Recall that \((H,\rho )\) denotes a Hadamard space, and D denotes a nonempty convex closed subset of H. We start by proving a multi-valued version of the result in Lemma 2.3.
Theorem 3.1
A multi-valued nonexpansive map \(T:D\to \mathcal{CB}(D)\) has demiclosedness-type property.
Proof
Let \(\{u_{n}\}\subset D\) such that
$$\begin{aligned}& \Delta \text{-}\lim_{n\to \infty}=u, \end{aligned}$$
(7)
$$\begin{aligned}& \lim_{n\to \infty}\operatorname{dist}(u_{n},Tu_{n})=0. \end{aligned}$$
(8)
Then by Lemma 2.1, \(u\in D\). Now let \(y\in Tu\). We show that \(y=u\). Assume, on the contrary, that \(y\neq u\). Then by uniqueness of asymptotic center, we have
$$ \limsup_{n\to \infty}\rho (u_{n}, u)< \limsup_{n\to \infty}\rho (u_{n}, y). $$
(9)
However,
$$\begin{aligned} \rho (u_{n},y)&\leq \rho (u_{n},z_{n})+ \rho (z_{n},y) \\ &\leq \rho (u_{n},z_{n})+\rho _{H} (Tu_{n},Tu ),\quad \text{for every } z_{n}\in Tu_{n}. \end{aligned}$$
This implies that
$$\begin{aligned} \rho (u_{n},y)&\leq \operatorname{dist}(u_{n},Tu_{n})+ \rho _{H} (Tu_{n},Tu ) \\ &\leq \operatorname{dist}(u_{n},Tu_{n})+\rho (u_{n},u ). \end{aligned}$$
By (8), we have
$$ \limsup_{n\to \infty}\rho (u_{n}, y)< \limsup _{n\to \infty}\rho (u_{n}, u)$$
that contradicts (9). □
Lemma 3.2
For any bounded sequence \(\{u_{n}\}\) in D, there exists a point u that is a Δ-limit of some subsequence \(\{u_{n_{j}}\}\) of \(\{u_{n}\}\) and
$$ \limsup_{n\to \infty} \langle \overrightarrow{u_{n}u}, \overrightarrow{yu}\rangle \leq 0,\quad \textit{for all }y \in H.$$
Proof
Let \(y, z\in H\). Since \(\{u_{n}\}\) is bounded, there exists a subsequence \(\{u_{n_{k}}\}\) of \(\{u_{n}\}\) such that
$$ \limsup_{n\to \infty} \langle \overrightarrow{u_{n}z}, \overrightarrow{yz}\rangle =\lim_{k\to \infty}\langle \overrightarrow{u_{n_{k}}z},\overrightarrow{yz}\rangle . $$
(10)
Also, by the boundedness of \(\{u_{n_{k}}\}\) and Lemma 2.2, there exists a subsequence \(\{u_{n_{j}}\}\) of \(\{u_{n_{k}}\}\) such that \(\{u_{n_{j}}\}\) Δ-converges to some point u and by Lemma 2.1, \(u\in D\). By Lemma 2.4 and (10), we have
$$\begin{aligned} \begin{aligned} \limsup_{n\to \infty} \langle \overrightarrow{u_{n}u}, \overrightarrow{yu}\rangle &=\lim _{k\to \infty}\langle \overrightarrow{u_{n_{k}}u}, \overrightarrow{yu}\rangle \\ &=\lim_{j\to \infty}\langle \overrightarrow{u_{n_{j}}u}, \overrightarrow{yu}\rangle \\ &=\limsup_{j\to \infty}\langle \overrightarrow{u_{n_{j}}u}, \overrightarrow{yu}\rangle \\ &\leq 0. \end{aligned} \end{aligned}$$
(11)
This completes the proof. □
We now consider countably infinite family of demicontractive mappings with common fixed point.
Lemma 3.3
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i\in \mathbb{N}\) be a family of multi-valued demicontractive mappings with constants \(\{ k_{i}\} \subset (0,1)\), \(\mathcal{F} := \bigcap_{i\in \mathbb{N}}F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Suppose that \(\{u_{n}\}\) is a sequence generated by
$$ \textstyle\begin{cases} v_{n}^{(0)}=(1-\alpha _{n})u_{n}\oplus \alpha _{n}u_{1}, \quad u_{1} \in D, \\ v_{n}^{(i)} = \beta _{n}^{(i)}v_{n}^{(i-1)} \oplus (1-\beta _{n}^{(i)})w_{n}^{(i-1)},\quad w_{n}^{(i-1)} \in T_{i} v_{n}^{(i-1)}, i = 1, \ldots , n-1, \\ u_{n+1} = \beta _{n}^{(n)}v_{n}^{(n-1)} \oplus (1-\beta _{n}^{(n)})w_{n}^{(n-1)}, \quad w_{n}^{(n-1)} \in T_{n} v_{n}^{(n-1)}, n\geq 1, \end{cases} $$
(12)
with \(\{\alpha _{n}\}\subset [0, 1]\), \(\{\beta _{n}^{(i)}\}\subset [k_{i},1]\) and \(\alpha _{n}\to 0\) as \(n\to \infty \). Then
-
(i)
\(\{u_{n}\}\) is bounded, and
-
(ii)
\(\limsup_{n\to \infty} (\rho (u_{n},p)^{2}-\rho (u_{n+1},p)^{2} )=0\), for all \(p\in \mathcal{F}\).
Proof
Let \(p\in \mathcal{F}\) and let \(n\in \mathbb{N}\). By Lemma 2.9, scheme (12), and the assumptions on \(T_{i}'s\), we have
$$\begin{aligned} \rho ^{2}\bigl(v_{n}^{(i)},p\bigr) &\leq \beta _{n}^{(i)}\rho ^{2} \bigl(v_{n}^{(i-1)},p \bigr) + \bigl(1-\beta _{n}^{(i)}\bigr)\rho ^{2} \bigl(w_{n}^{(i-1)},p \bigr) \\ & \quad{} - \beta _{n}^{(i)}\bigl(1-\beta _{n}^{(i)}\bigr)\rho ^{2} \bigl(v_{n}^{i-1},w_{n}^{(i-1)} \bigr) \\ & \leq \beta _{n}^{(i)}\rho ^{2} \bigl(v_{n}^{(i-1)},p\bigr) + \bigl(1-\beta _{n}^{(i)}\bigr) \operatorname{dist}^{2} \bigl(w_{n}^{(i-1)},T_{i} p\bigr) \\ & \quad{} - \beta _{n}^{(i)}\bigl(1-\beta _{n}^{(i)}\bigr)\rho ^{2} \bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \\ & \leq \beta _{n}^{(i)}\rho ^{2} \bigl(v_{n}^{(i-1)},p\bigr) + \bigl(1-\beta _{n}^{(i)}\bigr) \rho _{H}^{2} \bigl(T_{i} v_{n}^{(i-1)},T_{i} p \bigr) \\ & \quad{} - \beta _{n}^{(i)}\bigl(1-\beta _{n}^{(i)}\bigr)\rho ^{2} \bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \\ & \leq \beta _{n}^{(i)} \rho ^{2} \bigl(v_{n}^{(i-1)}, p\bigr) + \bigl(1-\beta _{n}^{(i)}\bigr) \bigl[\rho ^{2} \bigl(v_{n}^{(i-1)}, p\bigr) +k_{i} \rho ^{2}\bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \bigr] \\ & \quad{} -\beta _{n}^{(i)} \bigl(1-\beta _{n}^{(i)}\bigr) \rho ^{2} \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr) \\ & \leq \rho ^{2}\bigl(v_{n}^{(i-1)},p\bigr) + \bigl(1 - \beta _{n}^{(i)}\bigr) \bigl(k_{i} - \beta _{n}^{(i)}\bigr)\rho ^{2} \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr) \\ & = \rho ^{2}\bigl(v_{n}^{(i-1)},p\bigr) - \bigl(1 - \beta _{n}^{(i)}\bigr) \bigl(\beta _{n}^{(i)}-k_{i}\bigr) \rho ^{2} \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr), \end{aligned}$$
for each \(i\in \{1, \ldots , n-1\}\). Also,
$$\begin{aligned} \rho ^{2}(u_{n+1},p) &\leq \beta _{n}^{(n)} \rho ^{2}\bigl(v_{n}^{(n-1)},p\bigr) + \bigl(1- \beta _{n}^{(n)}\bigr)\rho ^{2} \bigl(w_{n}^{(n-1)},p\bigr) \\ & \quad{} - \beta _{n}^{(n)}\bigl(1-\beta _{n}^{(n)}\bigr)\rho ^{2} \bigl(v_{n}^{n-1},w_{n}^{(n-1)} \bigr) \\ & \leq \beta _{n}^{(n)}\rho ^{2} \bigl(v_{n}^{(n-1)},p\bigr) + \bigl(1-\beta _{n}^{(n)}\bigr) \operatorname{dist}^{2} \bigl(w_{n}^{(n-1)},T_{n} p\bigr) \\ & \quad{} - \beta _{n}^{(n)}\bigl(1-\beta _{n}^{(n)}\bigr)\rho ^{2} \bigl(v_{n}^{(n-1)},w_{n}^{(n-1)} \bigr) \\ & \leq \beta _{n}^{(n)}\rho ^{2} \bigl(v_{n}^{(n-1)},p\bigr) + \bigl(1-\beta _{n}^{(n)}\bigr) \rho _{H}^{2} \bigl(T_{n} v_{n}^{(n-1)},T_{n} p \bigr) \\ & \quad{} - \beta _{n}^{(n)}\bigl(1-\beta _{n}^{(n)}\bigr)\rho ^{2} \bigl(v_{n}^{(n-1)},w_{n}^{(n-1)} \bigr) \\ & \leq \beta _{n}^{(n)} \rho ^{2} \bigl(v_{n}^{(n-1)}, p\bigr) + \bigl(1-\beta _{n}^{(n)}\bigr) \bigl[\rho ^{2} \bigl(v_{n}^{(n-1)}, p\bigr) +k_{n} \rho ^{2}\bigl(v_{n}^{(n-1)},w_{n}^{(n-1)} \bigr) \bigr] \\ & \quad{} -\beta _{n}^{(n)} \bigl(1-\beta _{n}^{(n)}\bigr) \rho ^{2} \bigl(v_{n}^{(n-1)}, w_{n}^{(n-1)} \bigr) \\ & \leq \rho ^{2}\bigl(v_{n}^{(n-1)},p\bigr) + \bigl(1 - \beta _{n}^{(n)}\bigr) \bigl(k_{i} - \beta _{n}^{(n)}\bigr)\rho ^{2} \bigl(v_{n}^{(n-1)}, w_{n}^{(n-1)} \bigr) \\ & = \rho ^{2}\bigl(v_{n}^{(n-1)},p\bigr) - \bigl(1 - \beta _{n}^{(n)}\bigr) \bigl(\beta _{n}^{(n)}-k_{i}\bigr) \rho ^{2}\bigl(v_{n}^{(n-1)}, w_{n}^{(n-1)} \bigr) \\ &\leq \rho ^{2}\bigl(v_{n}^{(n-2)},p\bigr) - \bigl(1 - \beta _{n}^{(n-1)}\bigr) \bigl(\beta _{n}^{(n-1)} - k_{n-1}\bigr)\rho ^{2}\bigl(v_{n}^{(n-2)}, w_{n}^{(n-2)} \bigr) \\ & \quad{} - \bigl(1 - \beta _{n}^{(n)}\bigr) \bigl(\beta _{n}^{(n)} - k_{n}\bigr)\rho ^{2}\bigl(v_{n}^{(n-1)}, w_{n}^{(n-1)} \bigr). \end{aligned}$$
Thus, we obtain that
$$\begin{aligned} \rho ^{2}(u_{n+1},p) &\leq \rho ^{2}\bigl(v_{n}^{(n-2)},p\bigr) - \bigl(1 - \beta _{n}^{(n-1)}\bigr) \bigl(\beta _{n}^{(n-1)} - k_{n-1}\bigr)\rho ^{2}\bigl(v_{n}^{(n-2)}, w_{n}^{(n-2)} \bigr) \\ & \quad{} - \bigl(1 - \beta _{n}^{(n)}\bigr) \bigl(\beta _{n}^{(n)} - k_{n}\bigr)\rho ^{2}\bigl(v_{n}^{(n-1)}, w_{n}^{(n-1)} \bigr) \\ & \leq \rho ^{2}\bigl(v_{n}^{(n-3)},p\bigr) - \sum_{i=n-2}^{n}\bigl(1 - \beta _{n}^{(i)}\bigr) \bigl( \beta _{n}^{(i)} - k_{i}\bigr)\rho ^{2}\bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)}\bigr) \\ & \quad \vdots \\ & \leq \rho ^{2}\bigl(v_{n}^{(0)},p\bigr) - \sum_{i=1}^{n}\bigl(1 - \beta _{n}^{(i)}\bigr) \bigl( \beta _{n}^{(i)} - k_{i}\bigr)\rho ^{2}\bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)}\bigr). \end{aligned}$$
(13)
Therefore, we have
$$ \rho (u_{n+1},p)\leq \rho \bigl(v_{n}^{(0)},p \bigr) \quad \text{for every } n \in \mathbb{N}.$$
Moreover, by Lemma 2.8, we have
$$\begin{aligned} \rho (u_{n+1},p)&\leq (1-\alpha _{n})\rho (u_{n},p)+a_{n}\rho (u_{1},p) \\ &\leq \max \bigl\{ \rho (u_{n},p),\rho (u_{1},p) \bigr\} \\ &\leq \max \bigl\{ \rho (u_{n-1},p),\rho (u_{1},p) \bigr\} \\ & \quad \vdots \\ &\leq \rho (u_{1},p). \end{aligned}$$
This proves (i). To show (ii), let \(p\in \mathcal{F}\). We consider the following two cases:
Case I: Assume that \(\{\rho ^{2}(u_{n},p)\}\) is a monotonically nonincreasing sequence, that is,
$$ \rho ^{2}(u_{n+1},p)\leq \rho ^{2}(u_{n},p), \quad n\in \mathbb{N}.$$
Then by the boundedness of \(\{u_{n}\}\), we have that \(\{\rho ^{2}(u_{n},p)\}\) converges and, consequently, (ii) hold.
Case II: Suppose that there exists a subsequence \(\{n_{j}\}\) of \(\{n\}\) such that \(\rho ^{2}(u_{n_{j}}, p)\leq \rho ^{2} (u_{n_{j}+1},p)\) for every \(j\in \mathbb{N}\). Then, by Lemma 2.5, there exists a subsequence \(\{m_{k}\}\subset \mathbb{N}\) such that \(m_{k}\to \infty \),
$$ \rho ^{2} (u_{m_{k}},p )< \rho ^{2} (u_{m_{k}+1},p ).$$
Thus,
$$\begin{aligned} 0&\leq \lim_{k\to \infty} \bigl(\rho ^{2}(u_{m_{k}+1},p)- \rho ^{2}(u_{m_{k}},p) \bigr) \\ &\leq \limsup_{n\to \infty} \bigl(\rho ^{2}(u_{n+1},p)- \rho ^{2}(u_{n},p) \bigr) \\ &\leq \limsup_{n\to \infty} \bigl(\rho ^{2}(u_{n},p)+ \alpha _{n} \rho (u_{1},u)-\rho ^{2}(u_{n}) \bigr) \\ &\leq \limsup_{n\to \infty} \bigl(\alpha _{n}\rho (u_{1},u) \bigr) \\ &=0. \end{aligned}$$
Therefore, by Case I and II, the proof is complete. □
Lemma 3.4
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i\in \mathbb{N}\) be a family of multi-valued Lipschitzian demicontractive mappings with constants \(\{ k_{i}\} \subset (0,1)\), \(\mathcal{F} := \bigcap_{i\in \mathbb{N}} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Let \(\{u_{n}\}\) be defined by iterative process (12) with \(\{\beta _{n}^{(i)}\}\subset [k_{i},1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (k_{i},1)\) and \(\alpha _{n}\to 0\). Then \(\lim_{n\to \infty}\operatorname{dist}(u_{n},T_{i}u_{n})=0\) for all \(i \in \mathbb{N}\).
Proof
From (13) and scheme (12), we have
$$\begin{aligned} \rho (u_{n+1},p)^{2} &\leq (1-\alpha _{n}) \rho (u_{n},p)^{2} + \alpha _{n} \rho (u_{1},p) \\ & \quad{} - \sum_{i=1}^{n}\bigl(1 - \beta _{n}^{(i)}\bigr) \bigl(\beta _{n}^{(i)} - k_{i}\bigr) \rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)}\bigr)^{2} \\ &\leq \rho (u_{n},p)^{2} +\alpha _{n} \rho (u_{1},p)- \sum_{i=1}^{n} \bigl(1 - \beta _{n}^{(i)}\bigr) \bigl(\beta _{n}^{(i)} - k_{i}\bigr)\rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr)^{2}. \end{aligned}$$
Let \(i\in \mathbb{N}\). Then for \(n\geq i\), we have
$$\begin{aligned} \begin{aligned} \bigl(1 - \beta _{n}^{(i)} \bigr) \bigl(\beta _{n}^{(i)} - k_{i}\bigr) \rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr)^{2} &\leq \sum_{i=1}^{n} \bigl(1 - \beta _{n}^{(i)}\bigr) \bigl(\beta _{n}^{(i)} - k_{i}\bigr) \rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr)^{2} \\ &\leq \rho (u_{n},p)^{2} - \rho (u_{n+1},p)^{2}+ \alpha _{n} \rho (u_{1},p). \end{aligned} \end{aligned}$$
(14)
Thus, by Lemma 3.3(ii) and the assumption on \(\{\alpha _{n}\}\), we have
$$ \limsup_{n\to \infty}\bigl(1 - \beta _{n}^{(i)} \bigr) \bigl(\beta _{n}^{(i)} - k_{i}\bigr) \rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr)^{2}=0 \quad \text{for every } i \in \{1,2,\ldots , m\},$$
which implies
$$ \lim_{n\to \infty}\bigl(1 - \beta _{n}^{(i)} \bigr) \bigl(\beta _{n}^{(i)} - k_{i}\bigr) \rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)} \bigr)^{2}=0,\quad \text{for every } i\in \mathbb{N}.$$
Consequently, by the assumption on \(\{\beta _{n}^{(i)}\}\), we have
$$ \lim_{n\to \infty}\rho \bigl(v_{n}^{(i-1)}, w_{n}^{(i-1)}\bigr)=0,\quad \text{for every } i\in \mathbb{N}. $$
(15)
Now, let \(i \in \mathbb{N}\). Then,
$$\begin{aligned} \rho \bigl(u_{n}, w_{n}^{(i-1)}\bigr) &\leq \rho \bigl(v_{n}^{(0)},v_{n}^{(1)} \bigr)+ \rho \bigl(v_{n}^{(1)},v_{n}^{(2)} \bigr)+\cdots +\rho \bigl(v_{n}^{(i-2)},v_{n}^{(i-1)} \bigr) \\ & \quad{} +\rho \bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \\ &\leq \rho \bigl(v_{n}^{(0)},w_{n}^{(0)} \bigr)+\rho \bigl(v_{n}^{(1)},v_{n}^{(2)} \bigr)+ \cdots +\rho \bigl(v_{n}^{(i-2)},v_{n}^{(i-1)} \bigr) \\ & \quad{} +\rho \bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \\ &\leq \rho \bigl(v_{n}^{(0)},w_{n}^{(0)} \bigr)+\rho \bigl(v_{n}^{(1)},w_{n}^{(1)} \bigr)+ \cdots +\rho \bigl(v_{n}^{(i-2)},v_{n}^{(i-1)} \bigr) \\ & \quad{} +\rho \bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \\ &\quad \vdots \\ &\leq \rho \bigl(v_{n}^{(0)},w_{n}^{(0)} \bigr)+\rho \bigl(v_{n}^{(1)},w_{n}^{(1)} \bigr)+ \cdots +\rho \bigl(v_{n}^{(i-2)},w_{n}^{(i-2)} \bigr) \\ & \quad{} +\rho \bigl(v_{n}^{(i-1)},w_{n}^{(i-1)} \bigr) \\ &\leq \sum_{k=1}^{i}\rho \bigl(v_{n}^{(k-1)},w_{n}^{(k-1)} \bigr). \end{aligned}$$
This implies that
$$ \lim_{n}\rho \bigl(u_{n}, w_{n}^{(i-1)}\bigr)=0,\quad \text{for each } i \geq 1. $$
(16)
Now using the assumption that \(\{T_{i}\}\) are Lipschitzian maps, we get
$$\begin{aligned} \operatorname{dist}(u_{n}, T_{i} u_{n}) & \leq \rho \bigl(u_{n}, w_{n}^{(i-1)}\bigr)+ \operatorname{dist}\bigl(w_{n}^{(i-1)}, T_{i} u_{n}\bigr) \\ &\leq \rho \bigl(u_{n}, w_{n}^{(i-1)}\bigr)+ \rho _{H}\bigl(T_{i} v_{n}^{(i-1)}, T_{i} u_{n}\bigr) \\ &\leq \rho \bigl(u_{n}, w_{n}^{(i-1)} \bigr)+L_{i} \rho \bigl(v_{n}^{(i-1)}, u_{n}\bigr) \\ &\leq \rho \bigl(u_{n}, w_{n}^{(i-1)} \bigr)+L_{i} \bigl[\rho \bigl(v_{n}^{(i-1)}, w_{n}^{i-1}\bigr)+ \rho \bigl(w_{n}^{i-1},u_{n} \bigr)\bigr] \\ &\leq (1+L_{i})\rho \bigl(u_{n}, w_{n}^{(i-1)} \bigr)+L_{i} \rho \bigl(v_{n}^{(i-1)}, w_{n}^{i-1}\bigr). \end{aligned}$$
Therefore, by the consequence of (15) and (16), the proof is complete. □
Theorem 3.5
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i\in \mathbb{N}\) be a family of multi-valued Lipschitzian demicontractive mappings satisfying the demiclosedness-type property with constants \(\{ k_{i}\} \subset (0,1)\), \(\mathcal{F} := \bigcap_{i\in \mathbb{N}} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Then the sequence \(\{u_{n}\}\) generated by iterative scheme (12) with
-
(i)
\(\alpha _{n}\to 0\) as \(n\to \infty \), \(\sum_{n=1}^{\infty}\alpha _{n}=\infty \), and
-
(ii)
\(\{\beta _{n}^{(i)}\}\subset [k_{i},1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (k_{i},1)\) for all \(i \in \mathbb{N}\),
strongly converges to a point in \(\mathcal{F}\).
Proof
From Lemma 3.3(i), \(\{u_{n}\}\) is bounded. By Lemma 3.2, there exist \(u\in D\) and subsequence \(\{u_{n_{j}}\}\) of \(\{u_{n}\}\) with \(u=\Delta \lim_{j\to \infty}u_{n_{j}}\) and
$$ \limsup_{n\to \infty} \langle \overrightarrow{u_{n}u}, \overrightarrow{yu}\rangle \leq 0,\quad \text{for every }y \in H. $$
(17)
By Lemma 3.4, we have \(\operatorname{dist}(u_{n_{j}},T_{i}u_{n_{j}})\to 0\) for every \(i\in \mathbb{N}\). Using the fact that each \(T_{i}\) has demiclosedness-type property for each \(i\in \mathbb{N}\), we have \(u \in \mathcal{F}\). By (13) and Lemma 2.10, we get
$$\begin{aligned} \rho ^{2}(u_{n+1},u)&\leq \rho ^{2} \bigl(v_{n}^{(0)},u\bigr) \\ &\leq (1-\alpha _{n})^{2}\rho ^{2}(u_{n},u)+ \alpha _{n}^{2}\rho ^{2}(u_{1},u)+2 \alpha _{n}(1-\alpha _{n})\langle \overrightarrow{u_{n}u}, \overrightarrow{u_{1}u}\rangle \\ &\leq (1-\alpha _{n})\rho ^{2}(u_{n},u)+ \alpha _{n} \bigl[a_{n}\rho ^{2}(u_{1},u)+2(1- \alpha _{n})\langle \overrightarrow{u_{n}u}, \overrightarrow{u_{1}u} \rangle \bigr] \\ &=(1-\alpha _{n})\rho ^{2}(u_{n},u)+ \alpha _{n}\phi _{n}, \end{aligned}$$
where \(\phi _{n}= [a_{n}\rho ^{2}(u_{1},u)+2(1-\alpha _{n})\langle \overrightarrow{u_{n}u},\overrightarrow{u_{1}u}\rangle ]\). Now, by (17) and the assumption (i), we have
$$ \limsup_{n\to \infty}\phi _{n}\leq 0.$$
Consequently, by Lemma 2.6, \(\{u_{n}\}\) converges strongly to u. □
Corollary 3.6
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i\in \mathbb{N}\) be a family of multi-valued quasi-nonexpansive mappings with demiclosedness-type property, \(\mathcal{F} := \bigcap_{i\in \mathbb{N}} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Then the sequence \(\{u_{n}\}\) generated by iterative scheme (12) with
-
(i)
\(\alpha _{n}\to 0\), \(\sum_{n=1}^{\infty}\alpha _{n}=\infty \), and
-
(ii)
\(\{\beta _{n}^{(i)}\}\in [0,1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (0,1)\) for all \(i \in \mathbb{N}\),
strongly converges to a point in \(\mathcal{F}\).
Remark 3.7
Since every hybrid mapping with a fixed point is quasi-nonexpansive, Corollary 3.6 holds for a countable family of hybrid mappings.
We have the following result from Theorem 3.5.
Corollary 3.8
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i\in \mathbb{N}\) be a family of multi-valued nonexpansive mappings with \(\mathcal{F} := \bigcap_{i\in \mathbb{N}} F(T_{i}) \neq \emptyset \). Then the sequence \(\{u_{n}\}\) generated by iterative scheme (12) with
-
(i)
\(\alpha _{n}\to 0\) as \(n\to \infty \), \(\sum_{n=1}^{\infty}\alpha _{n}=\infty \), and
-
(ii)
\(\{\beta _{n}^{(i)}\}\subset [0,1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (0,1)\) for \(i \in \mathbb{N}\),
strongly converges to a point in \(\mathcal{F}\).
Next, we consider a finite family of demicontractive mappings with fixed points. The results are analogous to the previous discussion.
Lemma 3.9
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i=1,2,\ldots , m\) be a family of multi-valued demicontractive mappings with constants \(\{ k_{i}\} \subset (0,1)\), \(\mathcal{F} := \bigcap_{i=1}^{m} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Suppose that \(\{u_{n}\}\) is a sequence generated by
$$ \textstyle\begin{cases} v_{n}^{(0)}=(1-\alpha _{n})u_{n}\oplus \alpha _{n}u_{1}, \quad u_{1} \in D, \\ v_{n}^{(i)} = \beta _{n}^{(i)}v_{n}^{(i-1)} \oplus (1-\beta _{n}^{(i)})w_{n}^{(i-1)},\quad w_{n}^{(i-1)} \in T_{i} v_{n}^{(i-1)}, i = 1, \ldots , m-1, \\ u_{n+1} = \beta _{n}^{(m)}v_{n}^{(m-1)} \oplus (1-\beta _{n}^{(m)})w_{n}^{(m-1)}, \quad w_{n}^{(m-1)} \in T_{n} v_{n}^{(m-1)}, n\geq 1, \end{cases} $$
(18)
with \(\{\alpha _{n}\}\subset [0, 1]\), \(\{ \beta _{n}^{(i)}\}\subset [k_{i},1]\) and \(\alpha _{n}\to 0\) as \(n\to \infty \). Then
-
(i)
\(\{u_{n}\}\) is bounded, and
-
(ii)
\(\limsup_{n\to \infty} (\rho (u_{n},p)^{2}-\rho (u_{n+1},p)^{2} )=0\), for all \(p\in \mathcal{F}\).
Proof
The proof follows similar arguments as the proof of Lemma 3.3, and therefore we skip it. □
Lemma 3.10
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i=1,2,\ldots ,m\) be a family of multi-valued Lipschitzian demicontractive mappings with constants \(\{ k_{i}\} \subset (0,1)\), \(\mathcal{F} := \bigcap_{i=1}^{m} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Let \(\{u_{n}\}\) be defined by iterative process (18) with \(\{\beta _{n}^{(i)}\}\subset [k_{i},1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (k_{i},1)\) and \(\alpha _{n}\to 0\). Then \(\lim_{n\to \infty}\operatorname{dist}(u_{n},T_{i}u_{n})=0\) for all \(i \in \{1,2,\ldots ,m\}\).
Proof
The proof follows similar arguments as the proof of Lemma 3.4, and therefore we skip it. □
Theorem 3.11
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i=1,2,\ldots ,m\) be a family of multi-valued Lipschitzian demicontractive mappings satisfying demiclosedness-type property with constants \(\{ k_{i}\} \subset (0,1)\), \(\mathcal{F} := \bigcap_{i}^{m} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Then the sequence \(\{u_{n}\}\) generated by iterative process (18) with
-
(i)
\(\alpha _{n}\to 0\) as \(n\to \infty \), \(\sum_{n=1}^{\infty}\alpha _{n}=\infty \), and
-
(ii)
\(\{\beta _{n}^{(i)}\}\subset [k_{i},1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (k_{i},1)\) for \(i \in \{1,2,\ldots ,m\}\),
strongly converges to a point in \(\mathcal{F}\).
Proof
The proof follows similar lines as the proof of Theorem 3.5 with \(i\in \{1,2,\ldots ,m\}\) only. □
We immediately have the following corollaries:
Corollary 3.12
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i=1,2,\ldots ,m\) be a family of multi-valued quasi-nonexpansive mappings with demiclosedness-type property, \(\mathcal{F} := \bigcap_{i=1}^{m} F(T_{i}) \neq \emptyset \) and each \(T_{i} p = \{p\}\) for all \(p \in \mathcal{F}\). Then the sequence \(\{u_{n}\}\) generated by iterative scheme (18) with
-
(i)
\(\alpha _{n}\to 0\) as \(n\to \infty \), \(\sum_{n=1}^{\infty}\alpha _{n}=\infty \), and
-
(ii)
\(\{\beta _{n}^{(i)}\}\in [0,1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (0,1)\) for all \(i \in \{1,2,\ldots ,m\}\),
strongly converges to a point in \(\mathcal{F}\).
Remark 3.13
Since every hybrid mapping with fixed point is quasi-nonexpansive, Corollary 3.12 holds for a finite family of hybrid mappings.
From Theorem 3.1 and Corollary 3.12, we have the following corollary:
Corollary 3.14
Let \(T_{i} : D \to \mathcal{CB}(D)\), \(i=1,2,\ldots ,m\) be a family of multi-valued nonexpansive mappings with \(\mathcal{F} := \bigcap_{i=1}^{m} F(T_{i}) \neq \emptyset \). Then the sequence \(\{u_{n}\}\) generated by iterative scheme (18) with
-
(i)
\(\alpha _{n}\to 0\) as \(n\to \infty \), \(\sum_{n=1}^{\infty}\alpha _{n}=\infty \), and
-
(ii)
\(\{\beta _{n}^{(i)}\}\subset [0,1]\), \(\liminf_{n\to \infty}\beta _{n}^{(i)}\in (0,1)\) for all \(i \in \{1,2,\ldots ,m\}\),
strongly converges to a point in \(\mathcal{F}\).