Let \(h(t)=\sum_{k=0}^{\infty}c_{k}t^{k}\) be a formal power series and \(h_{n}(t)=\sum_{k=0}^{n}c_{k}t^{k}\) be its nth partial sum (\(g_{n}\) is identically zero for \(n<0\)). Then the Padé approximation [19] of order \((m,n)\) of the function g is defined as the rational function
$$\begin{aligned}{} [m/n]_{h}(t):= \frac {\sum_{k=0}^{m}a_{k}t^{k}}{1+\sum_{k=1}^{n}b_{k}t^{k}}, \end{aligned}$$
(3.1)
where \(m\geq 0\) and \(n\geq 1\) are two given integers, and the coefficients \(a_{k}\) and \(b_{k}\) are given by [13]
$$ \begin{aligned} &a_{0} =c_{0}, \\ &a_{1} =c_{0}b_{1}+c_{1}, \\ &a_{2} =c_{0}b_{2}+c_{1}b_{1}+c_{2}, \\ &\quad \vdots \\ &a_{m} =c_{0}b_{m}+\cdots +c_{m-1}b_{1}+c_{m}, \\ &0 =c_{m+1}+c_{m}b_{1}+\cdots +c_{m-n+1}b_{n}, \\ &\quad \vdots \\ &0 =c_{m+n}+c_{m+n-1}b_{1}+\cdots +c_{m}b_{n}, \end{aligned} $$
(3.2)
with the following property:
$$\begin{aligned}{} [m/n]_{h}(t)-h(t)=O\bigl(t^{m+n+1}\bigr). \end{aligned}$$
(3.3)
Clearly, the first \(m+n+1\) coefficients of the series expansion of \([m/n]_{g}\) are identical to those of g. Further, we have
$$\begin{aligned}{} [m/n]_{h}(t)= \frac { \begin{vmatrix} t^{n}h_{m-n}(t)& t^{n-1}h_{m-n+1}(t)& \cdots & h_{m}(t) \\ c_{m-n+1} & c_{m-n+2} & \cdots & c_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m} & c_{m+1} & \cdots & c_{m+n} \end{vmatrix} }{ \begin{vmatrix} t^{n}& t^{n-1}& \cdots & 1 \\ c_{m-n+1} & c_{m-n+2} & \cdots & c_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m} & c_{m+1} & \cdots & c_{m+n} \end{vmatrix}}. \end{aligned}$$
(3.4)
Padé approximants related to the gamma function are discussed in [13]. In this section, we are interested in finding the Padé approximants for the function \(g(x)\), which is defined in (2.1).
From (2.4) and (2.1), it can be noted that, as \(x\rightarrow \infty \),
$$\begin{aligned} g(x)&\sim \sum_{k=0}^{\infty} \frac {c_{k}}{x^{k}} \\ &=1+\frac {19}{240x}+ \frac {1081}{115\text{,}200x^{2}}- \frac {893\text{,}507}{580\text{,}608\text{,}000x^{3}}- \frac {900\text{,}113\text{,}513}{557\text{,}383\text{,}680\text{,}000x^{4}} +\cdots , \end{aligned}$$
(3.5)
where the coefficients \(c_{k}\) satisfy (2.6) for \(p=0\) and \(q=1\).
Now we will proceed for the Padé approximation of \(g(x)\). Let us consider
$$ [1/1]_{g}(x)= \frac {\sum_{k=0}^{1}\frac{a_{k}}{x^{k}}}{1+\sum_{k=1}^{1}\frac{b_{k}}{x^{k}}}. $$
It follows that
$$\begin{aligned} \begin{aligned} &c_{0}=1, \qquad c_{1}=\frac {19}{240}, \qquad c_{2}= \frac {1081}{115\text{,}200}, \\ &c_{3}=- \frac {893\text{,}507}{580\text{,}608\text{,}000},\qquad c_{4}=- \frac {900\text{,}113\text{,}513}{557\text{,}383\text{,}680\text{,}000}. \end{aligned} \end{aligned}$$
(3.6)
From (3.2), we obtain
$$\begin{aligned}& a_{0} =1, \\& a_{1} =b_{1}+\frac {19}{240}, \\& 0 =\frac {19}{240}b_{1}+\frac {1081}{115\text{,}200}, \end{aligned}$$
which gives \(a_{0}=1\), \(a_{1}=-\frac{359}{9120}\), and \(b_{1}=-\frac{1081}{9120}\). Hence, we have
$$\begin{aligned}{} [1/1]_{g}(x)=\frac {1-\frac{359}{9120x}}{1-\frac{1081}{9120x}}= \frac {x-\frac{359}{9120}}{x-\frac{1081}{9120}}, \end{aligned}$$
(3.7)
and using (3.3), it follows that
$$ g(x) = \frac {x-\frac{359}{9120}}{x-\frac{1081}{9120}}+O \biggl( \frac {1}{x^{3}} \biggr). $$
Now we will derive a Padé approximant of order \((2,2)\). For this, let us consider
$$ [2/2]_{g}(x)= \frac {\sum_{k=0}^{2}\frac{a_{k}}{x^{k}}}{1+\sum_{k=1}^{2}\frac{b_{k}}{x^{k}}}. $$
Using (3.2), we obtain
$$\begin{aligned}& a_{0} =1 \\& a_{1} =b_{1}+\frac {19}{240}, \\& a_{2} =b_{2}+\frac {19}{240}b_{1}+ \frac {1081}{115\text{,}200}, \\& 0 =\frac {1081}{115\text{,}200}b_{1}+\frac {19}{240}b_{2}- \frac {893\text{,}507}{580\text{,}608\text{,}000}, \\& 0 =\frac {893\text{,}507}{580\text{,}608\text{,}000}b_{1}-\frac {1081}{115\text{,}200}b_{2}+ \frac {900\text{,}113\text{,}513}{557\text{,}383\text{,}680\text{,}000}, \end{aligned}$$
which implies that
$$\begin{aligned}& a_{1} =-\frac {12\text{,}947\text{,}658\text{,}827}{28\text{,}076\text{,}662\text{,}560},\qquad a_{2}= \frac {14\text{,}176\text{,}622\text{,}313\text{,}529}{283\text{,}012\text{,}758\text{,}604\text{,}800}, \\& b_{1} =-\frac {15\text{,}170\text{,}394\text{,}613}{28\text{,}076\text{,}662\text{,}560},\qquad b_{2}= \frac {23\text{,}626\text{,}895\text{,}894\text{,}809}{283\text{,}012\text{,}758\text{,}604\text{,}800}, \end{aligned}$$
and
$$\begin{aligned}{} [2/2]_{g}(x)&= \frac {1-\frac {12\text{,}947\text{,}658\text{,}827}{28\text{,}076\text{,}662\text{,}560x}+\frac {14\text{,}176\text{,}622\text{,}313\text{,}529}{283\text{,}012\text{,}758\text{,}604\text{,}800x^{2}}}{ 1-\frac {15\text{,}170\text{,}394\text{,}613}{28\text{,}076\text{,}662\text{,}560x}+\frac {23\text{,}626\text{,}895\text{,}894\text{,}809}{283\text{,}012\text{,}758\text{,}604\text{,}800x^{2}}} \\ &= \frac {x^{2}-\frac {12\text{,}947\text{,}658\text{,}827}{28\text{,}076\text{,}662\text{,}560}x+\frac {14\text{,}176\text{,}622\text{,}313\text{,}529}{283\text{,}012\text{,}758\text{,}604\text{,}800}}{ x^{2}-\frac {15\text{,}170\text{,}394\text{,}613}{28\text{,}076\text{,}662\text{,}560}x+\frac {23\text{,}626\text{,}895\text{,}894\text{,}809}{283\text{,}012\text{,}758\text{,}604\text{,}800}}. \end{aligned}$$
(3.8)
Therefore, using (3.3), it follows that
$$ g(x) = \frac {x^{2}-\frac {12\text{,}947\text{,}658\text{,}827}{28\text{,}076\text{,}662\text{,}560}x+\frac {14\text{,}176\text{,}622\text{,}313\text{,}529}{283\text{,}012\text{,}758\text{,}604\text{,}800}}{ x^{2}-\frac {15\text{,}170\text{,}394\text{,}613}{28\text{,}076\text{,}662\text{,}560}x+\frac {23\text{,}626\text{,}895\text{,}894\text{,}809}{283\text{,}012\text{,}758\text{,}604\text{,}800}}+O \biggl(\frac {1}{x^{5}} \biggr). $$
Using the Padé approximation method and expansion (3.5), the following theorem can be derived.
Theorem 3.1
The Padé approximation of order \((m,n)\) of the asymptotic formula of the function \(g(x)\) (at the point \(x=\infty \)) is given by the rational function:
$$ [m/n]_{g}(x)= \frac {1+\sum_{k=1}^{m}\frac{a_{k}}{x^{k}}}{1+\sum_{k=1}^{n}\frac{b_{k}}{x^{k}}} =x^{n-m} \biggl( \frac {x^{m}+a_{1}x^{m-1}+\cdots +a_{m}}{x^{n}+b_{1}x^{n-1}+\cdots +b_{n}} \biggr), $$
where \(m\geq 1\) and \(n\geq 1\) are given integers and the coefficients \(a_{k}\) and \(b_{k}\) satisfy the conditions (3.2) with \(a_{0}=c_{0}=1\) and \(c_{k}\) satisfies (2.6) for \(p=0\) and \(q=1\), and the following relation holds:
$$ g(x)-[m/n]_{g}(x)=O \biggl(\frac {1}{x^{m+n+1}} \biggr),\quad x \rightarrow \infty . $$
Further, we have (see [5])
$$\begin{aligned}{} [m/n]_{g}(x)= \frac { \begin{vmatrix} x^{n}g_{m-n}(x)& x^{n-1}g_{m-n+1}(x)& \cdots & g_{m}(x) \\ c_{m-n+1} & c_{m-n+2} & \cdots & c_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m} & c_{m+1} & \cdots & c_{m+n} \end{vmatrix} }{ \begin{vmatrix} x^{n}& x^{n-1}& \cdots & 1 \\ c_{m-n+1} & c_{m-n+2} & \cdots & c_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m} & c_{m+1} & \cdots & c_{m+n} \end{vmatrix}}, \end{aligned}$$
(3.9)
where \(g_{n}(x)=\sum_{k=0}^{n}\frac{c_{k}}{x^{k}}\) is the nth partial sum of the asymptotic series (3.5).
Remark 3.1
Using (3.9), it is also possible to derive (3.7) and (3.8). Let us verify these results.
$$\begin{aligned}{} [1/1]_{g}(x)= \frac { \begin{vmatrix} \frac{1}{x}g_{0}(x) & g_{1}(x) \\ c_{1} & c_{2} \end{vmatrix} }{ \begin{vmatrix} \frac{1}{x}& 1 \\ c_{1} & c_{2} \end{vmatrix}} = \frac { \begin{vmatrix} \frac{1}{x} & 1+\frac{19}{240x} \\ \frac{19}{240} & \frac{1081}{115\text{,}200} \end{vmatrix} }{ \begin{vmatrix} \frac{1}{x}& 1\\ \frac{19}{240} & \frac{1081}{115\text{,}200} \end{vmatrix}} = \frac {x-\frac{359}{9120}}{x-\frac{1081}{9120}} \end{aligned}$$
and
$$\begin{aligned}{} [2/2]_{g}(x)&= \frac { \begin{vmatrix} \frac{1}{x^{2}}g_{0}(x) & \frac{1}{x}g_{1}(x)&g_{2}(x) \\ c_{1} & c_{2} & c_{3}\\ c_{2} & c_{3} & c_{4} \end{vmatrix} }{ \begin{vmatrix} \frac{1}{x^{2}}&\frac{1}{x} &1 \\ c_{1} & c_{2} &c_{3}\\ c_{2} & c_{3} & c_{4} \end{vmatrix}} = \frac { \begin{vmatrix} \frac{1}{x^{2}} & \frac{1}{x} (1+\frac{19}{240x} )& 1+\frac{19}{240x}+\frac{1081}{115\text{,}200x^{2}}\\ \frac{19}{240} & \frac{1081}{115\text{,}200}&-\frac{893\text{,}507}{580\text{,}608\text{,}000} \\ \frac{1081}{115\text{,}200}&-\frac{893\text{,}507}{580\text{,}608\text{,}000}& -\frac{900\text{,}113\text{,}513}{557\text{,}383\text{,}680\text{,}000} \end{vmatrix} }{ \begin{vmatrix} \frac{1}{x^{2}} & \frac{1}{x}& 1\\ \frac{19}{240} & \frac{1081}{115\text{,}200}&-\frac{893\text{,}507}{580\text{,}608\text{,}000} \\ \frac{1081}{115\text{,}200}&-\frac{893\text{,}507}{580\text{,}608\text{,}000}& -\frac{900\text{,}113\text{,}513}{557\text{,}383\text{,}680\text{,}000} \end{vmatrix} } \\ &= \frac {x^{2}-\frac {12\text{,}947\text{,}658\text{,}827}{28\text{,}076\text{,}662\text{,}560}x+\frac {14\text{,}176\text{,}622\text{,}313\text{,}529}{283\text{,}012\text{,}758\text{,}604\text{,}800}}{ x^{2}-\frac {15\text{,}170\text{,}394\text{,}613}{28\text{,}076\text{,}662\text{,}560}x+\frac {23\text{,}626\text{,}895\text{,}894\text{,}809}{283\text{,}012\text{,}758\text{,}604\text{,}800}}. \end{aligned}$$
Setting \(m=n=r\) in (3.3), the following result is immediate.
Corollary 3.1
$$\begin{aligned} g(x) = \frac {x^{r}+a_{1}x^{r-1}+\cdots +a_{r}}{x^{r}+b_{1}x^{r-1}+\cdots +b_{r}}+O \biggl(\frac {1}{x^{2r+1}} \biggr) \end{aligned}$$
(3.10)
for \(x\rightarrow \infty \) and \(r\geq 1\) is any given integer, the coefficients \(a_{i}\) and \(b_{i}\) (\(1\leq i\leq r\)) satisfy (3.2) with \(a_{0}=c_{0}=1\), and \(c_{r}\) is given in (2.6) (for \(p=0\) and \(q=1\)).
Remark 3.2
Setting \(r=3\) in (3.10), we obtain
$$\begin{aligned} &g(x) = \frac {x^{3}-a_{1}x^{2}+a_{2}x-a_{3}}{ x^{3}-b_{1}x^{2}+b_{2}x-b_{3}} +O \biggl(\frac {1}{x^{7}} \biggr), \end{aligned}$$
where
$$\begin{aligned}& a_{1} =\frac {564\text{,}264\text{,}707\text{,}394\text{,}045\text{,}441\text{,}291\text{,}137}{777\text{,}288\text{,}995\text{,}553\text{,}534\text{,}212\text{,}638\text{,}560}, \\& a_{2} = \frac {507\text{,}337\text{,}383\text{,}020\text{,}418\text{,}800\text{,}355\text{,}971\text{,}917}{932\text{,}746\text{,}794\text{,}664\text{,}241\text{,}055\text{,}166\text{,}272\text{,}000}, \\& a_{3} = \frac {524\text{,}560\text{,}286\text{,}160\text{,}441\text{,}450\text{,}378\text{,}984\text{,}935\text{,}759}{18\text{,}804\text{,}175\text{,}380\text{,}431\text{,}099\text{,}672\text{,}152\text{,}043\text{,}520\text{,}000}, \\& b_{1} =\frac {625\text{,}800\text{,}086\text{,}208\text{,}700\text{,}233\text{,}125\text{,}023}{777\text{,}288\text{,}995\text{,}553\text{,}534\text{,}212\text{,}638\text{,}560}, \\& b_{2} =\frac {50\text{,}730\text{,}526\text{,}659\text{,}081\text{,}610\text{,}299\text{,}631\text{,}847}{84\text{,}795\text{,}163\text{,}151\text{,}294\text{,}641\text{,}378\text{,}752\text{,}000}, \\& b_{3} = \frac {1\text{,}244\text{,}184\text{,}486\text{,}344\text{,}122\text{,}340\text{,}305\text{,}441\text{,}760\text{,}881}{18\text{,}804\text{,}175\text{,}380\text{,}431\text{,}099\text{,}672\text{,}152\text{,}043\text{,}520\text{,}000}. \end{aligned}$$
Remark 3.3
Setting \(r=4\) in (3.10), we obtain
$$\begin{aligned} g(x)= \frac {x^{4}-a_{1}x^{3}+a_{2}x^{2}-a_{3}x+a_{4}}{ x^{4}-b_{1}x^{3}+b_{2}x^{2}-b_{3}x+b^{4}} +O \biggl(\frac {1}{x^{9}} \biggr), \end{aligned}$$
where
$$\begin{aligned}& a_{1} = \frac {215\text{,}703\text{,}766\text{,}781\text{,}168\text{,}876\text{,}220\text{,}885\text{,}513\text{,}532\text{,}207\text{,}573\text{,}037\text{,}853\text{,}391}{156\text{,}833\text{,}412\text{,}819\text{,}388\text{,}306\text{,}354\text{,}787\text{,}238\text{,}937\text{,}752\text{,}295\text{,}790\text{,}827\text{,}680}, \\& a_{2} = \frac {439\text{,}021\text{,}821\text{,}607\text{,}824\text{,}678\text{,}358\text{,}124\text{,}666\text{,}374\text{,}361\text{,}977\text{,}917\text{,}184\text{,}670\text{,}503}{276\text{,}026\text{,}806\text{,}562\text{,}123\text{,}419\text{,}184\text{,}425\text{,}540\text{,}530\text{,}444\text{,}040\text{,}591\text{,}856\text{,}716\text{,}800}, \\& a_{3} = \frac {2\text{,}697\text{,}600\text{,}344\text{,}247\text{,}344\text{,}205\text{,}104\text{,}432\text{,}196\text{,}561\text{,}229\text{,}100\text{,}202\text{,}237\text{,}946\text{,}568\text{,}861}{4\text{,}173\text{,}525\text{,}315\text{,}219\text{,}306\text{,}098\text{,}068\text{,}514\text{,}172\text{,}820\text{,}313\text{,}893\text{,}748\text{,}873\text{,}558\text{,}016\text{,}000}, \\& a_{4} = \frac {940\text{,}070\text{,}303\text{,}236\text{,}823\text{,}651\text{,}814\text{,}961\text{,}986\text{,}110\text{,}532\text{,}058\text{,}170\text{,}155\text{,}544\text{,}925\text{,}558\text{,}921}{20\text{,}032\text{,}921\text{,}513\text{,}052\text{,}669\text{,}270\text{,}728\text{,}868\text{,}029\text{,}537\text{,}506\text{,}689\text{,}994\text{,}593\text{,}078\text{,}476\text{,}800\text{,}000}, \\& b_{1} = \frac {228\text{,}119\text{,}745\text{,}296\text{,}037\text{,}117\text{,}140\text{,}639\text{,}503\text{,}281\text{,}446\text{,}296\text{,}454\text{,}627\text{,}249}{156\text{,}833\text{,}412\text{,}819\text{,}388\text{,}306\text{,}354\text{,}787\text{,}238\text{,}937\text{,}752\text{,}295\text{,}790\text{,}827\text{,}680}, \\& b_{2} = \frac {468\text{,}216\text{,}358\text{,}741\text{,}523\text{,}424\text{,}525\text{,}741\text{,}582\text{,}917\text{,}397\text{,}922\text{,}238\text{,}128\text{,}383\text{,}943}{276\text{,}026\text{,}806\text{,}562\text{,}123\text{,}419\text{,}184\text{,}425\text{,}540\text{,}530\text{,}444\text{,}040\text{,}591\text{,}856\text{,}716\text{,}800}, \\& b_{3} = \frac {290\text{,}424\text{,}419\text{,}148\text{,}610\text{,}158\text{,}964\text{,}741\text{,}537\text{,}112\text{,}783\text{,}630\text{,}996\text{,}531\text{,}879\text{,}384\text{,}489}{379\text{,}411\text{,}392\text{,}292\text{,}664\text{,}190\text{,}733\text{,}501\text{,}288\text{,}438\text{,}210\text{,}353\text{,}977\text{,}170\text{,}323\text{,}456\text{,}000}, \\& b_{4} = \frac {1\text{,}822\text{,}684\text{,}110\text{,}010\text{,}671\text{,}047\text{,}977\text{,}349\text{,}196\text{,}992\text{,}991\text{,}024\text{,}335\text{,}965\text{,}841\text{,}858\text{,}437\text{,}321}{20\text{,}032\text{,}921\text{,}513\text{,}052\text{,}669\text{,}270\text{,}728\text{,}868\text{,}029\text{,}537\text{,}506\text{,}689\text{,}994\text{,}593\text{,}078\text{,}476\text{,}800\text{,}000}. \end{aligned}$$