In this section, we are going to characterize the function space of an Integrable Mean Oscillation. Also, we will give some basic properties, which will be used frequently in the following sections.
Given \(r>0\) and any \(z\in \mathbb{C}\), we denote by \(D^{r}(z)=D(z,r\rho (z))\). According to [7], there exists a constant \(\beta >0\) only dependent on r and a doubling constant such that
$$\begin{aligned} \frac{1}{\beta}\rho (z)\leq \rho (w)\leq \beta \rho (z), \end{aligned}$$
(1)
for any \(w\in D^{r}(z)\). Also, there exists a \(m>0\) such that
$$ D^{mr}(w)\subset D^{r}(z),\quad \forall w\in D^{mr}(z). $$
The following is the collection of the properties about the reproducing kernel \(K_{\varphi}(\cdot , \cdot )\), which are referred to in [8, 9].
(1) For any \(z,w\in \mathbb{C}\), there are constants \(C>0\) and \(\varepsilon >0\) only depending on the doubling constant such that
$$\begin{aligned} \bigl\vert K_{\varphi}(z,w) \bigr\vert \leq C \frac{e^{\varphi (w)}e^{\varphi (z)}}{\rho (w)\rho (z)}e^{-( \frac{ \vert z-w \vert }{\rho (z)})^{\varepsilon}}; \end{aligned}$$
(2)
(2) There is a \(r_{0}>0\) such that, for any \(z\in \mathbb{C}\) and any \(w\in D^{r_{0}}(z)\),
$$\begin{aligned} \bigl\vert K_{\varphi}(z,w) \bigr\vert \simeq \frac{e^{\varphi (w)}e^{\varphi (z)}}{\rho (z)\rho (w)}; \end{aligned}$$
(3)
(3) For all \(0< p<\infty \), we have
$$ \bigl\Vert K_{\varphi}(\cdot ,z) \bigr\Vert _{F^{p}_{\varphi}}\simeq e^{\varphi (z)} \rho (z)^{\frac{2}{p}-2},\quad z\in \mathbb{C}. $$
Given some \(r>0\), we call a sequence \(\{a_{k}\}_{k=1}^{\infty}\) in \(\mathbb{C}\) an r-lattice if the balls \(\{D^{r}(a_{k})\}_{k=1}^{\infty}\) cover \(\mathbb{C}\) and \(\{D^{\frac{r}{5}}(a_{k})\}_{k=1}^{\infty}\) are pairwise disjoint. For any positive constant r, the existence of some r-lattice comes from a stand covering lemma, see [7] for more details. Also, given an r-lattice \(\{a_{k}\}_{k=1}^{\infty}\) and \(m>0\) there exists some integer N such that each \(z\in \mathbb{C}\) can be in at most N balls of \(\{D^{mr}(a_{k})\}_{k=1}^{\infty}\). Equivalently,
$$ 1\leq \sum_{k=1}^{\infty}\chi _{D^{mr}(a_{k})}(z)\leq N. $$
For any \(z,w\in \mathbb{C}\), we set the distance function as
$$ d_{\varphi}(z,w)=\inf_{\gamma} \int _{0}^{1} \frac{ \vert \gamma '(t) \vert }{\rho (\gamma (t))}\,dt, $$
where γ runs on the piecewise \(C^{1}\) curves \(\gamma :[0,1]\to \mathbb{C}\) with \(\gamma (0)=z\) and \(\gamma (1)=w\). The following lemma about the distance function was proven in Lemma 1 of [7].
Lemma 2.1
There exists a \(0< t<1\) such that, for each \(r>0\), there exists a constant \(C_{r}>0\) depending on r such that
$$ C_{r}^{-1}\frac{ \vert z-w \vert }{\rho (z)}\leq d_{\varphi}(z,w)\leq C_{r} \frac{ \vert z-w \vert }{\rho (z)},\quad w\in D^{r}(z) $$
and
$$ C_{r}^{-1} \biggl(\frac{ \vert z-w \vert }{\rho (z)} \biggr)^{t} \leq d_{\varphi}(z,w) \leq C_{r} \biggl(\frac{ \vert z-w \vert }{\rho (z)} \biggr)^{2-t},\quad w\in \mathbb{C}\setminus D^{r}(z). $$
As noted in [8], Lemma 2.1 infers that the estimate of reproducing kernel (2) is equivalent to
$$\begin{aligned} \bigl\vert K_{\varphi}(z,w) \bigr\vert \leq C \frac{e^{\varphi (w)}e^{\varphi (z)}}{\rho (w)\rho (z)}e^{-d_{\varphi}(z,w)^{ \varepsilon}}. \end{aligned}$$
(4)
Here, ε may be different from that in (2). Without no confusion caused, we will simultaneously use two estimates about the reproducing kernel in the coming context.
Next, we introduce the definition of an IMO space. For \(f\in L_{\mathrm{loc}}^{1}\) (the set of all Lebesgue functions f on \(\mathbb{C}\) with \(|f|\) integrable locally), the averaging function \(\widehat{f}_{r}\) is defined as
$$ \widehat{f}_{r}(z)=\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)}f(w)\,dA(w) \simeq \frac{1}{\rho ^{2}(z)} \int _{D^{r}(z)}f(w)\,dA(w). $$
Fix \(0< r<\infty \) and \(p\geq 1\), the pth mean oscillation of \(f\in L^{p}_{\mathrm{loc}}\) is defined as
$$ MO_{p,r}(f) (z)= \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)- \widehat{f}_{r}(z) \bigr\vert ^{p}\,dA(w) \biggr)^{\frac{1}{p}}. $$
For a continuous function f on \(\mathbb{C}^{n}\), let \(\omega _{r}(f)(z)=\sup \{|f(z)-f(w)|: w\in D^{r}(z)\}\) be the oscillation of f at point z. Similar to [5], we introduce some spaces of integrable mean oscillation functions. Let \(1\leq p,q<\infty \), \(1\leq s\leq \infty \), \(\gamma \in \mathbb{R}\) and \(r>0\). The space of continuous functions f on \(\mathbb{C}\) is denoted by \(IO^{s,\gamma}_{r}\) such that
$$ \Vert f \Vert _{IO^{s,\gamma}_{r}}= \biggl( \int _{\mathbb{C}}\rho (z)^{s\gamma} \bigl\vert \omega _{r}f(z) \bigr\vert ^{s}\,dA(z) \biggr)^{\frac{1}{s}}< \infty . $$
The space \(IA^{s,\gamma ,q}_{r}\) is the collection of functions \(f\in L^{q}_{\mathrm{loc}}\) with
$$ \Vert f \Vert _{IA^{s,\gamma ,q}_{r}}= \biggl( \int _{\mathbb{C}} \bigl[\rho (z)^{q \gamma}\widehat{\bigl( \vert f \vert ^{q}\bigr)}_{r}(z) \bigr]^{\frac{s}{q}}\,dA(z) \biggr)^{ \frac{1}{s}}< \infty . $$
We denote by \(\mathrm{IMO}_{r}^{s,\gamma ,q}\) the space of integrable mean oscillation f on \(\mathbb{C}^{n}\) such that
$$ \Vert f \Vert _{\mathrm{IMO}^{s,\gamma ,q}_{r}}= \biggl( \int _{\mathbb{C}}\rho (z)^{s \gamma} \bigl\vert MO_{q,r}f(z) \bigr\vert ^{s}\,dA(z) \biggr)^{\frac{1}{s}}< \infty . $$
Obviously, when \(s=\infty \), these spaces are similar to the well-known spaces introduced in [15]. Now, we list their definitions as follows:
$$\begin{aligned}& BO_{r}^{\gamma} = \Bigl\{ f\in C(\mathbb{C}): \Vert f \Vert _{BO^{\gamma}_{r}}= \sup_{z\in \mathbb{C}}\rho (z)^{\gamma}\omega _{r}f(z)< \infty \Bigr\} ; \\& BA_{r}^{\gamma ,q} = \Bigl\{ f\in L^{q}_{\mathrm{loc}}: \Vert f \Vert _{BA_{r}^{\gamma ,q}}= \sup_{z\in \mathbb{C}}\rho (z)^{\gamma}\widehat{\bigl( \vert f \vert ^{q} \bigr)}^{ \frac{1}{q}}_{r}(z)< \infty \Bigr\} ; \\& BMO_{r}^{\gamma ,q} = \Bigl\{ f\in L^{q}_{\mathrm{loc}}: \Vert f \Vert _{BMO_{r}^{ \gamma ,q}}=\sup _{z\in \mathbb{C}}\rho (z)^{\gamma}MO_{q,r}f(z)< \infty \Bigr\} . \end{aligned}$$
The vanishing spaces are shown, respectively, as follows:
$$\begin{aligned}& VO_{r}^{\gamma} = \Bigl\{ f\in BO_{r}^{\gamma}: \lim_{ \vert z \vert \to \infty} \rho (z)^{\gamma}\omega _{r}f(z)=0 \Bigr\} ; \\& VA_{r}^{\gamma ,q} = \Bigl\{ f\in BA_{r}^{\gamma ,q}: \lim_{ \vert z \vert \to \infty}\rho (z)^{\gamma}\widehat{\bigl( \vert f \vert ^{q}\bigr)}^{\frac{1}{q}}_{r}(z)=0 \Bigr\} ; \\& VMO_{r}^{\gamma ,q} = \Bigl\{ f\in BMO_{r}^{\gamma ,q}: \lim_{ \vert z \vert \to \infty}\rho (z)^{\gamma}MO_{q,r}f(z)=0 \Bigr\} . \end{aligned}$$
According to Chap. 3 in [15], we know the spaces \(BO^{0}_{r}\), \(BA^{0,q}_{r}\), \(BMO^{0,q}_{r}\), \(VO^{0}_{r}\), \(VA^{0,q}_{r}\), and \(VMO^{0,q}_{r}\) do not depend on r under the classical Fock space case. Fortunately, this situation can still be valid from the following considerations. We could not omit their details for the sake of completeness. Then, we will leave out the subscripts or denote like \(IO^{s,\gamma ,q}_{r}\) as \(IO^{s,\gamma ,q}\) for brevity.
Lemma 2.2
Suppose that \(1\leq q<\infty \), \(\gamma \in \mathbb{R}\) and \(1\leq s\leq \infty \). Then, for \(r,R>0\) and f Lebesgue measurable on \(\mathbb{C}\), \(f\in IO^{s,\gamma ,q}_{r}\) if and only if \(f\in IO^{s,\gamma ,q}_{R}\). Furthermore, \(\|f\|_{IO^{s,\gamma ,q}_{r}}\simeq \|f\|_{IO^{s,\gamma ,q}_{R}}\).
Proof
By the estimate (1) and the triangle inequality, there is a constant \(0<\delta <1\), such that \(D^{\delta}(z)\subset D(w)\) for any \(z\in \mathbb{C}\) and \(w\in D^{\delta}(z)\). Now, we fix this δ, and it suffices to obtain that \(\|f\|_{IO^{s,\gamma ,q}_{R\delta}}\lesssim \|f\|_{IO^{s,\gamma ,q}_{1}}\), where R is large enough satisfying \(R\delta >1\).
We chose that \(\{a_{k}\}_{k\geq 1}\) is a δ-lattice. According to the property of the lattice, for any \(R>1/\delta \), there exists a positive integral \(N_{R}\) only dependent on R such that \(D^{R\delta}(z)\) is covered by at most \(N_{R}\) disks \(\{D^{\delta}(a_{k_{z}})\}\) for any \(z\in \mathbb{C}\). That is
$$\begin{aligned} D^{R\delta}(z)\subset \bigcup_{k_{z}=1}^{N_{R}} D^{\delta}(a_{k_{z}}) \subset \bigcup_{k=1}^{\infty }D^{\delta}(a_{k}), \end{aligned}$$
where \(a_{k_{z}}\) is the lattice depending only on z. Therefore, we can see that
$$ \sup_{\xi \in D^{R\delta}(z)} \bigl\vert f(\xi )-f(z) \bigr\vert \lesssim \max_{1\leq k_{z} \leq N_{R}}\sup_{\xi \in D^{\delta}(a_{k_{z}})} \bigl\vert f(\xi )-f(z) \bigr\vert . $$
Subsequently, for a given z, there is some kth cover \(D^{\delta}(a_{k})\) such that \(z\in D^{\delta}(a_{k})\). Then, we denote that \(\xi _{j,j+1}\in D^{\delta}(a_{j})\cap D^{\delta}(a_{j+1})\), where \(a_{j}\), \(a_{j+1}\) are the two conterminous lattices satisfied that
$$ D^{\delta}(a_{j})\cap D^{\delta}(a_{j+1}) \neq \emptyset ,\quad \text{and}\quad D^{\frac{\delta}{5}}(a_{j})\cap D^{\frac{\delta}{5}}(a_{j+1})= \emptyset . $$
Obviously, if \(z,\xi \in D^{\delta}(a_{k})\),
$$ \bigl\vert f(\xi )-f(z) \bigr\vert \lesssim \omega _{\delta}(f) (a_{k}), $$
whereas, if \(z\in D^{\delta}(a_{k})\), \(\xi \in D^{\delta}(a_{j})\setminus D^{ \delta}(a_{k})\), \(j\neq k\), we know that
$$\begin{aligned} \bigl\vert f(\xi )-f(z) \bigr\vert \leq & \bigl\vert f(\xi )-f(a_{j}) \bigr\vert + \bigl\vert f(a_{j})-f(\xi _{j,j+1}) \bigr\vert \\ &{}+ \bigl\vert f(\xi _{j,j+1})-f(a_{j+1}) \bigr\vert + \cdots + \bigl\vert f(a_{k})-f(z) \bigr\vert . \end{aligned}$$
Note that the above summation is finite because the cover is not infinite. Taking the supremum, we find that
$$ \sup_{\xi \in D^{\delta}(a_{j})} \bigl\vert f(\xi )-f(z) \bigr\vert \lesssim \sum_{k_{z}=1}^{N_{R}} \sup_{\xi \in D^{\delta}(a_{k_{z}})} \bigl\vert f(\xi )-f(a_{k_{z}}) \bigr\vert =\sum _{k_{z}=1}^{N_{R}} \omega _{\delta}(f) (a_{k_{z}}). $$
Combining the estimate (1) and the definition of \(IO_{r}^{s,\gamma}\) spaces, we can see that
$$\begin{aligned}& \int _{\mathbb{C}}\rho (z)^{s\gamma} \bigl\vert \omega _{R\delta}(f) (z) \bigr\vert ^{s}\,dA(z) \\& \quad \lesssim \sum_{k=1}^{\infty} \int _{D^{\delta}(a_{k})}\rho (z)^{s \gamma} \bigl\vert \omega _{R\delta}(f) (z) \bigr\vert ^{s}\,dA(z) \\& \quad \lesssim \sum_{k=1}^{\infty}\sup _{z\in D^{\delta}(a_{k})}\rho (z)^{s \gamma} \bigl\vert \omega _{R\delta}(f) (z) \bigr\vert ^{s} \int _{D^{\delta}(a_{k})}\,dA(z) \\& \quad \lesssim \sum_{k=1}^{\infty}\sum _{k_{z}=1}^{N_{R}}\rho (a_{k_{z}})^{s \gamma} \bigl\vert \omega _{\delta}(f) (a_{k_{z}}) \bigr\vert ^{s} \int _{D^{\delta}(a_{k})}\,dA(z) \\& \quad \lesssim \sum_{k=1}^{\infty}\rho (a_{k})^{s\gamma} \bigl\vert \omega _{\delta}(f) (a_{k}) \bigr\vert ^{s} \int _{D^{\delta}(a_{k})}\,dA(z). \end{aligned}$$
On the other hand, it is known that \(D^{\delta}(a_{k})\subset D(z)\) for any \(z\in D^{\delta}(a_{k})\). Thus,
$$ \omega _{1} (f) (z)\gtrsim \bigl\vert f(a_{k})-f(z) \bigr\vert . $$
Furthermore,
$$ \omega _{1} (f) (z)\gtrsim \sup_{z\in D^{\delta}(a_{k})} \bigl\vert f(a_{k})-f(z) \bigr\vert = \omega _{\delta }(f) (a_{k}). $$
Together with the property of the lattice we find,
$$\begin{aligned}& \int _{\mathbb{C}}\rho (z)^{s\gamma} \bigl\vert \omega _{1}(f) (z) \bigr\vert ^{s}\,dA(z) \\& \quad \gtrsim \sum_{k=1}^{\infty} \int _{D^{\delta}(a_{k})}\rho (z)^{s \gamma} \bigl\vert \omega _{1}(f) (z) \bigr\vert ^{s}\,dA(z) \\& \quad \gtrsim \sum_{k=1}^{\infty}\rho (a_{k})^{s\gamma} \bigl\vert \omega _{\delta}(f) (a_{k}) \bigr\vert ^{s} \int _{D^{\delta}(a_{k})}\,dA(z). \end{aligned}$$
Now, we can obtain that
$$ \int _{\mathbb{C}}\rho (z)^{s\gamma} \bigl\vert \omega _{R\delta}(f) (z) \bigr\vert ^{s}\,dA(z) \lesssim \int _{\mathbb{C}}\rho (z)^{s\gamma} \bigl\vert \omega _{1}(f) (z) \bigr\vert ^{s}\,dA(z), $$
for any \(R\delta >1\) and the proof is completed. □
Lemma 2.3
A continuous function f on \(\mathbb{C}^{n}\) belongs to \(BO^{\gamma}_{r}\) if and only if
$$ \rho (z)^{\gamma} \bigl\vert f(w)-f(z) \bigr\vert \lesssim \bigl(1+d_{\varphi}(z,w)\bigr)^{1+ \vert \gamma \vert }, $$
for any \(z,w\in \mathbb{C}\).
Proof
In view of Lemma 2.1, \(w\in \overline{D^{r}(z)}\) is equivalent to \(d_{\varphi}(z,w)\leq M_{r}\), where \(M_{r}>0\) is a constant only depending on r. Suppose that \(\lambda (t)\) (\(t\in [0,1]\)) is the geodesic in the Bergman metric from z to w when \(d_{\varphi}(z,w)>M_{r}\). If choosing
$$ n= \biggl[\frac{d_{\varphi}(z,w)}{M_{r}} \biggr]+1, $$
where \([x]\) (\(x\in \mathbb{R}\)) refers to a rounding function, we know that, by the estimate (2.6) in [3], there exist finite points \(t_{i}\in [0,1]\) such that
$$ d_{\varphi}\bigl(\lambda (t_{i-1}),\lambda (t_{i}) \bigr)= \frac{d_{\varphi}(z,w)}{n}\leq M_{r},\quad i=1,2,\dots , n. $$
Together with the above case of \(w\in \overline{D^{r}(z)}\), we can, therefore, see that
$$ \bigl\vert f(w)-f(z) \bigr\vert \lesssim \sum_{i=1}^{n} \bigl\vert f\bigl(\lambda (t_{i})\bigr)-f\bigl(\lambda (t_{i-1})\bigr) \bigr\vert \lesssim \sum _{i=1}^{n}\rho \bigl(\lambda (t_{i-1}) \bigr)^{-\gamma}. $$
Subsequently, we will claim that
$$ \biggl(\frac{\rho (w)}{\rho (z)} \biggr)^{\alpha}\lesssim \bigl(1+d_{ \varphi}(z,w) \bigr)^{|\alpha |}, $$
for any \(z,w\in \mathbb{C}\) and \(\alpha \in \mathbb{R}\). To this end, without loss of generality, we only discuss the case of \(\alpha <0\). By Lemma 3.3 in [2] and Lemma 2.1, there is a constant \(0<\delta <1\) only depending on a doubling constant such that
$$\begin{aligned} \biggl(\frac{\rho (z)}{\rho (w)} \biggr)^{-\alpha} \lesssim \biggl( \frac{ \vert z-w \vert }{\rho (w)} \biggr)^{-\delta \alpha} \lesssim \bigl(1+d_{ \varphi}(z,w) \bigr)^{ \vert \alpha \vert }. \end{aligned}$$
Therefore, we continue calculating that
$$\begin{aligned} \rho \bigl(\lambda (t_{i-1})\bigr)^{-\gamma} \lesssim &\rho (z)^{-\gamma}\bigl(1+d_{ \varphi}\bigl(z,\lambda (t_{i-1}) \bigr)\bigr)^{|\gamma |} \\ \lesssim &\rho (z)^{-\gamma}\bigl(1+d_{\varphi}(z,w) \bigr)^{1+|\gamma |}. \end{aligned}$$
Now the proof is completed, because the sufficiency is obvious. □
Lemma 2.4
Suppose that \(1\leq q<\infty \), \(\gamma \in \mathbb{R}\), \(r>0\), and \(1\leq s\leq \infty \). Then, \(f\in \mathrm{IMO}_{r}^{s,\gamma ,q}\) if and only if f admits a decomposition \(f=f_{1}+f_{2}\), where \(f_{1}\in IO^{s,\gamma}_{r}\) and \(f_{2}\in IA^{s,\gamma ,q}_{r}\). Furthermore,
$$ \Vert f \Vert _{\mathrm{IMO}_{r}^{s,\gamma ,q}}=\inf \bigl\{ \Vert f_{1} \Vert _{IO^{s,\gamma}_{r}}+ \Vert f \Vert _{IA^{s,\gamma ,q}_{r}}:f_{1}+f_{2}, f_{1}\in IO^{s,\gamma}_{r}, f_{2} \in IA^{s,\gamma ,q}_{r} \bigr\} . $$
Proof
If \(f\in \mathrm{IMO}^{s,\gamma ,q}_{r}\), we set \(f_{1}=\widehat{f}_{\frac{r}{2}}\) and \(f_{2}=f-f_{1}\). For any \(w\in D^{r}(z)\),
$$\begin{aligned} \bigl\vert f_{1}(w)-f_{1}(z) \bigr\vert \lesssim & \bigl\vert f_{1}(z)-\widehat{f}_{r}(z) \bigr\vert + \bigl\vert \widehat{f}_{r}(z)-f_{1}(w) \bigr\vert \\ \lesssim &\frac{1}{ \vert D^{\frac{r}{2}}(z) \vert } \int _{D^{\frac{r}{2}}(z)} \bigl\vert f(w)- \widehat{f}_{r}(z) \bigr\vert dA(w) \\ &{}+\frac{1}{ \vert D^{\frac{r}{2}}(w) \vert } \int _{D^{\frac{r}{2}}(w)} \bigl\vert f(u)- \widehat{f}_{r}(z) \bigr\vert dA(u). \end{aligned}$$
By the estimate (1), there is a constant \(\beta >0\) only depending on r and a doubling constant such that \(D^{\frac{r}{2}}(z)\subset D^{r\beta}(z)\) and \(D^{\frac{r}{2}}(w)\subset D^{r\beta}(z)\). By Hölder’s inequality,
$$\begin{aligned} \sup_{w\in D^{r}(z)} \bigl\vert f_{1}(w)-f_{1}(z) \bigr\vert ^{s} \lesssim \biggl( \frac{1}{ \vert D^{r\beta}(z) \vert } \int _{D^{r\beta}(z)} \bigl\vert f(w)-\widehat{f}_{r}(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{s}{q}}. \end{aligned}$$
This infers that \(\|f_{1}\|_{IO_{r}^{s,\gamma}}\lesssim \|f\|_{\mathrm{IMO}^{s,\gamma ,q}_{r \beta}}\).
Next, we consider the property of the function \(f_{2}\).
$$\begin{aligned}& \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{\frac{r}{2}}(z) \vert } \int _{D^{ \frac{r}{2}}(z)} \bigl\vert f_{2}(w) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}} \\& \quad \lesssim \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{\frac{r}{2}}(z) \vert } \int _{D^{\frac{r}{2}}(z)} \bigl\vert f(w)-f_{1}(z) \bigr\vert ^{q}\,dA(w) \biggr)^{ \frac{1}{q}} \\& \qquad {} +\rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{\frac{r}{2}}(z) \vert } \int _{D^{ \frac{r}{2}}(z)} \bigl\vert f_{1}(w)-f_{1}(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}} \\& \quad \lesssim \rho (z)^{\gamma}MO_{q,\frac{r}{2}}(f) (z)+\rho (z)^{\gamma} \omega _{\frac{r}{2}}(f_{1}) (z). \end{aligned}$$
Together with the property of function \(f_{1}\), we have \(\|f_{2}\|_{IA_{r}^{s,\gamma ,q}}\lesssim \|f\|_{\mathrm{IMO}^{s,\gamma ,q}_{ \frac{r}{2}}}\).
On the other hand, we show that \(f\in \mathrm{IMO}^{s,\gamma ,q}_{r}\) as soon as \(f\in IO_{r}^{s,\gamma}\) or \(f\in IA_{r}^{s,\gamma ,q}\),
$$\begin{aligned}& \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)- \widehat{f}_{r}(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}} \\& \quad \lesssim \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-f(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}}+\rho (z)^{\gamma} \bigl\vert f(z)-\widehat{f}_{r}(z) \bigr\vert . \end{aligned}$$
Therefore, \(f\in \mathrm{IMO}^{s,\gamma ,q}_{r}\) with \(\|f\|_{\mathrm{IMO}^{s,\gamma ,q}_{r}}\lesssim \|f_{1}\|_{IO^{s,\gamma}}\). Secondly, if \(f\in IA_{r}^{s,\gamma ,q}\),
$$\begin{aligned}& \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)- \widehat{f}_{r}(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}} \\& \quad \lesssim \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}}+\rho (z)^{\gamma} \bigl\vert \widehat{f}_{r}(z) \bigr\vert \\& \quad \lesssim \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}}. \end{aligned}$$
Therefore, \(f\in \mathrm{IMO}_{r}^{s,\gamma ,q}\) with \(\|f\|_{\mathrm{IMO}_{r}^{s,\gamma ,q}}\lesssim \|f_{2}\|_{IA_{r}^{s,\gamma}}\). □
The above tells us that the space \(\mathrm{IMO}^{s,\gamma ,q}_{r}\) is independent of r, so we will write \(\mathrm{IMO}^{s,\gamma ,q}\) for \(\mathrm{IMO}^{s,\gamma ,q}_{r}\).
Lemma 2.5
Let \(1\leq q<\infty \), \(1\leq s\leq \infty \), \(\gamma \in \mathbb{R}\) and \(r>0\). Then, for any \(f\in L^{p}_{\mathrm{loc}}\), there holds \(f\in \mathrm{IMO}^{s,\gamma ,q}\) if and only if there exists a continuous function \(c(z)\) on \(\mathbb{C}\) such that
$$ \int _{\mathbb{C}} \biggl(\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-c(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{s}{q}}\,dA(z)< \infty . $$
While \(f\in VMO^{\gamma ,q}\) if and only if there is a continuous function \(c(z)\) on \(\mathbb{C}\) satisfying
$$ \lim_{ \vert z \vert \to \infty}\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-c(z) \bigr\vert ^{q}\,dA(w)=0. $$
Proof
If \(f\in \mathrm{IMO}^{s,\gamma ,q}\), then the result holds with \(c(z)=\widehat{f}_{r}(z)\), which is continuous for \(z\in \mathbb{C}\). Conversely, by Minkowski’s inequality and Hölder’s inequality,
$$\begin{aligned}& \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)- \widehat{f}_{r}(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}} \\& \quad \lesssim \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-c(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}}+\rho (z)^{\gamma} \bigl\vert \widehat{f}_{r}(z)-c(z) \bigr\vert \\& \quad \lesssim \rho (z)^{\gamma} \biggl(\frac{1}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-c(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}}. \end{aligned}$$
Therefore, \(f\in \mathrm{IMO}^{s,\gamma ,q}\). The last statement is similar and hence is omitted here. □
Lemma 2.6
Suppose that \(1\leq q<\infty \), \(\gamma \in \mathbb{R}\), \(r>0\) and \(1\leq s\leq \infty \). Then, for \(f\in L^{q}_{\mathrm{loc}}\), there exist \(h_{1},h_{2}\in H(D^{r}(z))\) satisfying
$$ \int _{\mathbb{C}} \biggl(\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-h_{1}(w) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{s}{q}}\,dA(z)< \infty , $$
and
$$ \int _{\mathbb{C}} \biggl(\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert \bar{f}(w)-h_{2}(w) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{s}{q}}\,dA(z)< \infty , $$
for any \(z\in \mathbb{C}^{n}\), then \(f\in \mathrm{IMO}^{s,\gamma ,q}\).
Proof
To start, we will claim that if \(v:D^{r}(z)\to \mathbb{R}\) is pluriharmonic, there exists a pluriharmonic function u such that \(u+iv\in H(D^{r}(z))\) and, moreover,
$$ \int _{D^{r}(z)} \bigl\vert u(w)-u(z) \bigr\vert ^{q}\,dA(w)\lesssim \int _{D^{r}(z)} \bigl\vert v(w) \bigr\vert ^{q}\,dA(w). $$
In fact, Lemma 22 in [7] implies that both \(u\circ \tau _{z}\) and \(v\circ \tau _{z}\) are still pluriharmonic, where \(\tau _{z}(w)=z+w\rho (z)\) is a translation for any \(z,w\in \mathbb{C}\). Applying Theorem 6 in [12] to \(u\circ \tau _{z}\) and \(v\circ \tau _{z}\), we can see that
$$ \int _{D(0,1)} \bigl\vert u\circ \tau _{z}(rw) \bigr\vert ^{q}\,dA(w)\lesssim \int _{D(0,1)} \bigl\vert v \circ \tau _{z}(rw) \bigr\vert ^{q}\,dA(w),\quad 0< r< 1. $$
Using the ideas in the proof of Lemma 4.1 in [10], we choose a large enough \(R>0\) satisfied \(s=\frac{r}{R}<1\) when \(r>1\), and denote by
$$ (u\circ \tau _{z})_{R}(w)=u\circ \tau _{z}(Rw)\quad \text{and}\quad (v \circ \tau _{z})_{R}(w)=v \circ \tau _{z}(Rw), $$
then we can obtain that
$$\begin{aligned} \int _{D(0,1)} \bigl\vert u\circ \tau _{z}(rw) \bigr\vert ^{q}\,dA(w) =& \int _{D(0,1)} \bigl\vert (u \circ \tau _{z})_{R}(sw) \bigr\vert ^{q}\,dA(w) \\ \lesssim & \int _{D(0,1)} \bigl\vert (v\circ \tau _{z})_{R}(sw) \bigr\vert ^{q}\,dA(w) \\ =& \int _{D(0,1)} \bigl\vert v\circ \tau _{z}(rw) \bigr\vert ^{q}\,dA(w). \end{aligned}$$
Therefore, for any \(r>0\), \(1\leq q<\infty \),
$$ \int _{D(0,r)} \bigl\vert u\circ \tau _{z}(w) \bigr\vert ^{q}\,dA(w)\lesssim \int _{D(0,r)} \bigl\vert v \circ \tau _{z}(w) \bigr\vert ^{q}\,dA(w). $$
Note the fact that \(dA(\tau _{z}(w))=\rho ^{2}(z)\,dA(w)\),
$$\begin{aligned} \int _{D^{r}(z)} \bigl\vert u(w) \bigr\vert ^{q}\,dA(w) =& \int _{D(0,r)} \bigl\vert (u\circ \tau _{z}) (w) \bigr\vert ^{q} \rho ^{2}(z)\,dA(w) \\ \lesssim & \int _{D(0,r)} \bigl\vert (v\circ \tau _{z}) (w) \bigr\vert ^{q}\rho ^{2}(z)\,dA(w) \\ =& \int _{D^{r}(z)} \bigl\vert v(w) \bigr\vert ^{q}\,dA(w). \end{aligned}$$
Our goal is obtained as soon as we apply the triangle inequality.
For conciseness, we denote a new symbol as
$$ \Vert f \Vert _{q,*}= \biggl(\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{1}{q}}. $$
In terms of the triangle inequality, for any \(f\in L^{q}_{\mathrm{loc}}\), we can see that
$$\begin{aligned}& \int _{\mathbb{C}} \biggl\Vert \frac{f(w)+\bar{f}(w)}{2}- \frac{h_{1}(w)+h_{2}(w)}{2} \biggr\Vert _{q,*}^{s}\,dA(z) \\& \quad \lesssim \int _{\mathbb{C}} \biggl\Vert \frac{f(w)-h_{1}(w)}{2} \biggr\Vert _{q,*}^{s}\,dA(z)+ \int _{\mathbb{C}} \biggl\Vert \frac{\bar{f}(w)-h_{2}(w)}{2} \biggr\Vert _{q,*}^{s}\,dA(z)< \infty . \end{aligned}$$
Since \(f+\bar{f}\) is real valued, we can obtain that
$$ \int _{\mathbb{C}} \biggl\Vert \operatorname{Im}\frac{h_{1}(w)+h_{2}(w)}{2} \biggr\Vert _{q,*}^{s}\,dA(z)< \infty . $$
It follows from the above that
$$ \int _{\mathbb{C}} \biggl\Vert \operatorname{Re}\frac{h_{1}(w)+h_{2}(w)}{2}- \operatorname{Re} \frac{h_{1}(z)+h_{2}(z)}{2} \biggr\Vert _{q,*}^{s}\,dv(z)< \infty . $$
Hence, we can achieve that
$$\begin{aligned}& \int _{\mathbb{C}} \biggl\Vert \frac{f(w)+\bar{f}(w)}{2}-\operatorname{Re} \frac{h_{1}(z)+h_{2}(z)}{2} \biggr\Vert _{q,*}^{s}\,dv(z) \\& \quad \lesssim \int _{\mathbb{C}^{n}} \biggl\Vert \frac{f(w)+\bar{f}(w)}{2}-\operatorname{Re} \frac{h_{1}(w)+h_{2}(w)}{2} \biggr\Vert _{q,*}^{s}\,dv(z) \\& \qquad {}+ \int _{\mathbb{C}} \biggl\Vert \operatorname{Re}\frac{h_{1}(w)+h_{2}(w)}{2}- \operatorname{Re} \frac{h_{1}(z)+h_{2}(z)}{2} \biggr\Vert _{q,*}^{s}\,dv(z) \\& \quad \lesssim \int _{\mathbb{C}^{n}} \biggl\Vert \frac{f(w)+\bar{f}(w)}{2}- \frac{h_{1}(w)+h_{2}(w)}{2}\biggr|_{q,*}^{s}\,dv(z) \\& \qquad {}+ \int _{\mathbb{C}} \biggl\Vert \operatorname{Re}\frac{h_{1}(w)+h_{2}(w)}{2}- \operatorname{Re} \frac{h_{1}(z)+h_{2}(z)}{2}\biggr\| _{q,*}^{s}\,dv(z). \end{aligned}$$
This implies that
$$ \int _{\mathbb{C}} \biggl\Vert \frac{f(w)+\bar{f}(w)}{2}-\operatorname{Re} \frac{h_{1}(z)+h_{2}(z)}{2} \biggr\Vert _{q,*}^{s}\,dv(z)< \infty . $$
At the same time, we use a similar procedure to produce
$$ \int _{\mathbb{C}} \biggl\Vert \operatorname{Im}\frac{f(w)+\bar{f}(w)}{2}- \operatorname{Im} \frac{h_{1}(z)+h_{2}(z)}{2} \biggr\Vert _{q,*}^{s}\,dv(z)< \infty . $$
If we choose that
$$ c(z)=\operatorname{Re}\frac{h_{1}(z)+h_{2}(z)}{2}+i\operatorname{Im}\frac{h_{1}(z)+h_{2}(z)}{2}, $$
then we find that
$$ \int _{\mathbb{C}} \biggl(\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)-c(z) \bigr\vert ^{q}\,dA(w) \biggr)^{\frac{s}{q}}\,dA(z)< \infty . $$
Finally, the desired result follows from Lemma 2.5. □
Lemma 2.7
A function \(f\in BMO^{\gamma ,q}\) belongs to \(VMO^{\gamma ,q}\) if and only if
$$ \lim_{R\to \infty} \Vert f_{R}-f \Vert _{BMO^{\gamma ,q}}=0, $$
where \(f_{R}(z)=f\circ \chi _{R}(z)\) for the characteristic function \(\chi _{R}(z)\) of \(D^{R}(0)\).
Proof
First, suppose that \(f\in VMO^{\gamma ,q}\). By the definition, for \(0< r< R\),
$$\begin{aligned}& \frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert (f_{R}-f) (w)- \widehat{(f_{R}-f)_{r}}(z) \bigr\vert ^{q}\,dA(w) \\& \quad \lesssim \frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f_{R}(w)- \widehat{(f_{R})_{r}}(z)+\widehat{f}_{r}(z)-f(w) \bigr\vert ^{q}\,dA(w). \end{aligned}$$
The result follows from the Lebesgue Dominated Convergence Theorem.
On the other hand, we know, in view of the triangle inequality, that
$$\begin{aligned}& \frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)- \widehat{f}_{r}(z) \bigr\vert ^{q}\,dA(w) \\& \quad \lesssim \frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert (f_{R}-f) (w)- \widehat{(f_{R}-f)_{r}}(z) \bigr\vert ^{q}\,dA(w) \\& \qquad {}+\frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f_{R}(w)- \widehat{(f_{R})_{r}}(z) \bigr\vert ^{q}\,dA(w). \end{aligned}$$
For any \(r>0\), \(\varepsilon >0\), we can choose some positive R such that \(\|f_{R}-f\|_{BMO^{\gamma ,q}_{r}}<\varepsilon \). Since \(f_{R}(z)=0\) for \(D^{r}(z)\subset D^{R}(0)^{c}\), it is clear that
$$ \frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f_{R}(w)- \widehat{(f_{R})_{r}}(z) \bigr\vert ^{q}\,dA(w)=0. $$
In the above assumption, we can see that
$$ \frac{\rho (z)^{q\gamma}}{ \vert D^{r}(z) \vert } \int _{D^{r}(z)} \bigl\vert f(w)- \widehat{f_{r}}(z) \bigr\vert ^{q}\,dA(w)< \varepsilon . $$
The proof is completed for ε that is arbitrary. □
Lemma 2.8
For any continuous function f on \(\mathbb{C}\), there holds
$$ \bigl\vert f(w)-f(z) \bigr\vert \lesssim \bigl(1+d_{\varphi}(z,w) \bigr)^{\frac{2-\delta}{\delta}} \int _{0}^{1}\omega _{1}(f)\circ \tau _{z}(t\xi )\,dt, $$
where \(0<\delta <1\), \(\tau _{z}(\eta )=z+\eta \rho (z)\) is a translation for any \(z,\eta \in \mathbb{C}\) and ξ is chosen to satisfy that \(w=\tau _{z}(\xi )\).
Proof
According to the Lemma 2.1 with the \(r=1\) case, we can choose a \(\xi \in \mathbb{C}\) such that \(w=\tau _{z}(\xi )\) for any \(z,w\in \mathbb{C}\). Moreover,
$$ \vert \xi \vert =\frac{ \vert z-w \vert }{\rho (z)}\leq \max \bigl\{ Cd_{\varphi}(z,w), \bigl(Cd_{ \varphi}(z,w)\bigr)^{\frac{1}{\delta}} \bigr\} . $$
When \(w\in \overline{D(z)}\), \(0< t<1\), we can see that
$$ \bigl\vert f(w)-f(z) \bigr\vert \leq \bigl\vert f(w)-f\circ \tau _{z}(t\xi ) \bigr\vert + \bigl\vert f\circ \tau _{z}(t \xi )-f(z) \bigr\vert \lesssim \omega _{1}(f) \circ \tau _{z}(t\xi ). $$
Integrating both sides with respect to t from 0 to 1,
$$ \bigl\vert f(w)-f(z) \bigr\vert \lesssim \int _{0}^{1}\omega _{1}(f)\circ \tau _{z}(t\xi )\,dt. $$
Now, for \(w\notin \overline{D(z)}\), suppose that C is a positive constant only dependent on a doubling constant and, at the same time, let
$$ N=\max \bigl\{ 1+ \bigl[C^{\frac{1}{\delta}}d_{\varphi}(z,w)^{ \frac{2-\delta}{\delta}} \bigr], \bigl[C^{\frac{1}{\delta}}+d_{ \varphi}(z,w)^{\frac{2-\delta}{\delta}} \bigr] \bigr\} , $$
where \([x]\) denotes the largest integer less than or equal to x. Subsequently, we place N points \(z_{0}=z, z_{1}, \ldots ,z_{N}=w\) from z to w on the geodesic in such a way that \(z_{j+1}\in D(z_{j})\), \(0\leq j\leq N-1\). We will claim that it is possible. To this end, if we set \(z_{j}=\tau _{z}(\frac{j}{N}\xi )\), then we have
$$ \frac{ \vert z_{j+1}-z_{j} \vert }{\rho (z_{j})}=\frac{ \vert \xi \vert }{N} \frac{\rho (z)}{\rho (z_{j})}. $$
Obviously, \(z_{1}\in D(z)\). Furthermore, we can induce that \(z_{2}\in D(z_{1})\). Combining Lemma 2 in [7] and Lemma 2.1, we can see that
$$ \frac{ \vert \xi \vert }{N}\frac{\rho (z)}{\rho (z_{j})}\leq \frac{ \vert \xi \vert }{N}C^{ \frac{1}{\delta}}d_{\varphi}(z,z_{j})^{\frac{1-\delta}{\delta}} \leq \frac{C^{\frac{2}{\delta}}}{N}d_{\varphi}(z,w)^{ \frac{2-\delta}{\delta}}< 1. $$
Therefore, we can achieve that
$$\begin{aligned} \bigl\vert f(w)-f(z) \bigr\vert \leq &\sum_{j=0}^{N-1} \biggl\vert f\circ \tau _{z} \biggl( \frac{j+1}{N}\xi \biggr)-f\circ \tau _{z} \biggl(\frac{j}{N}\xi \biggr) \biggr\vert \\ \lesssim &\sum_{j=0}^{N-1} \int _{0}^{1}\omega _{1}(f)\circ \tau _{z} \biggl(\frac{j+t}{N}\xi \biggr)\,dt \\ \lesssim &N\sum_{j=0}^{N-1} \int _{\frac{j}{N}}^{\frac{j+1}{N}} \omega _{1}(f)\circ \tau _{z}(t\xi )\,dt \\ \lesssim &\bigl(1+d_{\varphi}(z,w)\bigr)^{\frac{2-\delta}{\delta}} \int _{0}^{1} \omega _{1}(f)\circ \tau _{z}(t\xi )\,dt. \end{aligned}$$
Hence, we complete the proof. □