In [13] it was proved that for Erdős–Ulam functions \(f(n)\), \(g(n)\) satisfying
$$ \lim_{n\to \infty} \frac{f^{*}(n)}{g^{*}(n)} = p>1 $$
(7)
the f-density is stronger than the g-density. Inequalities between upper and lower weighted densities of the type \(n^{p}\) (\(p>-1\)) were proved in [5]. For example, let \(A\subset \mathbb{N}\) be such that
$$ \underline{d}_{1}(A)=\beta < \gamma =\overline{d}_{1}(A) . $$
Then, for \(p>1\) for the lower \(n^{p-1}\)-density of the set A we have
$$ \frac{\beta ^{p}}{\gamma ^{p-1}}\le \underline{d}_{p-1}(A)\le \beta . $$
The purpose of this section is to generalize this type of result. Note, in the case \(f(n)=n^{p-1}\), \(g(n)=1\), \(p>1\) there holds \(\frac{f^{*}(n)}{g^{*}(n)}\to p\).
The following lemmas will be used in the proof of Theorem 3.
Lemma 2
Assume that f and g are Erdős–Ulam functions satisfying (7). Then, for every set \(A\subset \mathbb{N}\) we have the following inequalities.
$$ \underline{d}_{f}(A)\le \underline{d}_{g}(A) \le \overline{d}_{g}(A)\le \overline{d}_{f}(A) . $$
(8)
Proof
See Theorem 3.2 of [13]. □
Lemma 3
Assume that f and g are Erdős–Ulam functions satisfying (7). Then, for arbitrary \(\varepsilon \in (0,p)\) there is \(N_{1}(\varepsilon )\) such that for every \(m>n\ge N_{1}(\varepsilon )\) we have
$$ \biggl( \frac{S_{g}(m)}{S_{g}(n)} \biggr)^{p-\varepsilon} < \frac{S_{f}(m)}{S_{f}(n)}< \biggl( \frac{S_{g}(m)}{S_{g}(n)} \biggr)^{p+ \varepsilon} . $$
Proof
Let \(\varepsilon \in (0,p)\). Then, from (6) and (7) it follows that
$$ \lim_{n\to \infty}\frac{\nabla \ln S_{f}(n)}{\nabla \ln S_{g}(n)}=p$$
and hence there is \(N_{1}(\varepsilon )\) such that for every \(k\ge N_{1}(\varepsilon )\)
$$ \frac{\nabla \ln S_{f}(k)}{\nabla \ln S_{g}(k)}\in (p-\varepsilon ,p+ \varepsilon ) .$$
Then, for every \(m>n\ge N_{1}(\varepsilon )\)
$$ \frac{\ln \frac{S_{f}(m)}{S_{f}(n)}}{\ln \frac{S_{g}(m)}{S_{g}(n)}} = \frac{\ln S_{f}(m)-\ln S_{f}(n)}{\ln S_{g}(m)-\ln S_{g}(n)} = \frac{\sum_{k=n+1}^{m}\nabla \ln S_{f}(k)}{\sum_{k=n+1}^{m}\nabla \ln S_{g}(k)} \in (p-\varepsilon ,p+\varepsilon )$$
by the mediant inequality. The result follows by exponentiation of this equation. □
Lemma 4
Assume that f and g are Erdős–Ulam functions satisfying (7). Let \(A\subset \mathbb{N}\) be a set such that \(\underline{d}_{g}(A)=\beta >0\) and \(\overline{d}_{g}(A)=\gamma >0\). Let \(\varepsilon >0\) be given by
$$ 1+\varepsilon +\varepsilon ^{2}< p . $$
(9)
Denote
$$ t_{\varepsilon}=(1+\varepsilon )^{2p}\gamma ^{p-1+\varepsilon} .$$
Then, there is \(N_{2}\) such that for every \(n\ge N_{2}\) we have
$$ G_{A}(n)^{p+\varepsilon}< t_{\varepsilon }F_{A}(n) . $$
(10)
Proof
Let \(\varepsilon >0\) satisfying (9) be given. Then, there is \(N_{3}\) such that for every \(n\ge N_{3}\)
$$ G_{A}(n)< \gamma (1+\varepsilon ) . $$
(11)
From (2), (7), and the fact that
$$ \frac{\frac{f(n+1)}{S_{f}(n)}}{\frac{g(n+1)}{S_{g}(n)}}= \frac{f^{*}(n+1)}{g^{*}(n+1)}\cdot \frac{1-g^{*}(n+1)}{1-f^{*}(n+1)}$$
we obtain that there in \(N_{4}\ge N_{3}\) such that for every \(n\ge N_{4}\) we have
$$ \frac{f(n+1)}{S_{f}(n)}>\bigl(p-\varepsilon ^{2}\bigr) \frac{g(n+1)}{S_{g}(n)} . $$
(12)
From \(\liminf_{n\to \infty} G_{A}(n)=\underline{d}_{g}(A)>0\) and from (5) for function g we obtain that
$$ \frac{g(n+1)}{G_{A}(n)S_{g}(n)}\to 0$$
and hence there is \(N_{5}\ge N_{4}\) such that for every \(n\ge N_{5}\)
$$ \frac{g(n+1)}{G_{A}(n)S_{g}(n)}< (1+\varepsilon )^{ \frac{1}{p-1+\varepsilon}}-1 . $$
(13)
Now, Lemma 2 implies that
$$ 0< \overline{d}_{g}(A)=\limsup_{n\to \infty} G_{A}(n)\le \limsup_{n \to \infty} F_{A}(n)= \overline{d}_{f}(A)$$
and hence there are infinitely many integers \(n_{k}\ge N_{5}\) such that
$$ G_{A}(n_{k})< (1+\varepsilon )^{2} F_{A}(n_{k}) .$$
For such numbers we have
$$\begin{aligned} G_{A}(n_{k})^{p+\varepsilon} &= G_{A}(n_{k})^{p-1+\varepsilon} G_{A}(n_{k}) < \bigl(\gamma (1+\varepsilon ) \bigr)^{p-1+\varepsilon}(1+\varepsilon )^{2} F_{A}(n_{k}) \\ &= \gamma ^{p-1+\varepsilon} (1+\varepsilon )^{p+1+\varepsilon} F_{A}(n_{k}) \\ &< \gamma ^{p-1+\varepsilon}(1+\varepsilon )^{2p}F_{A}(n_{k}) = t_{ \varepsilon }F_{A}(n_{k}) , \end{aligned}$$
i.e., (10) holds for every \(n_{k}\).
Take \(k_{0}\) such that \(n_{k_{0}}\ge \max \{N_{5},N_{1}(\varepsilon )\}\) where \(N_{1}(\varepsilon )\) is given by Lemma 3, and denote \(N_{2}=n_{k_{0}}\). We will finish the proof by proving that (10) holds for every \(n\ge N_{2}\).
Hence, we assume that (10) holds for some \(n\ge N_{2}\) and we prove that it holds for \(n+1\).
From the second inequality in Lemma 3 we obtain
$$ \biggl(\frac{S_{g}(n)}{S_{g}(n+1)} \biggr)^{p+\varepsilon}< \frac{S_{f}(n)}{S_{f}(n+1)} . $$
(14)
Now, consider two cases.
1. First assume that \(n+1\notin A\). Then,
$$ G_{A}(n+1)=\frac{G_{A}(n)S_{g}(n)}{S_{g}(n+1)} \quad \text{and}\quad F_{A}(n+1)= \frac{F_{A}(n)S_{f}(n)}{S_{f}(n+1)} .$$
Using this and (14) multiplied by (10) we obtain
$$ G_{A}(n+1)^{p+\varepsilon}= \biggl(\frac{G_{A}(n)S_{g}(n)}{S_{g}(n+1)} \biggr)^{p+\varepsilon}< t_{\varepsilon } \frac{F_{A}(n)S_{f}(n)}{S_{f}(n+1)}=t_{\varepsilon }F_{A}(n+1) ,$$
i.e., (10) holds for \(n+1\).
2. Now, assume that \(n+1\in A\). Then,
$$ F_{A}(n+1)=\frac{F_{A}(n)S_{f}(n)+f(n+1)}{S_{f}(n+1)}= \frac{S_{f}(n)}{S_{f}(n+1)} \biggl(F_{A}(n)+\frac{f(n+1)}{S_{f}(n)} \biggr) $$
(15)
and similarly
$$ G_{A}(n+1)^{p+\varepsilon}= \biggl(\frac{S_{g}(n)}{S_{g}(n+1)} \biggr)^{p+ \varepsilon} \biggl(G_{A}(n)+\frac{g(n+1)}{S_{g}(n)} \biggr)^{p+ \varepsilon} .$$
(16)
Consider the function
$$ h(x)=1+(1+\varepsilon ) (p+\varepsilon )x-(1+x)^{p+\varepsilon} .$$
We have \(h(0)=0\) and \(h'(x)>0\) for \(x\in (0,(1+\varepsilon )^{\frac{1}{p-1+\varepsilon}}-1 )\). Hence,
$$ h(x)>0\quad \text{for}\quad x\in \bigl(0,(1+\varepsilon )^{ \frac{1}{p-1+\varepsilon}}-1 \bigr) .$$
From (13) we obtain that
$$ 1+(1+\varepsilon ) (p+\varepsilon )\frac{g(n+1)}{G_{A}(n)S_{g}(n)}- \biggl(1+ \frac{g(n+1)}{G_{A}(n)S_{g}(n)} \biggr)^{p+\varepsilon} =h \biggl(\frac{g(n+1)}{G_{A}(n)S_{g}(n)} \biggr) >0 , $$
hence
$$ 1+(1+\varepsilon ) (p+\varepsilon )\frac{g(n+1)}{G_{A}(n)S_{g}(n)}> \biggl(1+ \frac{g(n+1)}{G_{A}(n)S_{g}(n)} \biggr)^{p+\varepsilon} . $$
(17)
Inequality (9) is equivalent with
$$ (1+\varepsilon ) \bigl(p-\varepsilon ^{2}\bigr)>p+ \varepsilon . $$
(18)
From (11) we have
$$ t_{\varepsilon }=(1+\varepsilon )^{2p}\gamma ^{p-1+\varepsilon} >(1+ \varepsilon )^{2}\bigl((1+\varepsilon )\gamma \bigr)^{p-1+\varepsilon} >(1+ \varepsilon )^{2}G_{A}(n)^{p-1+\varepsilon} . $$
(19)
Now from (10), (12), (18), (19), and (17) multiplied by \(G_{A}(n)^{p+\varepsilon}\) we obtain
$$\begin{aligned} t_{\varepsilon }F_{A}(n)+t_{\varepsilon}\frac{f(n+1)}{S_{f}(n)} &>G_{A}(n)^{p+ \varepsilon}+t_{\varepsilon}\frac{f(n+1)}{S_{f}(n)} \\ &>G_{A}(n)^{p+\varepsilon} + t_{\varepsilon}\bigl(p-\varepsilon ^{2}\bigr) \frac{g(n+1)}{S_{g}(n)} \\ &>G_{A}(n)^{p+\varepsilon}+(1+\varepsilon )^{2}\bigl(p- \varepsilon ^{2}\bigr)G_{A}(n)^{p-1+ \varepsilon} \frac{g(n+1)}{S_{g}(n)} \\ &>G_{A}(n)^{p+\varepsilon}+(1+\varepsilon ) (p+\varepsilon )G_{A}(n)^{p-1+ \varepsilon}\frac{g(n+1)}{S_{g}(n)} \\ &> \biggl(G_{A}(n)+\frac{g(n+1)}{S_{g}(n)} \biggr)^{p+\varepsilon} . \end{aligned}$$
(20)
Finally, from (15), from (14) multiplied by (20), and from (16) we obtain
$$\begin{aligned} t_{\varepsilon }F_{A}(n+1) &=\frac{S_{f}(n)}{S_{f}(n+1)} \biggl(t_{ \varepsilon }F_{A}(n)+t_{\varepsilon } \frac{f(n+1)}{S_{f}(n)} \biggr) \\ &> \biggl(\frac{S_{g}(n)}{S_{g}(n+1)} \biggr)^{p+\varepsilon} \biggl(G_{A}(n)+ \frac{g(n+1)}{S_{g}(n)} \biggr)^{p+\varepsilon} \\ &=G_{A}(n+1)^{p+\varepsilon} , \end{aligned}$$
i.e., (10) holds for \(n+1\). □
In what follows, we are looking for bounds for \(\underline{d}_{f}(A)\), \(\overline{d}_{f}(A)\), knowing the values \(\underline{d}_{g}(A)\) and \(\overline{d}_{g}(A)\) and under the restriction (7).
Theorem 3
Assume that f and g are Erdős–Ulam functions satisfying (7) and let \(A\subset \mathbb{N}\). Then,
-
1)
in the case \(\overline{d}_{g}(A)>0\) we have
$$ \underline{d}_{f}(A)\ge \frac{\underline{d}_{g}(A)^{p}}{\overline{d} _{g}(A)^{p-1}} , $$
(21)
-
2)
in the case \(\underline{d}_{g}(A)<1\) we have
$$ \overline{d}_{f}(A)\le 1- \frac{(1-\overline{d}_{g}(A))^{p}}{(1-\underline{d} _{g}(A))^{p-1}} . $$
(22)
Proof
First, we prove part 1. If \(\underline{d}_{g}(A)=0\) then (21) is satisfied as the right-hand side of (21) is zero.
Hence, assume \(\underline{d}_{g}(A)>0\). Then, for every \(\varepsilon >0\) with \(1+\varepsilon +\varepsilon ^{2}< p\), Lemma 4 implies
$$\begin{aligned} \underline{d}_{f}(A) &= \liminf_{n\to \infty} F_{A}(n)\ge \liminf_{n \to \infty} \frac{G_{A}(n)^{p+\varepsilon}}{t_{\varepsilon}} \\ &= \frac{\underline{d}_{g}(A)^{p+\varepsilon}}{(1+\varepsilon )^{2p}\overline{d}_{g}(A)^{p-1+\varepsilon}} =\frac{1}{(1+\varepsilon )^{2p}} \biggl( \frac{\underline{d}_{g}(A)}{\overline{d}_{g}(A)} \biggr)^{p+\varepsilon} \overline{d}_{g}(A) . \end{aligned}$$
From this we obtain
$$ \underline{d}_{f}(A)\ge \limsup_{\varepsilon \to 0+} \frac{1}{(1+\varepsilon )^{2p}} \biggl( \frac{\underline{d}_{g}(A)}{\overline{d}_{g}(A)} \biggr)^{p+\varepsilon} \overline{d}_{g}(A) = \frac{\underline{d}_{g}(A)^{p}}{\overline{d}_{g}(A)^{p-1}} .$$
Part 2 follows from part 1 applied to the set \(\mathbb{N}\setminus A\), using the complementary property (3). □
Theorem 3 has the following immediate consequence.
Corollary 1
Assume that f and g are Erdős–Ulam functions satisfying (7). Then, the densities \(d_{f}\) and \(d_{g}\) are equivalent.
Proof
This follows from inequalities (8), (21), and (22). □
Corollary 2
Assume that f and g are Erdős–Ulam functions satisfying (7) and let \(A\subset \mathbb{N}\). Then, we have
-
1.
\(\underline{d}_{f}(A)=0\) if and only if \(\underline{d}_{g}(A)=0\),
-
2.
\(\overline{d}_{f}(A)=1\) if and only if \(\overline{d}_{g}(A)=1\).
Proof
This follows from inequalities (8), (21), and (22). □
Next, we show that the bounds (21) and (22) are essentially the best possible.
Theorem 4
Assume that f and g are Erdős–Ulam functions satisfying (7). Let numbers α, β, γ, δ be given so that
$$ 0\le \alpha \le \beta \le \gamma \le \delta \le 1 $$
(23)
with
$$ \alpha \ge \frac{\beta ^{p}}{\gamma ^{p-1}} \quad \textit{if }\gamma >0 , $$
(24)
and with
$$ 1-\delta \ge \frac{(1-\gamma )^{p}}{(1-\beta )^{p-1}} \quad \textit{if }\beta < 1 . $$
(25)
Then, there exists a set \(A\subset \mathbb{N}\) such that
$$ \underline{d}_{f}(A)=\alpha ,\qquad \underline{d}_{g}(A)= \beta ,\qquad \overline{d}_{g}(A)=\gamma ,\qquad \overline{d}_{f}(A)=\delta . $$
In the case \(\gamma =0\), inequalities (23) imply that we have \(\alpha =0\) instead of (24). Similarly, in the case \(\beta =1\), inequalities (23) imply that we have \(\delta =1\) instead of (25).
Lemma 5
Let f be an Erdős–Ulam function and \(L< M\) be positive integers. Assume that \(T,U\subset \mathbb{N}\) satisfy \(\chi _{T}(n)=\chi _{U}(n)\) for every n with \(L< n\le M\). Then, for every n with \(L< n\le M\) we have
$$\begin{aligned}& F_{T}(n)\ge \min \bigl\{ F_{U}(n),F_{U}(n) +F_{T}(L)-F_{U}(L) \bigr\} , \\& F_{T}(n)\le \max \bigl\{ F_{U}(n),F_{U}(n) +F_{T}(L)-F_{U}(L) \bigr\} . \end{aligned}$$
Proof
See Lemma 3 in [12]. □
Lemma 6
Let f be an Erdős–Ulam function. Then, for every \(\alpha \in [0,1]\) there is a set \(T\subset \mathbb{N}\) such that \(d_{f}(T)=\alpha \).
Proof
This immediately follows from Proposition 1 of [14]. □
Proof of Theorem 4
In the case that \(\beta =\gamma \) we have from (23), (24), and (25) that \(\alpha =\beta =\gamma =\delta \). By Lemma 6 there exists a set \(A\subset \mathbb{N}\) such that \(d_{f}(A)=\alpha \). For such a set by Lemma 2 we have \(d_{g}(A)=\alpha \) and we are done.
Hence, in the rest of the proof assume that \(\beta <\gamma \).
To generate the set A, we construct two sequences of sets with different weighted densities, and then we interleave them. First, take sequences of real numbers \(\beta _{i}\), \(\gamma _{i}\) for \(i\ge 0\), such that
$$ \beta < \beta _{i}< \gamma _{i}< \gamma $$
such that
$$ \lim_{i\to \infty}\beta _{i}=\beta ,\qquad \lim _{i\to \infty} \gamma _{i}=\gamma . $$
Put
$$ s_{i}=\textstyle\begin{cases} \sqrt[p-1]{\frac{\beta _{i}^{p}}{\alpha}}&\text{if }\alpha \neq 0, \\ \beta _{i}&\text{if }\alpha =0 \end{cases}\displaystyle \quad \text{and}\quad r_{i}=\textstyle\begin{cases} 1-\sqrt[p-1]{\frac{(1-\gamma _{i})^{p}}{1-\delta _{i}}}&\text{if } \delta \neq 1, \\ \gamma _{i}&\text{if }\delta =1 . \end{cases} $$
(26)
According to (24)
$$ \alpha < \beta _{i}\le s_{i} \quad \text{and}\quad \beta \leq \lim_{i \to \infty} s_{i}\leq \gamma $$
(27)
and from (25)
$$ r_{i}\leq \gamma _{i}< \delta \quad \text{and}\quad \beta \leq \lim_{i \to \infty} r_{i}\leq \gamma . $$
(28)
Again, by Lemma 6 there exist sets \(B_{i}\) and \(C_{i}\) of positive integers such that
$$ d_{f}(B_{i})=s_{i} \quad \text{and}\quad d_{f}(C_{i})=r_{i} . $$
(29)
Note that by (8) in this case
$$ d_{g}(B_{i})=s_{i} \quad \text{and}\quad d_{g}(C_{i})=r_{i} . $$
(30)
As the limits (29) and (30) exist, for every \(\varepsilon>0\) there are numbers \(N_{6}(i,\varepsilon )\), such that
$$\begin{aligned}& s_{i}-\varepsilon < F_{B_{i}}(n)< s_{i}+\varepsilon , \\& r_{i}-\varepsilon < F_{C_{i}}(n)< r_{i}+\varepsilon , \\& s_{i}-\varepsilon < G_{B_{i}}(n)< s_{i}+\varepsilon , \\& r_{i}-\varepsilon < G_{C_{i}}(n)< r_{i}+\varepsilon \end{aligned}$$
for every \(n>N_{6}(i,\varepsilon )\).
As f is an Erdős–Ulam function, from limit (2) we obtain that for every \(\varepsilon >0\) there is a number \(N_{7}(\varepsilon )\) such that for every \(k\ge N_{7}(\varepsilon )\) we have \(f^{*}(k)<\varepsilon \).
Let \((\varepsilon _{i} )\) be a decreasing sequence tending to 0 with
$$ \varepsilon _{i}< \min \biggl\{ \frac{\beta _{i}-\alpha}{2}, \frac{\delta -\gamma _{i}}{2} \biggr\} . $$
(31)
We will define inductively the sequence \((n_{l})\) and the set \(A\subset \mathbb{N}\) by
$$\begin{aligned} A&=\bigcup_{i =0}^{\infty } ( ((n_{4i },n_{4i +1}] \cap B_{i} ) \cup ((n_{4i+1},n_{4i+2}]\cap \emptyset ) \\ &\quad{}\cup ((n_{4i +2},n_{4i +3}]\cap C_{i} ) \cup \bigl((n_{4i +3},n_{4i +4}]\cap \mathbb{N} ) \bigr) . \end{aligned}$$
(We take a sufficiently large section of \(B_{i}\) on interval \((n_{4i },n_{4i +1}]\) such that \(F_{A}(n_{4i +1})\) and \(G_{A}(n_{4i +1})\) are close to \(s_{i}\). The interval \((n_{4i +1},n_{4i +2}]\) is as short as possible such that at its end, \(f_{A}(n_{4i +2})\) is close to α. It is followed by a sufficiently long section of \(C_{i}\) on interval \((n_{4i+2},n_{4i+3}]\) such that \(F_{A}(n_{4i +3})\) and \(G_{A}(n_{4i +3})\) are close to \(r_{i}\). Finally, the interval \((n_{4i +3},n_{4i +4}]\) is as short as possible such that at its end, \(F_{A}(n_{4i +4})\) is close to δ.)
For \(n\in \mathbb{N}\) we denote \(D_{n}=A\cap [1,n]\).
Suppose that we have already fixed the numbers \(n_{0}=0, n_{1}, \dots , n_{4i }\). We give the construction of the next four terms of the sequence \((n_{l})\):
-
\(n_{4i +1}\): Although we do not know the set A yet, the set \(D_{n_{4i}}\) is well defined and already known. From (29) we obtain
$$ \lim_{u\to \infty} F_{D_{n_{4i}}\cup ((n_{4i},u]\cap B_{i})}(u) = \lim _{u\to \infty} F_{B_{i}}(u) =s_{i} $$
(32)
and similarly from (30) we obtain
$$ \lim_{u\to \infty} G_{D_{n_{4i}}\cup ((n_{4i},u]\cap B_{i})}(u) = \lim _{u\to \infty} G_{B_{i}}(u) =s_{i} . $$
(33)
Take \(n_{4i+1}\) to be the smallest integer satisfying
$$\begin{aligned}& n_{4i+1}\ge \max \bigl\{ n_{4i}+1,N_{1}(\varepsilon _{i}), N_{6}(i, \varepsilon _{i}) , N_{7}(\varepsilon _{i}) \bigr\} , \end{aligned}$$
(34)
$$\begin{aligned}& s_{i}-\varepsilon _{i}< F_{D_{n_{4i}}\cup ((n_{4i},n_{4i+1}]\cap B_{i})}(n_{4i+1}) < s_{i}+\varepsilon _{i}, \end{aligned}$$
(35)
$$\begin{aligned}& s_{i}-\varepsilon _{i}< G_{D_{n_{4i}}\cup ((n_{4i},n_{4i+1}]\cap B_{i})}(n_{4i+1}) < s_{i}+\varepsilon _{i}, \end{aligned}$$
(36)
where \(N_{1}(\varepsilon )\) is given by Lemma 3. Such a number \(n_{4i+1}\) exists by (32) and (33).
-
\(n_{4i +2}\): Although we do not know the set A yet, the set \(D_{n_{4i+1}}\) is well defined and already known. Obviously,
$$ \lim_{u\to \infty} F_{D_{n_{4i+1}}\cup ((n_{4i+1},u]\cap \emptyset )}(u) =0 . $$
(37)
Take \(n_{4i+2}\) to be the smallest integer satisfying
$$\begin{aligned}& n_{4i+2}> n_{4i+1}, \\& F_{D_{n_{4i+1}}\cup ((n_{4i+1},n_{4i+2}]\cap \emptyset )}(n_{4i+2}) < \alpha +\varepsilon _{i}. \end{aligned}$$
Such a number \(n_{4i+2}\) exists by (27), (31), (35), and (37).
Since \(n_{4i+2}>N_{7}(\varepsilon _{i})\) then by Lemma 1
$$ \alpha < F_{D_{n_{4i+1}}\cup ((n_{4i+1},n_{4i+2}]\cap \emptyset )}(n_{4i+2}) < \alpha +\varepsilon _{i} . $$
(38)
-
\(n_{4i+3}\): Although we do not know the set A yet, the set \(D_{n_{4i+2}}\) is well defined and already known. From (29) we obtain
$$ \lim_{u\to \infty} F_{D_{n_{4i+2}}\cup ((n_{4i+2},u]\cap C_{i})}(u) = \lim _{u\to \infty} F_{C_{i}}(u) =r_{i} $$
(39)
and similarly from (30) we obtain
$$ \lim_{u\to \infty} G_{D_{n_{4i+2}}\cup ((n_{4i+2},u]\cap C_{i})}(u) = \lim _{u\to \infty} G_{C_{i}}(u) =r_{i}. $$
(40)
Take \(n_{4i+3}\) to be the smallest integer satisfying
$$\begin{aligned}& n_{4i+3}\ge \max \bigl\{ n_{4i+2}+1, N_{6}(i+1, \varepsilon _{i+1}) \bigr\} , \end{aligned}$$
(41)
$$\begin{aligned}& r_{i}-\varepsilon _{i}< F_{D_{n_{4i+2}}\cup ((n_{4i+2},n_{4i+3}]\cap C_{i})}(n_{4i+3}) < r_{i}+\varepsilon _{i}, \end{aligned}$$
(42)
$$\begin{aligned}& r_{i}-\varepsilon _{i} < G_{D_{n_{4i+2}}\cup ((n_{4i+2},n_{4i+3}] \cap C_{i})}(n_{4i+3}) < r_{i}+\varepsilon _{i} . \end{aligned}$$
(43)
Such a number \(n_{4i+3}\) exists by (39) and (40).
-
\(n_{4i +4}\): Although we do not know the set A yet, the set \(D_{n_{4i+3}}\) is well defined and already known. Obviously,
$$ \lim_{u\to \infty} F_{D_{n_{4i+3}}\cup ((n_{4i+3},u]\cap \mathbb{N})}(u) =1 . $$
(44)
Take \(n_{4i+4}\) to be the smallest integer satisfying
$$\begin{aligned}& n_{4i+4}>n_{4i+3}, \\& F_{D_{n_{4i+3}}\cup ((n_{4i+3},n_{4i+4}]\cap \mathbb{N})}(n_{4i+4}) > \delta -\varepsilon _{i}. \end{aligned}$$
Such a number \(n_{4i+2}\) exists by (28), (31), (42), and (44).
Since \(n_{4i+2}>N_{7}(\varepsilon _{i})\) then by Lemma 1
$$ \delta -\varepsilon _{i} < F_{D_{n_{4i+3}}\cup ((n_{4i+3},n_{4i+4}] \cap \mathbb{N})}(n_{4i+4}) < \delta . $$
(45)
Now, we know the set A completely and we can rewrite conditions (35), (36), (38), (42), (43), and (45) equivalently in a simpler way as
$$\begin{aligned}& s_{i}-\varepsilon _{i}< F_{A}(n_{4i+1}) < s_{i}+\varepsilon _{i}, \end{aligned}$$
(46)
$$\begin{aligned}& s_{i}-\varepsilon _{i}< G_{A}(n_{4i+1}) < s_{i}+\varepsilon _{i}, \end{aligned}$$
(47)
$$\begin{aligned}& \alpha < F_{A}(n_{4i+2})< \alpha +\varepsilon _{i}, \end{aligned}$$
(48)
$$\begin{aligned}& r_{i}-\varepsilon _{i}< F_{A}(n_{4i+3}) < r_{i}+\varepsilon _{i}, \end{aligned}$$
(49)
$$\begin{aligned}& r_{i}-\varepsilon _{i}< G_{A}(n_{4i+3})< r_{i}+\varepsilon _{i}, \end{aligned}$$
(50)
$$\begin{aligned}& \delta -\varepsilon _{i} < F_{A}(n_{4i+4})< \delta . \end{aligned}$$
(51)
We will show that
$$\begin{aligned}& \lim_{i\to \infty }G_{A}(n_{4i+2})=\beta , \end{aligned}$$
(52)
$$\begin{aligned}& \lim_{i\to \infty }G_{A}(n_{4i+4})=\gamma . \end{aligned}$$
(53)
In proving (52), we will consider two cases.
-
If \(\alpha >0\), then by Lemma 3 and (34)
$$\begin{aligned} G_{A}(n_{4i+2})&= \frac{G_{A}(n_{4i+1})S_{g}(n_{4i+1})}{S_{g}(n_{4i+2})} < G_{A}(n_{4i+1}) \biggl( \frac{S_{f}(n_{4i+1})}{S_{f}(n_{4i+2})} \biggr)^{ \frac{1}{p+\varepsilon _{i}}} \\ &=G_{A}(n_{4i+1}) \frac{ ( \frac{F_{A}(n_{4i+1})S_{f}(n_{4i+1})}{S_{f}(n_{4i+2})} )^{\frac{1}{p+\varepsilon _{i}}} }{ (F_{A}(n_{4i+1}) )^{\frac{1}{p+\varepsilon _{i}}} } \\ &=G_{A}(n_{4i+1}) \biggl(\frac{F_{A}(n_{4i+2})}{F_{A}(n_{4i+1})} \biggr)^{\frac{1}{p+\varepsilon _{i}}} . \end{aligned}$$
By (46), (47), and (48)
$$ G_{A}(n_{4i+2})< \frac{(s_{i}+\varepsilon _{i})}{(s_{i}-\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}}}( \alpha + \varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}} . $$
(54)
Similarly, we can show that
$$ G_{A}(n_{4i+2})> \frac{(s_{i}-\varepsilon _{i})}{(s_{i}+\varepsilon _{i})^{\frac{1}{p-\varepsilon _{i}}}} \alpha ^{\frac{1}{p-\varepsilon _{i}}} .$$
(55)
According to (26)
$$\begin{aligned} \lim_{i\to \infty} \frac{(s_{i}+\varepsilon _{i})}{(s_{i}-\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}}}( \alpha +\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}}&=\lim_{i \to \infty}s_{i}^{\frac{p-1}{p}} \alpha ^{\frac{1}{p}} \\ &=\lim_{i\to \infty} \biggl( \biggl(\frac{\beta _{i}^{p}}{\alpha} \biggr)^{\frac{1}{p-1}} \biggr)^{\frac{p-1}{p}}\alpha ^{\frac{1}{p}}= \lim _{i\to \infty}\beta _{i}=\beta \end{aligned}$$
and
$$ \lim_{i\to \infty} \frac{(s_{i}-\varepsilon _{i})}{(s_{i}+\varepsilon _{i})^{\frac{1}{p-\varepsilon _{i}}}} \alpha ^{\frac{1}{p-\varepsilon _{i}}}=\beta . $$
Then, (54) and (55) imply (52).
-
If \(\alpha =0\), then also \(\beta =0\) by Corollary 2. Obviously,
$$ 0< G_{A}(n_{4i+2})< G_{A}(n_{4i+1})< s_{i}+ \varepsilon _{i}=\beta _{i}+ \varepsilon _{i} . $$
Since \(\lim_{i\to \infty}\beta _{i}=\beta =0\) then,
$$ \lim_{i\to \infty}G_{A}(n_{4i+2})=0=\beta . $$
Similarly in proving (53), we will consider two cases.
-
If \(\delta <1\), then by Lemma 3 and (41)
$$\begin{aligned} G_{A}(n_{4i+4})&= \frac{G_{A}(n_{4i+3})S_{g}(n_{4i+3})+S_{g}(n_{4i+4})-S_{g}(n_{4i+3})}{S_{g}(n_{4i+4})} \\ &=1-\bigl(1-G_{A}(n_{4i+3})\bigr)\frac{S_{g}(n_{4i+3})}{S_{g}(n_{4i+4})} \\ &< 1-\bigl(1-G_{A}(n_{4i+3})\bigr) \biggl( \frac{S_{f}(n_{4i+3})}{S_{f}(n_{4i+4})} \biggr)^{ \frac{1}{p-\varepsilon _{i}}} \\ &=1- \frac{(1-G_{A}(n_{4i+3}))}{(1-F_{A}(n_{4i+3}))^{\frac{1}{p-\varepsilon _{i}}}} \biggl( \frac{(1-F_{A}(n_{4i+3}))S_{f}(n_{4i+3})}{S_{f}(n_{4i+4})} \biggr)^{\frac{1}{p-\varepsilon _{i}}} \\ &=1-\bigl(1-G_{A}(n_{4i+3})\bigr) \biggl( \frac{1-F_{A}(n_{4i+4})}{1-F_{A}(n_{4i+3})} \biggr)^{ \frac{1}{p-\varepsilon _{i}}} . \end{aligned}$$
By (49), (50), and (51)
$$ G_{A}(n_{4i+4})< 1- \frac{1-r_{i}-\varepsilon _{i}}{(1-r_{i}+\varepsilon _{i})^{\frac{1}{p-\varepsilon _{i}}}}(1- \delta )^{\frac{1}{p-\varepsilon _{i}}} . $$
(56)
Similarly, we can show that
$$ G_{A}(n_{4i+4})>1- \frac{1-r_{i}+\varepsilon _{i}}{(1-r_{i}-\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}}}(1- \delta +\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}} . $$
(57)
According to (26)
$$\begin{aligned} &\lim_{i\to \infty} \biggl(1- \frac{1-r_{i}-\varepsilon _{i}}{(1-r_{i}+\varepsilon _{i})^{\frac{1}{p-\varepsilon _{i}}}}(1- \delta + \varepsilon _{i})^{\frac{1}{p-\varepsilon _{i}}} \biggr) \\ &\quad=1-\lim_{i\to \infty}(1-r_{i})^{\frac{p-1}{p}}(1-\delta )^{ \frac{1}{p}} \\ &\quad=1-\lim_{i\to \infty} \biggl( \biggl( \frac{(1-\gamma _{i})^{p}}{1-\delta} \biggr)^{\frac{1}{p-1}} \biggr)^{ \frac{p-1}{p}}(1-\delta )^{\frac{1}{p}}=\lim _{i\to \infty}\gamma _{i}= \gamma \end{aligned}$$
and
$$ \lim_{i\to \infty}1- \frac{1-r_{i}+\varepsilon _{i}}{(1-r_{i}-\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}}}(1- \delta +\varepsilon _{i})^{\frac{1}{p+\varepsilon _{i}}}=\gamma . $$
Then, (56) and (57) imply (53).
-
If \(\delta =1\), then also \(\gamma =1\) by Corollary 2. Obviously,
$$ 1> G_{A}(n_{4i+4})>G_{A}(n_{4i+3})>r_{i}- \varepsilon _{i}=\gamma _{i}-\varepsilon _{i} . $$
Since \(\lim_{i\to \infty}\gamma _{i}=\gamma =1\) then,
$$ \lim_{i\to \infty}G_{A}(n_{4i+4})=1 . $$
Hence, we can proceed to calculate the lower and upper weighted densities of A. On intervals \([n_{4i+1},n_{4i+2}]\) and \([n_{4i+3},n_{4i+4}]\) the functions \(F_{A}(n)\) and \(G_{A}(n)\) are monotone. For \(u\in (n_{4i+2},n_{4i+3}]\), condition (34) and Lemma 5 with \(T=A\) and \(U=C_{i}\) imply that
$$\begin{aligned} G_{A}(u)&\ge \min \bigl\{ G_{C_{i}}(u),G_{C_{i}}(u) +G_{A}(n_{4i+2})-G_{C_{i}}(n_{4i+2}) \bigr\} \\ &\ge \min \bigl\{ r_{i}-\varepsilon _{i},G_{A}(n_{4i+2})-2 \varepsilon _{i} \bigr\} , \end{aligned}$$
hence, by (48) we have
$$ \liminf_{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i+2},n_{4i+3}] }} G_{A}(u) \ge \liminf _{i\to \infty} \min \{r_{i}, \beta \}=\beta .$$
Similarly,
$$\begin{aligned} G_{A}(u)&\le \max \bigl\{ G_{C_{i}}(u),G_{C_{i}}(u) +G_{A}(n_{4i+2})-G_{C_{i}}(n_{4i+2}) \bigr\} \\ &\le \max \bigl\{ r_{i}+\varepsilon _{i},G_{A}(n_{4i+2})+2 \varepsilon _{i} \bigr\} , \end{aligned}$$
and
$$ \limsup_{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i+2},n_{4i+3}] }} G_{A}(u) \le \limsup _{i\to \infty} \max \{r_{i}, \beta \}\le \gamma .$$
In the same way we can prove that
$$\begin{aligned}& \beta \le \liminf_{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i},n_{4i+1}] }} G_{A}(u) \le \limsup _{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i},n_{4i+1}] }} G_{A}(u) \le \gamma , \\& \alpha \le \liminf_{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i+2},n_{4i+3}] }} F_{A}(u) \le \limsup _{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i+2},n_{4i+3}] }} F_{A}(u) \le \delta , \\& \alpha \le \liminf_{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i},n_{4i+1}] }} F_{A}(u) \le \limsup _{ \substack{u\to \infty \\ u\in \bigcup _{i=0}^{\infty }(n_{4i},n_{4i+1}] }} F_{A}(u) \le \delta . \end{aligned}$$
As a consequence, to calculate the densities it is sufficient to consider the functions \(F_{A}(n)\) and \(G_{A}(n)\) only in numbers \(n_{4i +2}\) and \(n_{4i +4}\). By (48), (51), (52), and (53)
$$\begin{aligned}& \lim_{i\to \infty} F_{A}(n_{4i +2})=\alpha ,\qquad \lim_{i\to \infty} F_{A}(n_{4i +4})=\delta , \\& \lim_{i\to \infty} G_{A}(n_{4i +2})=\beta ,\qquad \lim_{i\to \infty} G_{A}(n_{4i +4})=\gamma . \end{aligned}$$
This concludes the proof. □