ( \alpha ,\beta ) _{Sy}}^{q} ) \leq r d ( y, [ Sy ] _{ ( \alpha , \beta ) _{Sy}}^{q} ) \) for all \(y\in X-\{ \omega \}\).
Now we show that \(\omega \in [T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\cap [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\).
Consider \(0\leq r<\frac{1}{2}\) and let \(\omega \notin [ T\omega ] _{ ( \alpha ,\beta ) _{T\omega }}^{q}\) and \(\omega \notin [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\). Then there is an element \(\mu \in X\) so that \(\mu \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\) and \(\omega \neq \mu \). From (3.13) we have \(d ( \omega , [ T\mu ] _{ ( \alpha ,\beta ) _{T\mu }}^{q} ) \leq r d ( \mu , [ T\mu ] _{ ( \alpha ,\beta ) _{T\mu }}^{q} ) \). On the other hand,
Also
implying that
Also from (3.13)
Now,
Now consider \(\frac{1}{2}\leq r<1\). Firstly, it will be proved that whenever \(\omega \neq \mu \),
Consider that for \(n\in \mathbb{N} \), there exists \(z_{n}\in [ S\mu ] _{ ( \alpha ,\beta ) _{S \mu }}^{q}\) such that \(sd(\omega ,z_{n})\leq d ( \omega , [ S\mu ] _{ ( \alpha ,\beta ) _{S\mu }}^{q} ) + \frac{1}{n}d ( \mu ,\omega ) \). Therefore,
This implies
Letting \(n\rightarrow \infty \),
And hence, we have \(\varphi (r)d ( \mu , [ S\mu ] _{ ( \alpha , \beta ) _{S\mu }}^{q} ) \leq d ( \mu ,\omega ) \). This implies
Let \(\mu =x_{2n-1}\), then we have
Taking \(n\rightarrow \infty \),
Hence \(\omega \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\). Similarly we can easily prove that \(\omega \in [ S\omega ] _{ ( \alpha ,\beta ) _{S \omega }}^{q}\) and hence \(\omega \in [ T\omega ] _{ ( \alpha ,\beta ) _{T \omega }}^{q}\cap [ S\omega ] _{ ( \alpha ,\beta ) _{S\omega }}^{q}\). □
4 Application
There are known applications of fuzzy sets for the solution of integral equations (for example, see [18, 19]). In the present section, with the help of completeness property of function space \(C[a,b]\) and by applying Theorem 6, we have presented an existence theorem for the solution of the class of nonlinear integral equations.
We will use Theorem 6 to show the existence of common solutions of two nonlinear integral inclusions defined as
where \(x\in C[a,b]\) is unknown, \(u_{o}\in \mathbb{R} \), and \(F_{1}\), \(F_{2}\) are multivalued operators having compact, convex values in \(\mathbb{R} \) defined as \(F_{1},F_{2}: [ a,b ] \times {}[ a,b]\rightarrow \mathbb{R} _{cp,cv}\). By a common solution of system 1, we mean a continuous function x such that
where \(f_{1}\), \(f_{2}:[a,b]\times {}[ a,b]\rightarrow \mathbb{R} \), \(f_{1}\in F_{1}(\sigma ,\tau ,x(\tau ))\), \(f_{2}\in F_{2}(\sigma ,\tau ,x( \tau ))\).
Theorem 6
Consider the system of nonlinear integral inclusions in (2.1). Assume that the following conditions hold:
- \((i)\):
-
The operators \(F_{1}(\sigma ,\tau ,x(\tau ))\), \(F_{2}(\sigma ,\tau ,x(\tau ))\) are continuous on \([ a,b ] ^{2}\).
- \((\mathit{ii})\):
-
Suppose \(r\in {}[ 0,1)\) such that, for every \(\sigma \in {}[ a,b]\) and \(x,y\in X\), the inequality holds
$$\begin{aligned}& \varphi (r)\min \bigl\{ d \bigl(x, [ Ax ] _{ ( \alpha ,\beta ) _{Ax}}^{q} \bigr) ,d \bigl( y, [ B y ] _{ ( \alpha ,\beta ) _{B y}}^{q} \bigr) \bigr\} \leq d(x,y) \\& \quad \Longrightarrow \quad \bigl\vert f_{1}\bigl(\sigma ,\tau ,x(\tau )\bigr)-f_{2} \bigl(\sigma ,\tau ,y(\tau )\bigr) \bigr\vert ^{p} \leq \biggl( \frac{r}{ ( b-a ) \vert \lambda \vert ^{p}} \biggr) \inf_{\sigma \in [ a,b ] } \bigl\vert x(\sigma )-z(\sigma ) \bigr\vert ^{p}. \end{aligned}$$
Proof
Let \(X=C[a,b]\) and define \(d:X\times X\rightarrow \mathbb{R} \) by \(d(x,y)= \vert x(\sigma )-y(\sigma ) \vert ^{p}\) for all \(x,y\in X\). Then \((X,d)\) is a complete b-metric space with \(s=2^{p-1}\) where \(p>1\). Assume that \(U,V,E,Z:X\rightarrow (0,1]\) are four arbitrary mappings.
Now, define a pair of qth rung fuzzy mappings \(A,\xi :X\rightarrow F^{q}(X)\) as follows:
such that
and
If we take \(\alpha _{A}(x)=U(x)\), \(\beta _{A}(x)=0\) and \(\alpha _{B}(x)=E(x) \), \(\beta _{B}(x)=0\), then we have
and
For multivalued operators \(F_{1}(\sigma ,\tau ,x(\tau ))\) and \(F_{2}(t,\tau ,x(\tau ))\), applying Michael’s selection theorem, there exist continuous operators \(f_{1}(\sigma ,\tau ,x(\tau ))\in F_{1}(t,\tau ,x(\tau ))\) and \(f_{2}(\sigma ,\tau ,x(\tau )\in F_{2}(t,\tau ,x(\tau ))\), therefore
Thus \(A(x(\sigma ))\neq \emptyset \) and \(B(x(\sigma ))\neq \emptyset \). As \(F_{1}(\sigma ,\tau ,x(\tau ))\) and \(F_{2}(t,\tau ,x(\tau ))\) are continuous on \([a,b]\), their ranges are bounded. Now, for \(z(t)\in A(x(\sigma ))\),
Also, for some \(w(\sigma )\in B(y(\sigma ))\), we have
Also, for \(z(\sigma )\in [ Ax ] _{(\alpha ,\beta )_{A}(x)}^{q}\) and \(w(\sigma )\in [ B y ] _{(\alpha ,\beta )_{B}(x)}^{q}\),
Hence, by Theorem 6, there exists a common fixed point of mappings A and B. □
Conclusion
The concept of q-ROF mapping, as a generalization of fuzzy mappings, is introduced. Also the concept of q-rung \(( \alpha ,\beta ) \)-level sets is presented and some common fixed point results utilizing this concept for q-ROF mappings are obtained in b-metric space via Suzuki-type contractive conditions. We have also presented examples in support of our results. An application of obtained results for the existence of solution of nonlinear fractional integral inclusion is also presented.
Availability of data and materials
Not applicable.
References
Abbas, M., Iqbal, H., Petrusel, A.: Fixed points for multivalued Suzuki type \((\theta ,\mathscr{R})\)-contraction mapping with applications. J. Funct. Spaces 2019, Article ID 9565804 (2019)
Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019)
Abu-Donia, H.M.: Common fixed point theorems for fuzzy mappings in metric space under ϕ-contraction condition. Chaos Solitons Fractals 34(2), 538–543 (2007)
Afshari, H., Aydi, H., Karapinar, E.: On generalized \(\alpha -\psi \)-Geraghty contractions on b-metric spaces. Georgian Math. J. 27(1), 9–21 (2020)
Al Rawashdeh, A., Mehmood, N., Rashid, M.: Coincidence and common fixed points of integral contractions for L-fuzzy maps with applications in fuzzy functional inclusions. J. Intell. Fuzzy Syst. 35(2), 2173–2187 (2018)
Ali, B., Abbas, M.: Existence and stability of fixed point set of Suzuki-type contractive multivalued operators in b-metric spaces with applications in delay differential equations. J. Fixed Point Theory Appl. 19(4), 2327–2347 (2017)
Alqahtani, O., Himabindu, V.M., Karapinar, E.: On Pata–Suzuki-type contractions. Mathematics 7(8), 720 (2019)
Alsulami, H.H., Karapinar, E., Piri, H.: Fixed points of generalized-Suzuki type contraction in complete-metric spaces. Discrete Dyn. Nat. Soc. 2015, Article ID 969726 (2015)
Amini-Harandi, A.: Fixed point theory for quasi-contraction maps in b-metric spaces. Fixed Point Theory 15(2), 351–358 (2014)
Atailia, S., Redjel, N., Dehici, A.: Some fixed point results for generalized contractions of Suzuki type in Banach spaces. J. Fixed Point Theory Appl. 21(3), 78 (2019)
Atanasov, K., Stoeva, S.: Intuitionistic fuzzy sets. In: Polish Symp on Interval and Fuzzy Mathematics (1983)
Atanassov, K.: A second type of intuitionistic fuzzy sets. BUSEFAL 56, 66–70 (1993)
Aydi, H., Bota, M.F., Karapinar, E., Mitrovic, S.: A fixed point theorem for set-valued quasi-contractions in b-metric spaces. J. Fixed Point Theory Appl. 2012, 88, 1–8 (2012)
Aydi, H., Bota, M.F., Karapinar, E., Moradi, S.: A common fixed point for weak f-contractions on b-metric spaces. Fixed Point Theory 13(2), 337–346 (2012)
Azam, A.: Fuzzy fixed points of fuzzy mappings via a rational inequality. Hacet. J. Math. Stat. 40(3), 421–431 (2011)
Azam, A., Beg, I.: Common fixed points of fuzzy maps. Math. Comput. Model. 49(7–8), 1331–1336 (2009)
Azam, A., Mehmood, N., Rashid, M., Pavlovic, M.: L-fuzzy fixed points in cone metric spaces. J. Adv. Math. Stud. 9(1), 121–131 (2016)
Azam, A., Rashid, M.: A fuzzy coincidence theorem with applications in a function space. J. Intell. Fuzzy Syst. 27(4), 1775–1781 (2014)
Azam, A., Tabassum, R., Rashid, M.: Coincidence and fixed point theorems of intuitionistic fuzzy mappings with applications. J. Math. Anal. 8(4), 56–77 (2017)
Azam, A., Waseem, M., Rashid, M.: Fixed point theorems for fuzzy contractive mappings in quasi-pseudo-metric spaces. J. Fixed Point Theory Appl. 2013(1), 27 (2013)
Beg, I., Aleomraninejad, S.M.A.: Fixed points of Suzuki type multifunctions on metric spaces. Rend. Circ. Mat. Palermo 64(2), 203–207 (2015)
Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9, 43–54 (2004)
Bose, R.K.: Some Suzuki type fixed point theorems for multi-valued mappings and applications. Int. J. Pure Appl. Math. 92(4), 481–497 (2014)
Bota, M.F., Chifu, C., Karapinar, E.: Fixed point theorems for generalized \((\alpha - \psi )\)-Ciric-type contractive multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 9(3), 1165–1177 (2016)
Butnariu, D.: Fixed points for fuzzy mappings. Fuzzy Sets Syst. 7(2), 191–207 (1982)
Chatterjea, S.K.: Fixed-point theorems. Dokl. Bolg. Akad. Nauk 25(6), 727–730 (1972)
Chen, J., Huang, X.: Fixed point theorems for fuzzy mappings in metric spaces with an application. J. Inequal. Appl. 2015, 232, 1–21 (2015)
Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Univ. Ostrav. 1(1), 5–11 (1993)
Ding, H.S., Imdad, M., Radenović, S., Vujaković, J.: On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci. 22(2), 151–164 (2016)
Dorić, D., Lazović, R.: Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications. J. Fixed Point Theory Appl. 2011(1), 40 (2011)
Gopal, D., Martínez-Moreno, J.: Suzuki type fuzzy \(\mathcal{Z}\)-contractive mappings and fixed points in fuzzy metric spaces. Kybernetika 57(6), 908–921 (2021)
Gregori, V., Pastor, J.: A fixed point theorem for fuzzy contraction mappings (1999)
Heilpern, S.: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83(2), 566–569 (1981)
Hussain, N., Latif, A., Salimi, P.: Best proximity point results for modified Suzuki \(\alpha -\psi \)-proximal contractions. J. Fixed Point Theory Appl. 2014, 10, 1–16 (2014)
Jovanović, M., Kadelburg, Z., Radenović, S.: Common fixed point results in metric-type spaces. J. Fixed Point Theory Appl. 2010(1), 978121 (2010)
Kannan, R.: Some results on fixed points—II. Am. Math. Mon. 76(4), 405–408 (1969)
Karapinar, E.: A short survey on the recent fixed point results on b-metric spaces. Constr. Math. Anal. 1(1), 15–44 (2018)
Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019)
Karapinar, E., Fulga, A., Yesilkaya, S.S.: New results on Perov-interpolative contractions of Suzuki type mappings. J. Funct. Spaces 2021, Article ID 9587604 (2021)
Liu, P., Wang, P.: Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 33(2), 259–280 (2018)
Liu, X.D., Chang, S.S., Xiao, Y., Zhao, L.C.: Existence of fixed points for Θ-type contraction and Θ-type Suzuki contraction in complete metric spaces. J. Fixed Point Theory Appl. 2016, 8, 1–12 (2016)
Malhotra, N., Bansal, B.: Suzuki-type fixed point theorem in b-metric-like spaces and its application to integral equations. Eng. Math. Lett. 2017, Article ID 1 (2017)
Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Appl. Math. 30(2), 475–488 (1969)
Ozturk, V., Turkoglu, D.: Fixed points for generalized alpha-psi-contractions in b-metric spaces. J. Nonlinear Convex Anal. 16(10), 2059–2066 (2015)
Peng, X., Dai, J., Garg, H.: Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 33(11), 2255–2282 (2018)
Rashid, M., Azam, A., Mehmood, N.: L-fuzzy fixed points theorems for L-fuzzy mappings via-admissible pair. Sci. World J. 2014, 853032 (2014)
Rashid, M., Kutbi, M.A., Azam, A.: Coincidence theorems via alpha cuts of L-fuzzy sets with applications. Fixed Point Theory Appl. 2014(1), 212 (2014)
Rashid, M., Shahzad, A., Azam, A.: Fixed point theorems for L-fuzzy mappings in quasi-pseudo metric spaces. Int. J. Intell. Syst. 32(1), 499–507 (2017)
Saleem, N., Ali, B., Abbas, M., Raza, Z.: Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications. J. Fixed Point Theory Appl. 2015, 36, 1–18 (2015)
Salimi, P., Karapinar, E.: Suzuki-Edelstein type contractions via auxiliary functions. Math. Probl. Eng. 2013, Article ID 648528 (2013)
Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal., Theory Methods Appl. 75(4), 2154–2165 (2012)
Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136(5), 1861–1869 (2008)
Wei, G., Gao, H., Wei, Y.: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33(7), 1426–1458 (2018)
Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Zhu, H., Zhao, J., Li, H.: q-ROF-SIR methods and their applications to multiple attribute decision making. Int. J. Mach. Learn. Cybern. 13, 595–607 (2022)
Acknowledgements
Not applicable.
Funding
No external funding.
Author information
Authors and Affiliations
Contributions
Maliha Rashid: Conceptualization, investigation, methodology, supervision, visualization. Lariab Shahid: Conceptualization, data curation, methodology, writing original draft and editing. Ravi P. Agarwal: Methodology, supervision, validation, review. Aftab Hussain: Data curation, resources, methodology, review, editing. Hamed Al-Sulami: Validation, methodology, resources, visualization.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rashid, M., Shahid, L., Agarwal, R.P. et al. q-ROF mappings and Suzuki type common fixed point results in b-metric spaces with application. J Inequal Appl 2022, 155 (2022). https://doi.org/10.1186/s13660-022-02894-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-022-02894-x
Keywords
- q-ROF sets
- q-ROF mapping
- Suzuki contractive conditions
- b-metric spaces