In this section, we consider a family of auxiliary parabolic problems
$$\begin{aligned} \textstyle\begin{cases} {L_{\varepsilon }}{u_{\varepsilon }} + \beta ({u_{\varepsilon }} - {u_{0}}) = 0,& (x,t) \in {Q_{T}}, \\ {u_{\varepsilon }}(x,t) = \varepsilon, & (x,t) \in { \Gamma _{T}}, \\ {u_{\varepsilon }}(x,0) = {u_{0}} + \varepsilon, & x \in \Omega, \end{cases}\displaystyle \end{aligned}$$
(3.1)
with
$$\begin{aligned} {L_{\varepsilon }} {u_{\varepsilon }} = {u_{\varepsilon }}_{t} - {u_{ \varepsilon }} \cdot {\mathrm{{div}}} \bigl(a({u_{\varepsilon }}){ \vert { \nabla {u_{\varepsilon }}} \vert ^{p(x) - 2}}\nabla {u_{ \varepsilon }} \bigr) - \gamma { \vert {\nabla {u_{\varepsilon }}} \vert ^{p(x,t)}} - f(x,t), \end{aligned}$$
(3.2)
\({\beta _{\varepsilon }}( \cdot )\) is the penalty function satisfying
$$\begin{aligned} \begin{aligned} &\varepsilon \in (0,1),\qquad{\beta _{\varepsilon }}( \cdot ) \in {C^{2}}({ \mathrm{{R}}}),\qquad{\beta _{\varepsilon }}(x) \le 0,\qquad{\beta _{\varepsilon }}(0) = - 1, \\ &{{\beta '}_{\varepsilon }}(0) \ge 0,\qquad{{\beta ''}_{\varepsilon }}(0) \ge 0,\qquad\mathop {\lim } _{x \to 0 + } \beta (x) = \textstyle\begin{cases} 0,&x > - 0, \\ - 1,&x = 0. \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(3.3)
With a similar method as in [8], we may prove that the regularized problem has a unique weak solution
$$\begin{aligned} {u_{\varepsilon }}(x,t) \in W({Q_{T}}) \cap {L^{2}}({Q_{T}}),\quad{ \partial _{t}} {u_{\varepsilon }}(x,t) \in W\prime ({Q_{T}}), \end{aligned}$$
satisfying the following integral identities
$$\begin{aligned} \begin{aligned} &\int _{{t_{1}}}^{{t_{2}}} { \int _{\Omega }{{u_{\varepsilon }} \cdot { \phi _{t}} - a({u_{\varepsilon }}){u_{\varepsilon }} {{ \vert { \nabla {u_{\varepsilon }}} \vert }^{p(x,t) - 2}}\nabla {u_{ \varepsilon }}\nabla \phi - \bigl(a({u_{\varepsilon }}) - \gamma \bigr){{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t)}}\phi {\,\mathrm{d}}x{\,\mathrm{d}}t} } \\ &\quad= \int _{{t_{1}}}^{{t_{2}}} { \int _{\Omega }{ \bigl( {{\beta _{ \varepsilon }}({u_{\varepsilon }} - {u_{0}}) - f(x,t)} \bigr)\phi { \,\mathrm{d}}x{\,\mathrm{d}}t} } + \int _{\Omega }{{u_{\varepsilon }}\phi {\,\mathrm{d}}x} \int _{{t_{1}}}^{{t_{2}}} {} \end{aligned} \end{aligned}$$
(3.4)
and
$$\begin{aligned} \begin{aligned} &\int _{{t_{1}}}^{{t_{2}}} { \int _{\Omega }{{u_{\varepsilon }}_{t} \cdot \phi + a({u_{\varepsilon }}){u_{\varepsilon }} {{ \vert { \nabla {u_{\varepsilon }}} \vert }^{p(x,t) - 2}}\nabla {u_{ \varepsilon }}\nabla \phi + \bigl(a({u_{\varepsilon }}) - \gamma \bigr){{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t)}}\phi {\,\mathrm{d}}x{\,\mathrm{d}}t} } \\ &\quad= \int _{{t_{1}}}^{{t_{2}}} { \int _{\Omega }{ \bigl( {f(x,t) - { \beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr)\phi { \,\mathrm{d}}x{\,\mathrm{d}}t} }. \end{aligned} \end{aligned}$$
(3.5)
We start with two preliminary results that will be used several times below.
Lemma 3.1
Let \(M(s) = { \vert s \vert ^{p(x,t) - 2}}s\), then \(\forall \xi,\eta \in {{\mathrm{{R}}}^{N}}\)
$$\begin{aligned} \begin{aligned} & \bigl( {M(\xi ) - M(\eta )} \bigr) \cdot (\xi - \eta ) \\ &\quad\ge \textstyle\begin{cases} {2^{ - p(x,t)}}{ \vert {\xi - \eta } \vert ^{p(x,t)}},& 2 \le p(x,t) < \infty, \\ (p(x,t) - 1){ \vert {\xi - \eta } \vert ^{2}}{ ( {{{ \vert \xi \vert }^{p(x,t)}} + {{ \vert \eta \vert }^{p(x,t)}}} )^{ \frac{{p(x,t) - 2}}{{p(x,t)}}}},& 1 \le p(x,t) < 2. \end{cases}\displaystyle \end{aligned} \end{aligned}$$
Proof
The proof can be found in [15]. □
Lemma 3.2
(Comparison principle)
Assume \(2 < \sigma < \frac{{2{p^{+} }}}{{{p^{+} } - 1}}\), \({p^{+} } \ge 2\), u and v are in \(W({Q_{T}}) \cap {L^{\infty }}(0,T;{L^{ \infty }}(\Omega ))\). If \({L_{\varepsilon }}u \ge {L_{\varepsilon }}v\) in \(Q_{T}\) and \(u(x,t) \le v(x,t)\) on \(\partial {Q_{T}}\), then \(u(x,t) \le v(x,t)\) in \(Q_{T}\).
Proof
We argue by contradiction. Suppose \(u(x,t)\) and \(v(x,t)\) satisfy \({L_{\varepsilon }}u \ge {L_{\varepsilon }}v \) in \({Q_{T}}\) and there is a \(\delta > 0\) such that for \(0 < \tau \le T\), \(w = u - v\) on the set
$$\begin{aligned} {\Omega _{\delta }} = \Omega \cap \bigl\{ {x:w(x,t) > \delta } \bigr\} \end{aligned}$$
and \(\mu ({\Omega _{\delta }}) > 0\). Let
$$\begin{aligned} {F_{\varepsilon }}(\xi ) = \textstyle\begin{cases} \frac{1}{{\alpha - 1}}{\varepsilon ^{1 - \alpha }} - \frac{1}{{\alpha - 1}}{\xi ^{1 - \alpha }} &\text{if }\xi > \varepsilon, \\ 0 &\text{if }\xi \le \varepsilon, \end{cases}\displaystyle \end{aligned}$$
(3.6)
where \(\delta > {\mathrm{{2}}}\varepsilon > 0\) and \(\alpha = \frac{\sigma }{2}\). Let a test function \(\xi = {F_{\varepsilon }}(w) \in Z\) in (3.4),
$$\begin{aligned} \begin{aligned} 0 \ge{}& \int { \int _{{Q_{T}}} {{w_{t}} {F_{\varepsilon }}(w) + a(v)v \bigl( { \bigl\vert \nabla u{|^{p(x,t) - 2}}\nabla u - \bigr\vert \nabla v{|^{p(x,t) - 2}} \nabla v} \bigr)\nabla {F_{\varepsilon }}(w){\,\mathrm{d}}x{\, \mathrm{d}}t} } \\ &{}+ \int { \int _{{Q_{T}}} {\bigl[a(u)u - a(v)v\bigr]|\nabla u{|^{p(x,t) - 2}}\nabla u\nabla {F_{\varepsilon }}(w){\,\mathrm{d}}x{\, \mathrm{d}}t} } \\ &{}+ \int { \int _{{Q_{T}}} {\bigl[a(u) - \gamma \bigr] \bigl\vert \nabla u{|^{p(x,t)}} - \bigl[a(v) - \gamma \bigr] \bigr\vert \nabla v{|^{p(x,t)}}} } \\ ={}& {J_{1}} + {J_{2}} + {J_{3}} + {J_{4}}, \end{aligned} \end{aligned}$$
(3.7)
where \({Q_{T,\varepsilon }} = \{ (x,t) \in {Q_{T}}|w > \varepsilon \} \),
$$\begin{aligned} &{J_{1}} = \int { \int _{{Q_{T}}} {{w_{t}} {F_{\varepsilon }}(w){\, \mathrm{d}}x{ \,\mathrm{d}}t} },\\ &{J_{2}} = \int { \int _{{Q_{T}}} {a(v)v \bigl( { \bigl\vert \nabla u{|^{p(x,t) - 2}} \nabla u - \bigr\vert \nabla v{|^{p(x,t) - 2}}\nabla v} \bigr)\nabla w{\,\mathrm{d}}x{ \,\mathrm{d}}t} },\\ &{J_{3}} = \int { \int _{{Q_{T}}} { \bigl[a(u)u - a(v)v \bigr]|\nabla u{|^{p(x,t) - 2}} \nabla u\nabla {F_{\varepsilon }}(w){\,\mathrm{d}}x{\, \mathrm{d}}t} },\\ &{J_{4}} = \int { \int _{{Q_{T}}} { \bigl[a(u) - \gamma \bigr] \bigl\vert \nabla u{|^{p(x,t)}} - \bigl[a(v) - \gamma \bigr] \bigr\vert \nabla v{|^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} }. \end{aligned}$$
Now, let \({t_{0}} = \inf \{ t \in (0,\tau ]:w > \varepsilon \}\), then we estimate \(J_{1}\) as follows
$$\begin{aligned} \begin{aligned} {J_{1}}& = \int { \int _{{Q_{T}}} {{w_{t}} {F_{\varepsilon }}(w){\, \mathrm{d}}x{ \,\mathrm{d}}t} } = \int _{\Omega }\biggl( \int _{0}^{{t_{0}}} {{w_{t}} {F_{ \varepsilon }}(w){\,\mathrm{d}}t} + \int _{0}^{{t_{0}}} {{w_{t}} {F_{ \varepsilon }}(w){\,\mathrm{d}}t}\biggr)\,\mathrm{d}x \\ &\ge \int _{\Omega }{ \int _{\varepsilon }^{w} {{F_{ \varepsilon }}({\mathrm{{s}}}){ \,\mathrm{d}}s} } {\,\mathrm{d}}x \ge \int _{{\Omega _{ \delta }}} { \int _{\varepsilon }^{w} {{F_{\varepsilon }}({\mathrm{{s}}}){ \,\mathrm{d}}s} } {\,\mathrm{d}}x. \end{aligned} \end{aligned}$$
(3.8)
Let us first consider the case \({p^{-} } \ge 2\). By virtue of the first inequality of Lemma 3.1, we obtain
$$\begin{aligned} \begin{aligned} {J_{2}} &= \int { \int _{{Q_{T}}} {a(v)v\bigl({{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u - {{ \vert {\nabla v} \vert }^{p(x,t) - 2}}\nabla v\bigr) \nabla w{\,\mathrm{d}}x{\,\mathrm{d}}t} } \\ &\ge \int { \int _{{Q_{T}}} {a(v)v \cdot {w^{ - \alpha }} {2^{ - p(x,t)}} {{ \vert {\nabla w} \vert }^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} } \\ &= {2^{ - {p^{+} }}} \int { \int _{{Q_{T}}} {a(v)v \cdot {w^{ - \alpha }} {{ \vert {\nabla w} \vert }^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} } > 0. \end{aligned} \end{aligned}$$
(3.9)
Noting that \(\frac{{p(x,t)}}{{p(x,t) - 1}} \ge \frac{{p + }}{{p + - 1}} \ge { \sigma ^{2}} = \alpha > 1\) and applying Young’s inequality, we may estimate the integrand of \(J_{3}\) in the following way
$$\begin{aligned} &\bigl\vert {\bigl[a(u)u - a(v)v \bigr]{w^{ - \alpha }} {{ \vert {\nabla w} \vert }^{p(x,t) - 2}}\nabla u \nabla w} \bigr\vert \\ \begin{aligned} &\quad= \biggl\vert { \biggl[ {(\delta + 1)w \int _{0}^{1} {{{\bigl(\theta u + (1 - \theta )v \bigr)}^{\sigma }}\,\mathrm{d}\theta } + {d_{0}}(u - v)} \biggr]{w^{ - \alpha }} {{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u \nabla w} \biggr\vert \\ &\quad\le \frac{C}{{{w^{\alpha }}}} \biggl[ {\frac{{a(v)v}}{C}{{ \vert { \nabla w} \vert }^{p(x,t)}} + {C_{1}}\bigl(\delta,{d_{0}},K,{p^{\pm }} \bigr){{ \vert w \vert }^{p'(x,t)}} {{ \vert {\nabla u} \vert }^{p(x,t)}}} \biggr] \end{aligned} \\ &\quad\le \frac{{a(v)v}}{{{2^{{p^{+} } - 1}}{w^{\alpha }}}}{ \vert { \nabla w} \vert ^{p(x,t)}} + {C_{1}}\bigl(\delta,{d_{0}},K,{p^{\pm }}\bigr){ \vert u \vert ^{p'(x,t)}}. \end{aligned}$$
(3.10)
Substituting (3.10) into \(J_{3}\) and combining it with \(J_{2}\), we obtain
$$\begin{aligned} {J_{3}} \le \frac{1}{2}{J_{2}} + C \int { \int _{{Q_{T}}} {{{ \vert { \nabla u} \vert }^{p(x,t) - 2}} {\, \mathrm{d}}x{\,\mathrm{d}}t} }. \end{aligned}$$
(3.11)
Recall that \(0 < \gamma \le {d_{0}}\), \(u \in W({Q_{T}}) \cap {L^{\infty }}(0,T; {L^{\infty }}( \Omega ))\). Then, we have
$$\begin{aligned} {J_{4}} \le \int { \int _{{Q_{T}}} {{u^{\sigma }}|\nabla u{|^{p(x,t)}} { \, \mathrm{d}}x{\,\mathrm{d}}t} } \le C \int { \int _{{Q_{T}}} {|\nabla u{|^{p(x,t)}} { \,\mathrm{d}}x{\, \mathrm{d}}t} }, \end{aligned}$$
(3.12)
where C is a positive constant. Thus, we insert the above estimates (3.8), (3.9), (3.11), and (3.12) into (3.7) and dropping the nonnegative terms, we arrive at
$$\begin{aligned} (\delta - 2\varepsilon ) \bigl(1 - {2^{1 - \alpha }} \bigr){\varepsilon ^{1 - \alpha }}\mu (\Omega ) < C. \end{aligned}$$
(3.13)
Secondly, we consider the case \(1 < {p^{-} } \le p(x,t) < 2, {p^{+} } \ge 2\). According to the second inequality of Lemma 3.1, it is easily seen that the following inequalities hold
$$\begin{aligned} \begin{aligned} & \bigl\vert {\bigl[a(u)u - a(v)v \bigr]{w^{ - \alpha }} {{ \vert {\nabla w} \vert }^{p(x,t) - 2}}\nabla u \nabla w} \bigr\vert \\ &\quad= \biggl\vert { \biggl[ {(\delta + 1)w \int _{0}^{1} {{{\bigl(\theta u + (1 - \theta )v \bigr)}^{\sigma }}\,\mathrm{d}\theta } + {d_{0}}(u - v)} \biggr]|w{|^{2 - \alpha }} {{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u \nabla w} \biggr\vert \\ &\quad\le \frac{{a(v)v({p^{ - 1}} - 1)}}{{2{w^{\alpha }}}}{\bigl( \vert { \nabla u} \vert + \vert {\nabla v} \vert \bigr)^{p(x,t)}} { \vert { \nabla {\mathrm{{w}}}} \vert ^{2}} + {C_{1}}\bigl(\delta,{d_{0}},K,{p^{\pm }} \bigr){ \vert w \vert ^{2 - \alpha }} {\bigl( \vert {\nabla u} \vert + \vert {\nabla v} \vert \bigr)^{p(x,t)}} \\ &\quad\le \frac{{a(v)v({p^{ - 1}} - 1)}}{{2{w^{\alpha }}}}{\bigl( \vert { \nabla u} \vert + \vert {\nabla v} \vert \bigr)^{p(x,t)}} { \vert { \nabla {\mathrm{{w}}}} \vert ^{2}} + {C_{1}}\bigl(\delta,{d_{0}},K,{p^{\pm }} \bigr){\bigl( \vert {\nabla u} \vert + \vert {\nabla v} \vert \bigr)^{p(x,t)}}. \end{aligned} \end{aligned}$$
Substituting the above inequality into \(J_{3}\), we obtain
$$\begin{aligned} {J_{3}} \le \frac{1}{2}{J_{2}} + C \int { \int _{{Q_{T}}} {{{ \bigl( \vert { \nabla u} \vert + \vert { \nabla v} \vert \bigr)}^{p(x,t) - 2}} {\,\mathrm{d}}x{ \,\mathrm{d}}t} }. \end{aligned}$$
(3.14)
Similar to the case \({p^{-} } \ge 2\), estimate (3.13) still holds using (3.14) instead of (3.11). Note that \(\mathop {{\mathrm{{lim}}}} _{ \varepsilon \to 0} (\delta - {\mathrm{{ 2}}}\varepsilon )({\mathrm{{1 }}} - {{\mathrm{{2}}}^{{\mathrm{{1}}} - \alpha }}){\varepsilon ^{{\mathrm{{1}}} - \alpha }}\mu ({\Omega _{\delta }}) = + \infty \), we obtain a contradiction. This means \(\mu ({\Omega _{\delta }}) = 0\) and \(w \le 0\) a.e. in \({{\mathrm{{Q}}}_{\tau }}\). □
Lemma 3.3
Let \({u_{\varepsilon }}\) be weak solutions of (3.1). Then,
$$\begin{aligned} &{u_{0\varepsilon }} \le {u_{\varepsilon }} \le { \vert {{u_{0}}} \vert _{\infty }} + \varepsilon, \end{aligned}$$
(3.15)
$$\begin{aligned} &{u_{{\varepsilon _{1}}}} \le {u_{{\varepsilon _{2}}}} \quad\textit{for } { \varepsilon _{1}} \le {\varepsilon _{2}}, \end{aligned}$$
(3.16)
where \(|{u_{0}}{|_{\infty }} = \mathop {\sup } _{x \in \Omega } |{u_{0}}(x)|\).
Proof
First, we prove \({u_{\varepsilon }} \ge {u_{0\varepsilon }}\) by contradiction. Assume \({u_{\varepsilon }} \le {u_{0\varepsilon }}\) in \(Q_{T}^{0}\), \(Q_{T}^{0} \subset Q_{T}\). Noting \({u_{\varepsilon }} \ge {u_{0\varepsilon }}\) on \(\partial {Q_{T}}\), we may assume that \({u_{\varepsilon }} = {u_{0\varepsilon }}\) on \(\partial {Q_{T}}\). With (3.1) and letting \(t = 0\), it is easy to see that
$$\begin{aligned} &L{u_{0,\varepsilon }} = - {\beta _{\varepsilon }}({u_{0,\varepsilon }} - {u_{0,\varepsilon }}) = 1, \end{aligned}$$
(3.17)
$$\begin{aligned} &L{u_{\varepsilon }} = - {\beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0, \varepsilon }}) \le 1. \end{aligned}$$
(3.18)
From Lemma 3.2, we arrive at
$$\begin{aligned} {u_{\varepsilon }}(x,t) \ge {u_{0,\varepsilon }}(x) \quad\text{for any } (x,t) \in {Q_{T}}. \end{aligned}$$
(3.19)
Therefore, we obtain a contradiction.
Secondly, we pay attention to \({u_{\varepsilon }}(t,x) \le { \vert {{u_{0}}} \vert _{\infty }} + \varepsilon \). Applying the definition of \({\beta _{\varepsilon }}( \cdot )\), we have that
$$\begin{aligned} L \bigl({ \vert {{u_{0}}} \vert _{\infty }} + \varepsilon \bigr) = 0,\qquad L{u_{ \varepsilon }} = - {\beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0, \varepsilon }}) \ge 0. \end{aligned}$$
(3.20)
From (3.20), we obtain
$$\begin{aligned} {u_{\varepsilon }}(t,x) \le { \vert {{u_{0}}} \vert _{\infty }} + \varepsilon \quad\text{on } \partial \Omega \times (0, \mathrm{T}) \end{aligned}$$
(3.21)
and \({u_{\varepsilon }}(t,x) \le { \vert {{u_{0}}} \vert _{\infty }} + \varepsilon \) in Ω. Thus, combining (3.20) and (3.21) and repeating Lemma 3.2, we have
$$\begin{aligned} {u_{\varepsilon }}(t,x) \le { \vert {{u_{0}}} \vert _{\infty }} + \varepsilon\quad \text{in } {Q_{T}}. \end{aligned}$$
(3.22)
Thirdly, we aim to prove (3.16). From (3.1),
$$\begin{aligned} &L{u_{{\varepsilon _{1}}}} = {\beta _{{\varepsilon _{1}}}}({u_{{ \varepsilon _{1}}}} - {u_{0,{\varepsilon _{1}}}}), \end{aligned}$$
(3.23)
$$\begin{aligned} &L{u_{{\varepsilon _{2}}}} = {\beta _{{\varepsilon _{2}}}}({u_{{ \varepsilon _{2}}}} - {u_{0,{\varepsilon _{2}}}}). \end{aligned}$$
(3.24)
It follows by \({\varepsilon _{1}} \le {\varepsilon _{2}}\) and the definition of \({\beta _{\varepsilon }}( \cdot )\) that
$$\begin{aligned} \begin{aligned} &L{u_{0,{\varepsilon _{2}}}} + {\beta _{{\varepsilon _{1}}}}({u_{{ \varepsilon _{2}}}} - {u_{0,\varepsilon }}) \\ &\quad= {\beta _{{\varepsilon _{2}}}}({u_{{\varepsilon _{2}}}} - {u_{0, \varepsilon }}) - {\beta _{{\varepsilon _{1}}}}({u_{{\varepsilon _{1}}}} - {u_{0,\varepsilon }}) \\ &\quad= {\beta _{{\varepsilon _{2}}}}({u_{{\varepsilon _{2}}}} - {u_{0, \varepsilon }}) - {\beta _{{\varepsilon _{1}}}}({u_{{\varepsilon _{2}}}} - {u_{0,\varepsilon }}) \ge 0. \end{aligned} \end{aligned}$$
(3.25)
Thus, combining the initial and boundary conditions in (3.1) can be proved by Lemma 3.2. □
To prove this theorem, we need the following lemmas.
Lemma 3.4
The solution of problem (3.1) satisfies the estimate
$$\begin{aligned} { \Vert {{u_{\varepsilon }}} \Vert _{\infty,{Q_{T}}}} \le { \Vert {{u_{0}}} \Vert _{\infty,\Omega }} + \int _{0}^{T} {{{ \bigl\Vert {f(x,t)} \bigr\Vert }_{\infty,\Omega }} {\,\mathrm{d}}t} + \vert \Omega \vert \cdot T = K(T) < \infty. \end{aligned}$$
Proof
Let us introduce the following function
$$\begin{aligned} {u_{\varepsilon,M}} = \textstyle\begin{cases} M & \text{if }{u_{\varepsilon }} > M, \\ {u_{\varepsilon }}& \text{if } \vert {{u_{\varepsilon }}} \vert < M, \\ - M & \text{if }{u_{\varepsilon }} < - M. \end{cases}\displaystyle \end{aligned}$$
(3.26)
The function \(u_{\varepsilon,M}^{2k - 1}\), with \(k \in N\), can be chosen as a test function in (3.4). Let \({t_{2} } = t + h,{t_{1}} = t\) in (3.4), with \(t,t + h \in ( 0, T ) \). Then,
$$\begin{aligned} \begin{aligned} &\frac{1}{{2k}} \int _{t}^{t + h} {\frac{{\mathrm{d}}}{{{\mathrm{d}}t}} \biggl( { \int _{\Omega }{u_{\varepsilon,M}^{2k}{\,\mathrm{d}}x} } \biggr)} {\,\mathrm{d}}t \\ &\qquad{}+ (2k - 1) \int _{t}^{t + h} { \int _{\Omega }{{a_{\varepsilon,M}}({u_{ \varepsilon,M}})u_{\varepsilon,M}^{2(k - 1)}{{ \vert {\nabla {u_{ \varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x{\, \mathrm{d}}t} } \\ &\qquad{}+ \int _{t}^{t + h} { \int _{\Omega }{\bigl[{a_{\varepsilon,M}}({u_{ \varepsilon,M}}) - \gamma \bigr] \cdot u_{\varepsilon,M}^{2k - 1}{{ \vert {\nabla {u_{\varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x{ \,\mathrm{d}}t} } \\ &\quad= \int _{t}^{t + h} { \int _{\Omega }{ \bigl( {f(x,t) - {\beta _{ \varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr) \cdot u_{ \varepsilon,M}^{2k - 1}{\, \mathrm{d}}x{\,\mathrm{d}}t} }. \end{aligned} \end{aligned}$$
(3.27)
Dividing the last equality by h, letting \(h \to 0\), and applying Lebesgue’s dominated convergence theorem, we have that
$$\begin{aligned} \begin{aligned} &\frac{1}{{2k}}\frac{{\mathrm{d}}}{{{\mathrm{d}}t}} \int _{\Omega }{u_{ \varepsilon,M}^{2k}{\,\mathrm{d}}x} + (2k - 1) \int _{\Omega }{{a_{ \varepsilon,M}}({u_{\varepsilon,M}})u_{\varepsilon,M}^{2(k - 1)}{{ \vert {\nabla {u_{\varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x} \\ &\qquad{}+ \int _{\Omega }{\bigl[{a_{\varepsilon,M}}({u_{\varepsilon,M}}) - \gamma \bigr] \cdot u_{\varepsilon,M}^{2k - 1}{{ \vert {\nabla {u_{ \varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} \\ &\qquad{}+ \int _{\Omega }{\bigl[{a_{\varepsilon,M}}({u_{\varepsilon,M}}) - \gamma \bigr]u_{\varepsilon,M}^{2k}{{ \vert {\nabla {u_{\varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x} \\ &\quad= \int _{\Omega }{ \bigl( {f(x,t) - {\beta _{\varepsilon }}({u_{ \varepsilon }} - {u_{0}})} \bigr) \cdot u_{\varepsilon,M}^{2k - 1}{ \, \mathrm{d}}x}. \end{aligned} \end{aligned}$$
(3.28)
By Holder’s inequality, we have
$$\begin{aligned} \biggl\vert { \int _{\Omega }{ \bigl( {f(x,t) - {\beta _{\varepsilon }}({u_{ \varepsilon }} - {u_{0}})} \bigr) \cdot u_{\varepsilon,M}^{2k - 1}{ \, \mathrm{d}}x} } \biggr\vert \le \bigl\Vert {u_{\varepsilon,M}} \bigr\Vert _{2k, \Omega }^{2k - 1} \cdot \bigl\Vert {f( \cdot,t) - { \beta _{ \varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr\Vert _{2k,\Omega }. \end{aligned}$$
(3.29)
Using Minkowski’s inequality, we arrive at
$$\begin{aligned} \bigl\Vert {f( \cdot,t) - {\beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr\Vert _{2k,\Omega } \le \bigl\Vert {f( \cdot,t)} \bigr\Vert _{2k, \Omega } + \bigl\Vert {{\beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr\Vert _{2k,\Omega }. \end{aligned}$$
From (3.15) and the definition of \({\beta _{\varepsilon }}( \cdot )\), we have that
$$\begin{aligned} \bigl\Vert {f( \cdot,t) - {\beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr\Vert _{2k,\Omega } \le \bigl\Vert {f( \cdot,t)} \bigr\Vert _{2k, \Omega } + \vert \Omega \vert . \end{aligned}$$
(3.30)
Recall that \(0 < \gamma < {d_{0}}\). Then, we use Lemma 3.1 to find
$$\begin{aligned} \int _{\Omega }{ \bigl[{a_{\varepsilon,M}}({u_{\varepsilon,M}}) - \gamma \bigr] \cdot u_{\varepsilon,M}^{2k - 1}{{ \vert {\nabla {u_{\varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} \ge 0. \end{aligned}$$
(3.31)
Substituting (3.29) and (3.30) into (3.28), we arrive at the inequality
$$\begin{aligned} \begin{aligned} &\bigl\Vert {u_{\varepsilon,M}} \bigr\Vert _{2k,\Omega }^{2k - 1} \frac{{\mathrm{d}}}{{{\mathrm{d}}t}} \bigl\Vert {u_{\varepsilon,M}} \bigr\Vert _{2k,\Omega } + (2k - 1) \int _{\Omega }{{a_{\varepsilon,M}}({u_{ \varepsilon,M}})u_{\varepsilon,M}^{2(k - 1)}{{ \vert {\nabla {u_{ \varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x} \\ &\qquad{}+ \int _{\Omega }{\bigl[{a_{\varepsilon,M}}({u_{\varepsilon,M}}) - \gamma \bigr] \cdot u_{\varepsilon,M}^{2k - 1}{{ \vert {\nabla {u_{ \varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x} \\ &\quad\le \bigl\Vert {u_{\varepsilon,M}} \bigr\Vert _{2k,\Omega }^{2k - 1} \cdot \bigl\Vert {f( \cdot,t)} \bigr\Vert _{2k,\Omega } + \bigl\Vert {u_{ \varepsilon,M}} \bigr\Vert _{2k,\Omega }^{2k - 1} \cdot \vert \Omega \vert . \end{aligned} \end{aligned}$$
(3.32)
Integrating over \((0, t)\) in (3.32) and dropping the nonnegative term (3.31), we arrive at
$$\begin{aligned} \bigl\Vert {u_{\varepsilon,M}} \bigr\Vert _{2k,\Omega } \le \bigl\Vert {u_{\varepsilon,M}( \cdot,0)} \bigr\Vert _{2k,\Omega } + \int _{0}^{T} { \bigl\Vert {f( \cdot,t)} \bigr\Vert _{2k,\Omega }{\,\mathrm{d}}t} + \vert \Omega \vert \cdot T,\quad\forall k \in N. \end{aligned}$$
Then, as \(k \to \infty \), we have that
$$\begin{aligned} \Vert {u_{\varepsilon,M}} \Vert _{\infty,\Omega } \le \bigl\Vert {u_{\varepsilon,M}( \cdot,0)} \bigr\Vert _{\infty,\Omega } + \int _{0}^{T} { \bigl\Vert {f( \cdot,t)} \bigr\Vert _{\infty,\Omega }{ \,\mathrm{d}}t} + \vert \Omega \vert \cdot T = K(T). \end{aligned}$$
(3.33)
If we choose \(M > K(T)\), then
$$\begin{aligned} {u_{\varepsilon,M}}( \cdot,t) \le \sup \bigl\vert {{u_{\varepsilon,M}}( \cdot,t)} \bigr\vert \le K ( T ) < M \end{aligned}$$
and therefore \({u_{\varepsilon,M}}( \cdot,t) = {u_{\varepsilon }}( \cdot,t)\). □
Lemma 3.5
The solution of problem (3.1) satisfies the estimates
$$\begin{aligned} &\int { \int _{{Q_{T}}} {a \bigl(u_{\varepsilon } \bigr){{ \bigl\vert {\nabla u_{ \varepsilon }} \bigr\vert }^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} } \le K(T){ \vert \Omega \vert ^{\frac{1}{2}}}, \end{aligned}$$
(3.34)
$$\begin{aligned} &{d_{0}} \int { \int _{{Q_{T}}} {{{ \bigl\vert {\nabla u_{\varepsilon }} \bigr\vert }^{p(x,t)}} {\,\mathrm{d}}x{\,\mathrm{d}}t} } \le K(T){ \vert \Omega \vert ^{\frac{1}{2}}}, \end{aligned}$$
(3.35)
$$\begin{aligned} &\int { \int _{{Q_{T}}} {u_{\varepsilon }^{\sigma }{{ \bigl\vert { \nabla u_{ \varepsilon }} \bigr\vert }^{p(x,t)}} {\, \mathrm{d}}x{\,\mathrm{d}}t} } \le K(T){ \vert \Omega \vert ^{\frac{1}{2}}}. \end{aligned}$$
(3.36)
Proof
To prove Lemma 3.5, we proceed as in the proof of Lemma 3.4, and in (3.27) we take \(k=1\). We then obtain
$$\begin{aligned} \begin{aligned} &\frac{{\mathrm{d}}}{{{\mathrm{d}}t}}\bigl( \bigl\Vert {u_{\varepsilon }( \cdot ,t)} \bigr\Vert _{2,\Omega } \bigr) + \int _{\Omega }{{a_{\varepsilon,M}}({u_{ \varepsilon }}){{ \bigl\vert {\nabla u_{\varepsilon }} \bigr\vert }^{p(x,t)}} { \,\mathrm{d}}x} \\ &\qquad{}+ \int _{\Omega }{\bigl[{a_{\varepsilon,M}}({u_{\varepsilon,M}}) - \gamma \bigr] \cdot u_{\varepsilon,M}^{2k - 1}{{ \vert {\nabla {u_{ \varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x} \\ &\quad\le \bigl\Vert {f - {\beta _{\varepsilon }}({u_{\varepsilon }} - {u_{0}})} \bigr\Vert _{2,\Omega }. \end{aligned} \end{aligned}$$
Therefore, integrating in time over \((0,t)\), \(\forall t \in (0,T)\),
$$\begin{aligned} \begin{aligned} & \bigl\Vert {u_{\varepsilon }( \cdot,t)} \bigr\Vert _{2,\Omega } + \int _{0}^{t} { \int _{\Omega }{{a_{\varepsilon,M}}({u_{ \varepsilon }}){{ \vert { \nabla u_{\varepsilon }} \vert }^{p(x,t)}} { \,\mathrm{d}}x{\,\mathrm{d}}t} } \\ &\qquad{}+ \int _{\Omega }{\bigl[{a_{\varepsilon,M}}({u_{\varepsilon,M}}) - \gamma \bigr] \cdot u_{\varepsilon,M}^{2k - 1}{{ \vert {\nabla {u_{ \varepsilon,M}}} \vert }^{p(x,t)}} {\,\mathrm{d}}x} \\ &\quad\le \int _{0}^{T} { \bigl\Vert {f - {\beta _{\varepsilon }}({u_{ \varepsilon }} - {u_{0}})} \bigr\Vert _{2,\Omega }{\,\mathrm{d}}t} \end{aligned} \end{aligned}$$
and since the first and third terms on the left-hand side are nonnegative and recalling the L2-norm
$$\begin{aligned} \int { \int _{{Q_{T}}} {a({u_{\varepsilon }}){{ \bigl\vert {\nabla u_{ \varepsilon }} \bigr\vert }^{p(x,t)}} {\,\mathrm{d}}x{\, \mathrm{d}}t} } \le K(T){ \vert \Omega \vert ^{\frac{1}{2}}}. \end{aligned}$$
(3.37)
From this we obtain (3.34). Since \(a({u_{\varepsilon }}) \ge {d_{0}}\), \({a_{\varepsilon,M}}({u_{ \varepsilon }}) \ge u_{\varepsilon }^{\sigma }\), (3.35), and (3.35) are immediate consequences of (3.34). □
Lemma 3.6
The solution of problem (3.1) satisfies the estimate
$$\begin{aligned} \bigl\Vert {u_{\varepsilon t}} \bigr\Vert _{W'({Q_{T}})} \le C \bigl( \sigma,{p^{\pm }},K(T), \vert \Omega \vert \bigr). \end{aligned}$$
Proof
From identity (3.5), we obtain
$$\begin{aligned} \begin{aligned} &\int { \int _{{Q_{T}}} {u_{\varepsilon t}\xi {\,\mathrm{d}}x{ \,\mathrm{d}}t} } \\ &\quad= - \int { \int _{{Q_{T}}} {a({u_{\varepsilon }}){{ \vert {\nabla {u_{ \varepsilon }}} \vert }^{p(x,t) - 2}}\nabla {u_{\varepsilon }} \nabla \xi {\,\mathrm{d}}x{\,\mathrm{d}}t} } \\ &\qquad{}- \int { \int _{{Q_{T}}} {\bigl[a({u_{\varepsilon }}) - \gamma \bigr]{{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t)}}\xi { \,\mathrm{d}}x{ \,\mathrm{d}}t} } + \int { \int _{{Q_{T}}} {f \cdot \xi {\,\mathrm{d}}x{ \,\mathrm{d}}t} } \\ &\quad= - {A_{1}} - {A_{1}} + {A_{1}}, \end{aligned} \end{aligned}$$
(3.38)
where
$$\begin{aligned} &{A_{1}} = \int { \int _{{Q_{T}}} {a({u_{\varepsilon }}){{ \vert { \nabla {u_{\varepsilon }}} \vert }^{p(x,t) - 2}}\nabla {u_{ \varepsilon }}\nabla \xi { \,\mathrm{d}}x{\,\mathrm{d}}t} },\\ &{A_{2}} = \int { \int _{{Q_{T}}} { \bigl[a({u_{\varepsilon }}) - \gamma \bigr]{{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t)}}\xi {\,\mathrm{d}}x{ \,\mathrm{d}}t} },\qquad {A_{3}} = \int { \int _{{Q_{T}}} {f \cdot \xi {\,\mathrm{d}}x{ \,\mathrm{d}}t} }. \end{aligned}$$
First, we pay attention to \(A_{1}\). Using Holder inequalities we obtain
$$\begin{aligned} \begin{aligned} \vert {{A_{1}}} \vert & \le \int _{0}^{t} { \int _{\Omega }{a({u_{ \varepsilon }}){{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t) - 1}} \vert {\nabla \xi } \vert {\, \mathrm{d}}x{\,\mathrm{d}}t} } \\ &\le 2{ \bigl\Vert {a({u_{\varepsilon }}){{ \vert {\nabla {u_{ \varepsilon }}} \vert }^{p(x,t) - 1}}} \bigr\Vert _{p'(x,t)}} { \Vert {\nabla \xi } \Vert _{p(x,t)}}. \end{aligned} \end{aligned}$$
When \(\int _{0}^{t} {\int _{\Omega }{{{ ( {a({u_{\varepsilon }}){{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t) - 1}}} )}^{ \frac{{p(x,t)}}{{p(x,t) - 1}}}}{\,\mathrm{d}}x{\,\mathrm{d}}t} } \ge 1\), we arrive at
$$\begin{aligned} \vert {{A_{1}}} \vert \le 2{ \biggl( { \int _{0}^{t} { \int _{ \Omega }{{{ \bigl( {a({u_{\varepsilon }}){{ \vert {\nabla {u_{ \varepsilon }}} \vert }^{p(x,t) - 1}}} \bigr)}^{ \frac{{p(x,t)}}{{p(x,t) - 1}}}} {\, \mathrm{d}}x{\,\mathrm{d}}t} } } \biggr)^{ \frac{1}{{{{p'}^{+} }}}}} \cdot { \Vert {\nabla \xi } \Vert _{p(x,t)}}. \end{aligned}$$
(3.39)
Moreover, when \(\int _{0}^{t} {\int _{\Omega }{{{ ( {a({u_{\varepsilon }}){{ \vert {\nabla {u_{\varepsilon }}} \vert }^{p(x,t) - 1}}} )}^{ \frac{{p(x,t)}}{{p(x,t) - 1}}}}{\,\mathrm{d}}x{\,\mathrm{d}}t} } < 1\), we obtain
$$\begin{aligned} \vert {{A_{1}}} \vert \le 2{ \biggl( { \int _{0}^{t} { \int _{ \Omega }{{{ \bigl( {a({u_{\varepsilon }}){{ \vert {\nabla {u_{ \varepsilon }}} \vert }^{p(x,t) - 1}}} \bigr)}^{ \frac{{p(x,t)}}{{p(x,t) - 1}}}} {\, \mathrm{d}}x{\,\mathrm{d}}t} } } \biggr)^{ \frac{1}{{{{p'}^{-} }}}}} \cdot { \Vert {\nabla \xi } \Vert _{p(x,t)}}. \end{aligned}$$
(3.40)
Combining (3.39) and (3.40), and using Lemma 3.5, we arrive at
$$\begin{aligned} \vert {{A_{1}}} \vert \le { \bigl( {2 \bigl[{{ \bigl({K^{2}}(T) + 1 \bigr)}^{ \sigma /2}} + {d_{0}} \bigr]} \bigr)^{\frac{1}{{{p^{\pm }} - 1}}}} {K^{2}}(T) \vert \Omega \vert \cdot { \Vert \xi \Vert _{W({Q_{T}})}}. \end{aligned}$$
(3.41)
Secondly, we calculate \(A_{2}\) and \(A_{3}\). Following a similar procedure as (3.41), we obtain
$$\begin{aligned} &\begin{aligned} \vert {{A_{2}}} \vert \le{}& 2{\bigl[{\bigl({K^{2}}(T) + 1\bigr)^{\sigma /2}} + {d_{0}}\bigr]^{ \frac{1}{{{p^{\pm }} - 1}}}} {K^{2}}(T) \vert \Omega \vert \cdot { \Vert \xi \Vert _{W({Q_{T}})}} \\ &{}+ 2{\gamma ^{\frac{1}{{{p^{\pm }} - 1}}}} {K^{2}}(T) \vert \Omega \vert \cdot { \Vert \xi \Vert _{W({Q_{T}})}}, \end{aligned} \end{aligned}$$
(3.42)
$$\begin{aligned} &\vert {{A_{3}}} \vert \le 2{ \vert f \vert _{\infty }} \vert T \vert \cdot { \Vert \xi \Vert _{W({Q_{T}})}}. \end{aligned}$$
(3.43)
Substituting (3.41), (3.42), and (3.43) into (3.38), we conclude that
$$\begin{aligned} \begin{aligned} \int { \int _{{Q_{T}}} {u_{\varepsilon t}\xi {\,\mathrm{d}}x{ \,\mathrm{d}}t} } \le {}&4{\bigl[{\bigl({K^{2}}(T) + 1\bigr)^{\sigma /2}} + {d_{0}}\bigr]^{ \frac{1}{{{p^{\pm }} - 1}}}} {K^{2}}(T) \vert \Omega \vert \cdot { \Vert \xi \Vert _{W({Q_{T}})}} \\ &{}+ 2{\gamma ^{\frac{1}{{{p^{\pm }} - 1}}}} {K^{2}}(T) \vert \Omega \vert \cdot + 2{ \vert f \vert _{\infty }} \vert T \vert \cdot { \Vert \xi \Vert _{W({Q_{T}})}}. \end{aligned} \end{aligned}$$
Then, we obtain Lemma 3.6. □