In this section, we will obtain some sufficient conditions to insure the GDS of systems (2) and (3). First, under assumption \(\mathbf{H}_{3} \) we design the controllers \(p_{i}(t) \) and \(q_{j}(t)\) of response system (3) as follows
$$ \begin{gathered} p_{i}(t)=-\alpha ^{p}_{i}(t) \operatorname{sign} \bigl(e_{i}(t) \bigr) - \frac{\eta _{i}(t) \Vert e(t) \Vert e_{i}(t)}{e_{i}(t)+\varrho _{1}(t)}, \quad i \in \mathcal{I}, \\ q_{j}(t)= -\alpha ^{q}_{j}(t) \operatorname{sign} \bigl(z_{j}(t) \bigr) - \frac{\beta _{j}(t) \Vert z(t) \Vert z_{j}(t)}{z_{j}(t)+\varrho _{2}(t)}, \quad j\in \mathcal{J}, \end{gathered} $$
(5)
where \(\eta _{i}(t)\), \(\alpha ^{p}_{i}(t)\) for \(i\in \mathcal{I}\) and \(\beta _{j}(t)\), \(\alpha ^{q}_{j}(t)\) for \(j\in \mathcal{J}\) are positive control gains satisfying
$$ \textstyle\begin{cases} c^{L}_{i}+\eta _{i}^{L}-\sum_{j=1}^{n} ( \frac{A^{h}_{ji}}{1-{\mu}^{g}_{ji}}+A^{l}_{ji} ) -\sum_{j=1}^{n}C^{f}_{ij}=:E^{f}_{i}>0, \\ \alpha ^{pL}_{i}-\sum_{j=1}^{n} \vert a_{ji} \vert M^{f}_{j}- \sum_{j=1}^{n} \vert b^{M}_{ji} \vert M^{g}_{j}>0, \\ d^{L}_{j}+\beta _{j}^{L}-\sum_{i=1}^{m} ( \frac{A^{f}_{ji}}{1-\mu ^{f}_{ji}}+A^{g}_{ji} ) -\sum_{i=1}^{m}C^{h}_{ij}=:E^{h}_{j}>0, \\ \alpha ^{qL}_{j}-\sum_{i=1}^{m} \vert p_{ij}^{M} \vert M^{g}_{i} - \sum_{i=1}^{m} \vert q_{ij}^{M} \vert M_{i}^{l}>0, \end{cases} $$
(6)
where \({A}^{r}_{ij}=|r_{ji}^{M}|L^{f}_{j}\), \({A}^{f}_{ij}=|a_{ji}^{M}|L^{f}_{j}\), \({A}^{g}_{ij}=|b_{ji}^{M}|L^{g}_{j}\), \({A}^{o}_{ij}=|o_{ij}^{M}|L^{h}_{i}\), \({A}^{h}_{ij}=|p_{ij}^{M}|L^{h}_{i}\), \({A}^{l}_{ij}=|q_{ij}^{M}|L^{l}_{i}\), \({C}^{f}_{ij}=B^{f}_{ij}\theta _{ij}\), \({C}^{h}_{ij}=B^{h}_{ij}\sigma _{ij}\).
Then, from nonlinear feedback controller (7), we have the following theorem.
Theorem 1
Suppose \(\mathbf{H}_{1}\)–\(\mathbf{H}_{3}\) hold and the control gains \(\eta _{i}(t)\), \(\alpha ^{p}_{i}(t)\) and \(\beta _{j}(t)\), \(\alpha ^{q}_{j}(t)\) satisfy the inequality (7), then the response network (3) can be general decay synchronized with the drive network (2) under the nonlinear controller (5).
Proof
First, we construct the following Lyapunov–Krasovskii functionals:
$$\begin{aligned}& \begin{aligned} V_{11}(t)={}& \sum _{i=1}^{m} \bigl\vert {e}_{i}(t) \bigr\vert + \sum_{i=1}^{m} \sum _{j=1}^{n}A^{f}_{ij} \int _{t-\tau _{ij}(t)}^{t} \frac{ \vert z_{j}(s) \vert }{1-\mu ^{f}_{ij}}\,ds \\ &{}+\sum_{i=1}^{m} \sum _{j=1}^{n}A^{g}_{ij} \int _{- \theta _{ij}}^{0}K_{ij}(s) \int _{t+s}^{t} \bigl\vert z_{j}( \varsigma ) \bigr\vert \,d \varsigma \,ds, \end{aligned} \\& \begin{aligned} V_{21}(t)={}& \sum _{j=1}^{n} \bigl\vert z_{j}(t) \bigr\vert + \sum_{j=1}^{n} \sum _{i=1}^{m}A^{h}_{ij} \int _{t-\sigma _{ij}(t)}^{t} \frac{ \vert e_{i}(s) \vert }{1-{\mu}^{g}_{ij}}\,ds \\ &{} + \sum_{j=1}^{n}\sum _{i=1}^{m}A^{l}_{ij} \int _{- \gamma _{ij}}^{0}H_{ij}(s) \int _{t+s}^{t} \bigl\vert e_{i}( \varsigma ) \bigr\vert \,d \varsigma \,ds. \end{aligned} \end{aligned}$$
Calculating the derivative of \(V_{11}(t)+V_{21}(t)\) along system (4), we obtain
$$\begin{aligned} \dot{V}_{11}(t)+\dot{V}_{21}(t) =& \sum _{i=1}^{m} \Biggl\{ \operatorname{sign} \bigl(e_{i}(t) \bigr) \Biggl[ -c_{i}(t)e_{i}(t)+ \sum_{j=1}^{n}r_{ji}(t) \tilde{f}_{j} \bigl(z_{j}(t) \bigr) \ \\ & {}+ \sum_{j=1}^{n}a_{ji}(t) \tilde{f}_{j} \bigl(z_{j} \bigl(t- \tau _{ij}(t) \bigr) \bigr) +\sum_{j=1}^{n}b_{ji}(t) \int ^{0}_{-\theta _{ij}}K_{ij}(s) \tilde{g}_{j} \bigl(z_{j}(t+s) \bigr)\,ds \\ & {}- \alpha ^{p}_{i}(t)\operatorname{sign} \bigl(e_{i}(t) \bigr)- \frac{\eta _{i}(t) \Vert e(t) \Vert e_{i}(t)}{e_{i}(t)+\varrho _{1}(t)} \Biggr] \\ & {}+ \sum_{j=1}^{n} A^{f}_{ij} \biggl( \frac{1}{1-\mu ^{f}_{ij}} \bigl\vert z_{j}(t) \bigr\vert - \frac{ (1-\dot{\tau}_{ij}(t))}{1-\mu ^{f}_{ij}} \bigl\vert z_{j} \bigl(t-\tau _{ij}(t) \bigr) \bigr\vert \biggr) \\ & {}+ \sum_{j=1}^{n}A^{g}_{ij} \int ^{0}_{-\theta _{ij}}K_{ij}(s) \bigl( \bigl\vert z_{j}(t) \bigr\vert - \bigl\vert z_{j}(t+s) \bigr\vert \bigr)\,ds \Biggr\} \\ & {}+ \sum_{j=1}^{n} \Biggl\{ \operatorname{sign} \bigl(z_{j}(t) \bigr) \Biggl[ -d_{j}(t)z_{j}(t)+ \sum_{i=1}^{m}o_{ij}(t) \tilde{h}_{i} \bigl(e_{i}(t) \bigr) \\ & {}+ \sum_{i=1}^{m}p_{ij}(t) \tilde{h}_{i} \bigl(e_{i} \bigl(t- \sigma _{ij}(t) \bigr) \bigr) +\sum_{i=1}^{m}q_{ij}(t) \int ^{0}_{-\gamma _{ij}}H_{ij}(s) \tilde{l}_{i} \bigl(e_{i}(t+s) \bigr)\,ds \\ & {}- \alpha ^{q}_{j}(t)\operatorname{sign} \bigl(z_{j}(t) \bigr)- \frac{\beta _{j}(t) \Vert z(t) \Vert z_{j}(t)}{z_{j}(t)+\varrho _{2}(t)} \Biggr] \\ & {}+ \sum_{i=1}^{m} A^{h}_{ij} \biggl( \frac{1}{1-{\mu}^{g}_{ij}} \bigl\vert e_{i}(t) \bigr\vert - \frac{ (1-\dot{\sigma}_{ij}(t))}{1-{\mu}^{g}_{ij}} \bigl\vert e_{i} \bigl(t-\sigma _{ij}(t) \bigr) \bigr\vert \biggr) \\ & {}+ \sum_{i=1}^{m}A^{l}_{ij} \int ^{0}_{-\gamma _{ij}}H_{ij}(s) \bigl( \bigl\vert e_{i}(t) \bigr\vert - \bigl\vert e_{i}(t+s) \bigr\vert \bigr)\,ds \Biggr\} \\ \leq & \sum_{i=1}^{m} \Biggl\{ -c_{i}^{L} \bigl\vert e_{i}(t) \bigr\vert +\sum_{j=1}^{n} \bigl\vert r_{ji}^{M} \bigr\vert \bigl\vert \tilde{f}_{j} \bigl(z_{j}(t) \bigr) \bigr\vert +\sum _{j=1}^{n} \bigl\vert a_{ji}^{M} \bigr\vert \bigl\vert \tilde{f}_{j} \bigl(z_{j} \bigl(t-\tau _{ij}(t) \bigr) \bigr) \bigr\vert \\ & {}+ \sum_{j=1}^{n} \bigl\vert b_{ji}^{M} \bigr\vert \int ^{0}_{-\theta _{ij}}K_{ij}(s) \tilde{g}_{j} \bigl(z_{j}(t+s) \bigr)\,ds - \bigl\vert \alpha ^{pL}_{i} \bigr\vert - \frac{\eta _{i}^{L} \Vert e(t) \Vert \vert e_{i}(t) \vert }{ \vert e_{i}(t) \vert +\varrho _{1}(t)} \\ & {}+ \sum_{j=1}^{n} \biggl( \frac{A^{f}_{ij}}{1-\mu ^{f}_{ij}}+A^{g}_{ij} \biggr) \bigl\vert z_{j}(t) \bigr\vert -\sum_{j=1}^{n}A^{f}_{ij} \bigl\vert z_{j} \bigl(t- \tau _{ij}(t) \bigr) \bigr\vert \\ & {}- \sum_{j=1}^{n}A^{g}_{ij} \int ^{0}_{-\theta _{ij}}K_{ij}(s) \bigl\vert z_{j}(t+s) \bigr\vert \,ds \Biggr\} + \sum _{j=1}^{n} \Biggl\{ \sum _{i=1}^{m} \bigl\vert o^{M}_{ij} \bigr\vert \bigl\vert \tilde{h}_{i} \bigl(e_{i}(t) \bigr) \bigr\vert \\ & {}+ \sum_{i=1}^{m} \bigl\vert p^{M}_{ij} \bigr\vert \bigl\vert \tilde{h}_{i} \bigl(e_{i} \bigl(t- \sigma _{ij}(t) \bigr) \bigr) \bigr\vert +\sum _{i=1}^{m} \bigl\vert q_{ij}^{M} \bigr\vert \int ^{0}_{- \gamma _{ij}}H_{ij}(s) \bigl\vert \tilde{l}_{i} \bigl(e_{i}(t+s) \bigr) \bigr\vert \,ds \\ & {}- \alpha ^{qL}_{j}- \frac{\beta ^{L}_{j} \Vert z(t) \Vert \vert z_{j}(t) \vert }{ \vert z_{j}(t) \vert +\varrho _{2}(t)} + \sum _{i=1}^{m} \biggl(\frac{A^{h}_{ij}}{1-{\mu}^{g}_{ij}}+A^{l}_{ij} \biggr) \bigl\vert e_{i}(t) \bigr\vert - \bigl\vert d_{j}^{L} \bigr\vert \bigl\vert z_{j}(t) \bigr\vert \\ & {}- \sum_{i=1}^{m}A^{h}_{ij} \bigl\vert e_{i} \bigl(t-\sigma _{ij}(t) \bigr) \bigr\vert - \sum_{i=1}^{m}A^{l}_{ij} \int ^{0}_{-\gamma _{ij}}H_{ij}(s) \bigl\vert e_{i}(t+s) \bigr\vert \,ds \Biggr\} . \end{aligned}$$
(7)
Now, using \(\mathbf{H}_{1}\), we have
$$\begin{aligned}& \sum_{i=1}^{m}\sum _{j=1}^{n} \bigl\vert r_{ji}^{M} \bigr\vert \bigl\vert \tilde{f}_{j} \bigl(z_{j}(t) \bigr) \bigr\vert \leq \sum_{i=1}^{m} \sum_{j=1}^{n}A^{r}_{ij} \bigl\vert z_{j}(t) \bigr\vert +\sum _{i=1}^{m} \sum_{j=1}^{n} \bigl\vert r_{ji}^{M} \bigr\vert M^{f}_{j}, \end{aligned}$$
(8)
$$\begin{aligned}& \sum_{i=1}^{m}\sum _{j=1}^{n} \bigl\vert a_{ji}^{M} \bigr\vert \bigl\vert \tilde{f}_{j} \bigl(z_{j} \bigl(t- \tau _{ij}(t) \bigr) \bigr) \bigr\vert \leq \sum _{i=1}^{m}\sum_{j=1}^{n}A^{f}_{ij} \bigl\vert z_{j} \bigl(t- \tau _{ij}(t) \bigr) \bigr\vert +\sum_{i=1}^{m}\sum _{j=1}^{n} \bigl\vert a_{ji}^{M} \bigr\vert M^{f}_{j}, \end{aligned}$$
(9)
$$\begin{aligned}& \sum_{j=1}^{n}\sum _{i=1}^{m} \bigl\vert o_{ij}^{M} \bigr\vert \bigl\vert \tilde{h}_{i} \bigl(e_{i}(t) \bigr) \bigr\vert \leq \sum_{j=1}^{n} \sum_{i=1}^{m}A^{o}_{ij} \bigl\vert e_{i}(t) \bigr\vert +\sum _{j=1}^{n} \sum_{i=1}^{m} \bigl\vert o_{ij}^{M} \bigr\vert M^{h}_{i}, \end{aligned}$$
(10)
$$\begin{aligned}& \sum_{j=1}^{n}\sum _{i=1}^{m} \bigl\vert p_{ij}^{M} \bigr\vert \bigl\vert \tilde{h}_{i} \bigl(e_{i} \bigl(t- \sigma _{ij}(t) \bigr) \bigr) \bigr\vert \leq \sum _{j=1}^{n}\sum_{i=1}^{m}A^{h}_{ij} \bigl\vert e_{i} \bigl(t- \sigma _{ij}(t) \bigr) \bigr\vert +\sum_{j=1}^{n}\sum _{i=1}^{m} \bigl\vert p_{ij}^{M} \bigr\vert M^{h}_{i}, \end{aligned}$$
(11)
$$\begin{aligned}& \begin{aligned}[b] \sum_{i=1}^{m}\sum _{j=1}^{n} \bigl\vert b_{ji}^{M} \bigr\vert \int ^{0}_{- \theta _{ij}}K_{ij}(s) \bigl\vert \widetilde{g}_{j} \bigl(z_{j}(t+s) \bigr) \bigr\vert \,ds\leq{}& \sum_{i=1}^{m}\sum _{j=1}^{n}A^{g}_{ij} \int ^{0}_{- \theta _{ij}}K_{ij}(s) \bigl\vert z_{j}(t+s) \bigr\vert \,ds \\ &{} +\sum_{i=1}^{m}\sum _{j=1}^{n} \bigl\vert b_{ji}^{M} \bigr\vert M^{g}_{j}, \end{aligned} \end{aligned}$$
(12)
$$\begin{aligned}& \begin{aligned}[b] \sum_{j=1}^{n} \sum_{i=1}^{m} \bigl\vert q_{ij}^{M} \bigr\vert \int ^{0}_{- \gamma _{ij}}H_{ij}(s) \bigl\vert \widetilde{l}_{i} \bigl(e_{i}(t+s) \bigr) \bigr\vert \,ds\leq {}& \sum_{j=1}^{n}\sum _{i=1}^{m}A^{l}_{ij} \int ^{0}_{- \gamma _{ij}}H_{ij}(s) \bigl\vert e_{i}(t+s) \bigr\vert \,ds \\ &{} +\sum_{j=1}^{n}\sum _{i=1}^{m} \bigl\vert q_{ij}^{M} \bigr\vert M^{l}_{i}. \end{aligned} \end{aligned}$$
(13)
Using \(\mathbf{H}_{2}\) and from the above inequalities (7)–(13), we have
$$\begin{aligned} \dot{V}_{11}(t)+\dot{V}_{21}(t) \leq {}& \sum _{i=1}^{m} \Biggl\{ -c_{i}^{L} \bigl\vert e_{i}(t) \bigr\vert +\sum _{j=1}^{n} \bigl\vert r_{ji}^{M} \bigr\vert M^{f}_{j}+ \sum _{j=1}^{n} \bigl\vert a_{ji}^{M} \bigr\vert M^{f}_{j}+\sum _{j=1}^{n} \bigl\vert b^{M}_{ji} \bigr\vert M^{g}_{j} -\alpha ^{pL}_{i} \\ &{} - \frac{\eta _{i}^{L} \Vert e(t) \Vert \vert e_{i}(t) \vert }{ \vert e_{i}(t) \vert +\varrho _{1}(t)} + \sum_{j=1}^{n} \biggl(\frac{A^{f}_{ij}}{1-\mu ^{f}_{ij}}+A^{r}_{ij}+A^{g}_{ij} \biggr) \bigl\vert z_{j}(t) \bigr\vert \Biggr\} \\ & {} + \sum_{j=1}^{n} \Biggl\{ -d^{L}_{j} \bigl\vert z_{j}(t) \bigr\vert +\sum_{i=1}^{m} \bigl\vert o_{ij}^{M} \bigr\vert M^{g}_{i}+ \sum_{i=1}^{m} \bigl\vert p_{ij}^{M} \bigr\vert M^{g}_{i} +\sum_{i=1}^{m} \bigl\vert q_{ij}^{M} \bigr\vert M_{i}^{l} \\ & {}-\alpha ^{qL}_{j}- \frac{\beta _{j}^{L} \Vert z(t) \Vert \vert z_{j}(t) \vert }{ \vert z_{j}(t) \vert +\varrho _{2}(t)} + \sum _{i=1}^{m} \biggl(\frac{A^{h}_{ij}}{1-{\mu}^{g}_{ij}}+A^{o}_{ij}+A^{l}_{ij} \biggr) \bigl\vert e_{i}(t) \bigr\vert \Biggr\} . \end{aligned}$$
(14)
Next, we construct the following Lyapunov–Krasovskii functionals:
$$\begin{aligned}& V_{12}(t)=\sum_{i=1}^{m} \sum_{j=1}^{n}B^{f}_{ij} \int _{-\tau _{ij}}^{0} \int _{t+s}^{t} \bigl\vert e_{i}( \epsilon ) \bigr\vert \,d\epsilon \,ds+ \sum_{i=1}^{m} \sum_{j=1}^{n}B^{g}_{ij} \int _{-\theta _{ij}}^{0}K_{ij}(s) \int ^{0}_{s} \int _{t+\varsigma}^{t} \bigl\vert e_{i}( \epsilon ) \bigr\vert \,d\epsilon\,d \varsigma \,ds, \\& V_{22}(t)=\sum_{j=1}^{n} \sum_{i=1}^{m}B^{h}_{ij} \int _{-\sigma _{ij}}^{0} \int _{t+s}^{t} \bigl\vert z_{j}( \epsilon ) \bigr\vert \,d\epsilon \,ds+ \sum_{j=1}^{n} \sum_{i=1}^{m}B^{l}_{ij} \int _{-\gamma _{ij}}^{0}H_{ij}(s) \int ^{0}_{s} \int _{t+\varsigma}^{t} \bigl\vert z_{j}( \epsilon ) \bigr\vert \,d\epsilon\,d \varsigma \,ds, \end{aligned}$$
where \(B^{f}_{ij}>0\), \(B^{g}_{ij}>0\), \(B^{h}_{ij}>0\), \(B^{l}_{ij}>0 \) are constants. Calculating the derivative of \(V_{12}(t)\), we obtain
$$\begin{aligned} \dot{V}_{12}(t) ={}& \sum_{i=1}^{m} \sum_{j=1}^{n} \biggl[B^{f}_{ij} \biggl(\tau _{ij} \bigl\vert e_{i}(t) \bigr\vert - \int _{t-\tau _{ij}}^{t} \bigl\vert e_{i}(s) \bigr\vert \,ds \biggr) \\ &{} +B^{g}_{ij} \int _{-\theta _{ij}}^{0}K_{ij}(s) \int ^{0}_{s} \bigl( \bigl\vert e_{i}(t) \bigr\vert - \bigl\vert e_{i}(t+\varsigma ) \bigr\vert \bigr)\,d\varsigma \,ds \biggr] \\ \leq {}& \sum_{i=1}^{m}\sum _{j=1}^{n}{C}^{f}_{ij} \bigl\vert e_{i}(t) \bigr\vert -D_{1}, \end{aligned}$$
(15)
where
$$ D_{1}=\sum_{i=1}^{m}\sum _{j=1}^{n} \biggl[B^{f}_{ij} \int ^{t}_{t- \tau _{ij}} \bigl\vert e_{i}(s) \bigr\vert \,ds+B^{g}_{ij} \int _{-\theta _{ij}}^{0} \int ^{t}_{t+s} \bigl\vert e_{i}( \omega ) \bigr\vert \,d\omega \,ds \biggr]. $$
Similarly, we have
$$ \dot{V}_{22}(t) \leq \sum_{j=1}^{n} \sum_{i=1}^{m}{C}^{h}_{ij} \bigl\vert z_{j}(t) \bigr\vert -D_{2}, $$
(16)
where
$$ D_{2}=\sum_{j=1}^{n}\sum _{i=1}^{m} \biggl[B^{h}_{ij} \int ^{t}_{t- \sigma _{ij}} \bigl\vert z_{j}(s) \bigr\vert \,ds+B^{l}_{ij} \int _{-\gamma _{ij}}^{0} \int ^{t}_{t+s} \bigl\vert z_{j}( \omega ) \bigr\vert \,d\omega \,ds \biggr]. $$
Then, there exist positive scalars \(\chi _{1}> 1 \) and \(\chi _{2}> 1\) such that
$$ \begin{gathered} \sum_{i=1}^{m} \bigl\vert e_{i}(t) \bigr\vert \leq V_{1}(t) \leq \chi _{1} \sum_{i=1}^{m} \bigl\vert e_{i}(t) \bigr\vert + \frac{\chi _{1}}{E_{1}}D_{1}, \\ \sum_{j=1}^{n} \bigl\vert z_{j}(t) \bigr\vert \leq V_{2}(t) \leq \chi _{2} \sum_{j=1}^{n} \bigl\vert z_{j}(t) \bigr\vert + \frac{\chi _{2}}{E_{2}}D_{2}, \end{gathered} $$
(17)
where \(V_{1}(t)=V_{11}(t)+V_{12}(t)\), \(V_{2}(t)=V_{21}(t)+V_{22}(t)\), \(E_{1}=\min_{i\in \mathcal{I}}\{E^{f}_{i} \}\), \(E_{2}=\min_{j\in \mathcal{J}}\{E^{h}_{j} \} \). Finally, we construct the following Lyapunov–Krasovskii functional:
$$ V(t)=V_{1}(t)+V_{2}(t). $$
Calculating the derivative of \(V(t)\) and from (14)–(16), we obtain
$$\begin{aligned} \dot{V}(t) \leq{} & \sum_{i=1}^{m} \Biggl\{ - \Biggl[c^{L}_{i}-\sum _{j=1}^{n} \biggl( \frac{A^{h}_{ji}}{1-{\mu}^{g}_{ji}}+A^{o}_{ji}+A^{l}_{ji} \biggr) -\sum_{j=1}^{n}C^{f}_{ij} \Biggr] \bigl\vert e_{i}(t) \bigr\vert - \Biggl[\alpha ^{pL}_{i} \\ & {}- \sum_{j=1}^{n} \vert r_{ji} \vert M^{f}_{j}-\sum _{j=1}^{n} \vert a_{ji} \vert M^{f}_{j}- \sum_{j=1}^{n} \bigl\vert b^{M}_{ji} \bigr\vert M^{g}_{j} \Biggr] - \frac{\eta _{i}^{L} \Vert e(t) \Vert \vert e_{i}(t) \vert }{ \Vert e(t) \Vert +\varrho _{1}(t)} \Biggr\} \\ & {}- D_{1}+\sum_{j=1}^{n} \Biggl\{ - \Biggl[d^{L}_{j}-\sum _{i=1}^{m} \biggl(\frac{A^{f}_{ji}}{1-\mu ^{f}_{ji}}+A^{r}_{ji}+A^{g}_{ji} \biggr) - \sum_{i=1}^{m}C^{h}_{ij} \Biggr] \bigl\vert z_{j}(t) \bigr\vert - \Biggl[\alpha ^{qL}_{j} \\ & {}- \sum_{i=1}^{m} \bigl\vert o_{ij}^{M} \bigr\vert M^{g}_{i}- \sum_{i=1}^{m} \bigl\vert p_{ij}^{M} \bigr\vert M^{g}_{i} -\sum_{i=1}^{m} \bigl\vert q_{ij}^{M} \bigr\vert M_{i}^{l} \Biggr] - \frac{\beta _{j}^{L} \Vert z(t) \Vert \vert z_{j}(t) \vert }{ \Vert z_{j}(t) \Vert +\varrho _{2}(t)} \Biggr\} -D_{2} \\ \leq {}& \sum_{i=1}^{m} \Biggl\{ - \Biggl[c^{L}_{i}+\eta _{i}^{L}- \sum_{j=1}^{n} \biggl( \frac{A^{h}_{ji}}{1-{\mu}^{g}_{ji}}+A^{o}_{ji}+A^{l}_{ji} \biggr) -\sum_{j=1}^{n}C^{f}_{ij} \Biggr] \bigl\vert e_{i}(t) \bigr\vert \\ & {}- \Biggl[\alpha ^{pL}_{i}-\sum _{j=1}^{n} \vert r_{ji} \vert M^{f}_{j}- \sum_{j=1}^{n} \vert a_{ji} \vert M^{f}_{j}-\sum _{j=1}^{n} \bigl\vert b^{M}_{ji} \bigr\vert M^{g}_{j} \Biggr] \\ & {}+ \eta _{i} \bigl\vert e_{i}(t) \bigr\vert - \frac{\eta _{i}^{L} \Vert e(t) \Vert \vert e_{i}(t) \vert }{ \Vert e(t) \Vert +\varrho _{1}(t)} \Biggr\} -D_{1} +\sum _{j=1}^{n} \Biggl\{ - \Biggl[d^{L}_{j}+ \beta _{j}^{L} \\ & {}- \sum_{i=1}^{m} \biggl( \frac{A^{f}_{ji}}{1-\mu ^{f}_{ji}}+A^{r}_{ji}+A^{g}_{ji} \biggr) -\sum_{i=1}^{m}C^{h}_{ij} \Biggr] \bigl\vert z_{j}(t) \bigr\vert - \Biggl[\alpha ^{qL}_{j}-\sum_{i=1}^{m} \bigl\vert o_{ij}^{M} \bigr\vert M^{g}_{i} \\ & {}- \sum_{i=1}^{m} \bigl\vert p_{ij}^{M} \bigr\vert M^{g}_{i} -\sum_{i=1}^{m} \bigl\vert q_{ij}^{M} \bigr\vert M_{i}^{l} \Biggr] +\beta _{j} \bigl\vert z_{j}(t) \bigr\vert - \frac{\beta _{j}^{L} \Vert z(t) \Vert \vert z_{j}(t) \vert }{ \Vert z_{j}(t) \Vert +\varrho _{2}(t)} \Biggr\} -D_{2} \\ \leq{} & {}- \sum_{i=1}^{m}E^{f}_{i} \bigl\vert e_{i}(t) \bigr\vert -\sum _{j=1}^{n}E^{h}_{i} \bigl\vert z_{j}(t) \bigr\vert +\frac{\eta \Vert e(t) \Vert \varrho _{1}(t)}{ \Vert e(t) \Vert +\varrho _{1}(t)}+ \frac{\beta \Vert z(t) \Vert \varrho _{2}(t)}{ \Vert z_{j}(t) \Vert +\varrho _{2}(t)} \\ & {}- D_{1}-D_{2}, \end{aligned}$$
(18)
where \({\eta}=\max_{i\in \mathcal{I}}\{\eta _{i}^{L}\}>0\), \({\beta}=\max_{j \in \mathcal{J}}\{\beta _{j}^{L}\}>0\). By using the inequality \(0 \leq ab/(a + b) \leq a \) for any \(a > 0\), \(b> 0\), we have
$$ \dot{V}(t) \leq -\sum_{i=1}^{m}E^{f}_{i} \bigl\vert e_{i}(t) \bigr\vert - \sum _{j=1}^{n}E^{h}_{i} \bigl\vert z_{j}(t) \bigr\vert + \eta \varrho _{1}(t)+\beta \varrho _{2}(t)-D_{1}-D_{2}. $$
(19)
Now, taking a small enough δ such that \(\delta \chi _{1}< E_{1}\) and \(\delta \chi _{2}< E_{2}\), then from the inequalities (17) and (19), we obtain
$$\begin{aligned} \frac{d}{dt}V(t) + \delta V(t) \leq {}& - \sum _{i=1}^{m}E^{f}_{i} \bigl\vert e_{i}(t) \bigr\vert + \eta \varrho _{1}(t)-D_{1} + \delta \Biggl(\chi _{1} \sum_{i=1}^{m} \bigl\vert e_{i}(t) \bigr\vert + \frac{\chi _{1}}{E_{1}}D_{1} \Biggr) \\ &{}-\sum_{j=1}^{n}E^{h}_{j} \bigl\vert z_{j}(t) \bigr\vert + \beta \varrho _{2}(t)-D_{2} + \delta \Biggl(\chi _{2} \sum_{j=1}^{n} \bigl\vert z_{j}(t) \bigr\vert + \frac{\chi _{2}}{E_{2}}D_{2} \Biggr) \\ \leq{} & (\delta \chi _{1}-E_{1})\sum _{i=1}^{m} \bigl\vert e_{i}(t) \bigr\vert + \biggl( \frac{\delta \chi _{1}}{E_{1}}-1 \biggr)D_{1} +\eta \varrho _{1}(t)-(\delta \chi _{2}-E_{2}) \sum_{j=1}^{n} \bigl\vert z_{j}(t) \bigr\vert \\ &{}+ \biggl( \frac{\delta \chi _{2}}{E_{2}}-1 \biggr)D_{2} +\beta \varrho _{2}(t) \\ \leq{} & \gamma \varrho (t), \end{aligned}$$
where \(\gamma =\max \{\eta ,\beta \}\) and \(\varrho (t)=\varrho _{1}(t)+\varrho _{2}(t)\). Thus, we have
$$ \dot{V}(t)\leq -\delta V(t)+\gamma \varrho (t). $$
Then, from Lemma 1, the drive–response systems (2) and (3) achieve GDS under the adaptive nonlinear controller (5). The convergence rate of \(e(t) \) and \(z(t)\) approaching zero is δ. □
Remark 1
In this paper, compared with previous studies, both distributed time delays and continuous time delays with nonautonomous bidirectional associative memory recurrent neural networks (BAMRNNs) are considered. As the coefficients of autonomous RNNs models in [20, 21] will not change with time, there are some limitations in mathematical modeling of neural-network systems. Hence, system (2) and the results obtained in this study can be seen as the extensions and supplements of previously known studies [18–27].
If, in \(\mathbf{H}_{1}\) we assume that the neuron feedback functions \(f_{j}(u)\), \(g_{j}(u)\), \(h_{i}(u)\), \(l_{i}(u)\) are globally Lipschitz, i.e., the constants \(M^{f}_{j}=M^{g}_{j}=0\), \(M^{h}_{i}=M^{l}_{i}=0\), then the \(\mathbf{H}_{1}\) turns to:
\(\bar{\mathbf{H}}_{1}\): \(f_{j}(u)\), \(g_{j}(u)\), \(h_{i}(u)\), \(l_{i}(u)\) are globally Lipschitz continuous, i.e., there exist constants \(L_{j}^{f}>0\), \(L^{g}_{j}>0\), \(L^{h}_{i}>0\), \(L^{l}_{i}>0\), such that
$$\begin{aligned}& \bigl\vert f_{j}(v_{1})-f_{j}(v_{2}) \bigr\vert \leq L^{f}_{j} \vert v_{1}-v_{2} \vert ,\qquad \bigl\vert g_{j}(v_{1})-g_{j}(v_{2}) \bigr\vert \leq L^{g}_{j} \vert v_{1}-v_{2} \vert ,\\& \bigl\vert h_{i}(v_{1})-h_{i}(v_{2}) \bigr\vert \leq L^{h}_{i} \vert v_{1}-v_{2} \vert ,\qquad \bigl\vert l_{i}(v_{1})-l_{i}(v_{2}) \bigr\vert \leq L^{l}_{i} \vert v_{1}-v_{2} \vert . \end{aligned}$$
In addition, the controller (6) and inequality (5) in system (2) becomes
$$ \begin{gathered} p_{i}(t)= - \frac{\eta _{i}(t) \Vert e(t) \Vert e_{i}(t)}{e_{i}(t)+\varrho _{1}(t)}, \quad i\in \mathcal{I}, \\ q_{j}(t)= - \frac{\beta _{j}(t) \Vert z(t) \Vert z_{j}(t)}{z_{j}(t)+\varrho _{2}(t)},\quad j\in \mathcal{J}, \end{gathered} $$
(20)
and
$$ \textstyle\begin{cases} c^{L}_{i}+\eta _{i}^{L}-\sum_{j=1}^{n} ( \frac{A^{h}_{ji}}{1-{\mu}^{g}_{ji}}+A^{o}_{ji}+A^{l}_{ji} ) -\sum_{j=1}^{n}C^{f}_{ij}=:E^{f}_{i}>0, \\ d^{L}_{j}+\beta _{j}^{L}-\sum_{i=1}^{m} ( \frac{A^{f}_{ji}}{1-\mu ^{f}_{ji}}+A^{r}_{ji}+A^{g}_{ji} ) -\sum_{i=1}^{m}C^{h}_{ij}=:E^{h}_{j}>0. \end{cases} $$
(21)
Then, from Theorem 1, we have the following corollary.
Corollary 1
Suppose \(\bar{\mathbf{H}}_{1}\), \(\mathbf{H}_{2}\), \(\mathbf{H}_{3}\) hold and the control gains \(\eta _{i}\), \(\beta _{j}\) satisfy the inequality (21), then the response network (2) can be general decay synchronized with the drive network (1) under the nonlinear controller (20).