Skip to main content

Novel results of \(\alpha _{\ast }\)-ψ-Λ-contraction multivalued mappings in F-metric spaces with an application

Abstract

The objective of this paper is to introduce a new motif of \(\alpha _{\ast }\)-ψ-Λ-contraction multivalued mappings, some novel fixed-point and coincidence-point results for this contraction will be investigated in the scope of F-metric spaces, and some examples are given to illustrate our main results and we derive the existence and uniqueness of a solution of a functional equation to support our main result.

Introduction and preliminaries

The conception of F-metric space (F-MS) was given by Jleli and Samet [21] in 2018 as a generalization of metric space (MS) [16], that has gained importance due to the development of the metric fixed-point theory; they proved that every metric space is an F-MS, but the converse is not true, confirming that F-MS is more general than the metric space with the help of concrete examples, and compared this concept with existing generalizations from the literature. They defined a natural topology \(\tau _{F}\) on these spaces and studied their topological properties. Moreover, a new fixed-point theorem of the Banach Contraction Principle (BCP) was established in the scope of F-MS. This article is arranged into four sections. The first section contains a short history of the literature, providing motivation for this article and some basic definitions that will help readers understand our results. In Sect. 2, new fixed-point theorems for \(\alpha _{\ast }\)-ψ-Λ-contraction multivalued mappings in the scope of F-MS and the given example will be discussed. In Sect. 3, the coincidence-point results for said contraction mappings in F-MS are investigated as consequences. Section 4 is concerned with an application of the said results to the functional equations in dynamic programming with its example.

Definition 1.1

([16])

A mapping \(d:\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) on a nonempty set ϒ, satisfying the following conditions for all \(\gamma ,\delta ,\kappa \in \Upsilon \),

\((d_{1})\):

\(d ( \gamma ,\delta ) =0\Longleftrightarrow \gamma =\delta \);

\((d_{2})\):

\(d ( \gamma ,\delta ) =d ( \delta ,\gamma ) \);

\((d_{3})\):

\(d ( \gamma ,\delta ) \leq d ( \gamma ,\kappa ) +d ( \kappa ,\delta ) \),

is called a metric on ϒ and the pair \(( \Upsilon ,d ) \) is said to be a MS.

We start with a brief recollection of basic ideas and the facts of F-MS. First, let Ξ be the set of functions \(\mathcal{L} : ( 0,\infty ) \rightarrow \mathbb{R} \) satisfying the following stipulations:

\(( \Xi 1 ) \):

\(\mathcal{L} \) is nondecreasing, i.e., \(0<\vartheta <\varsigma \Longrightarrow \mathcal{L} ( \vartheta ) \leq \mathcal{L} ( \varsigma )\).

\(( \Xi 2 )\):

For every sequence \(\{ \varsigma _{\zeta } \} \subset ( 0,\infty ) \), we have

$$ \lim_{\zeta \rightarrow \infty } \varsigma _{\zeta }=0\quad \Longleftrightarrow\quad \lim_{\zeta \rightarrow \infty } \mathcal{L} ( \varsigma _{\zeta } ) =-\infty . $$

Definition 1.2

([21])

Let ϒ be a nonempty set and \(\mathbb{Q} :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) be a given mapping. We postulate that there exists \(( \mathcal{L} ,\alpha )\in \Xi \times {}[ 0,\infty )\) such that,

\((\mathbb{Q}1)\):

\(( \gamma ,\delta ) \in \Upsilon \times \Upsilon \), \(\mathbb{Q} ( \gamma ,\delta ) =0\) \(\gamma =\delta \);

\((\mathbb{Q}2)\):

\(\mathbb{Q} ( \gamma ,\delta ) =\mathbb{Q} ( \delta ,\gamma ) \);

\((\mathbb{Q}3)\):

for every \(( \gamma ,\delta ) \in \Upsilon \times \Upsilon \), \(\forall\nu \in \mathbb{N} \), \(\nu \geq 2\), and \(( \varsigma _{i} ) _{i=1}^{\nu }\subset \Upsilon \), \(( \varsigma _{1},\varsigma _{\nu } ) = ( \gamma ,\delta )\), we have

$$ \mathbb{Q} ( \gamma ,\delta ) >0\quad \Longrightarrow \quad \mathcal{L} \bigl( \mathbb{Q} ( \gamma ,\delta ) \bigr) \leq \mathcal{L} \Biggl( \sum _{i=1}^{\nu -1}\mathbb{Q} ( \varsigma _{i},\varsigma _{i+1} ) \Biggr) +\alpha . $$

Then, \(\mathbb{Q} \) is said to be an F-M on ϒ, and the pair \(( \Upsilon ,\mathbb{Q} ) \) is said to be an F-MS.

Example 1.3

([21])

Let \(\Upsilon =\mathbb{N} \), and let \(\mathbb{Q} :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) be the mapping defined by

$$ \mathbb{Q} ( \gamma ,\delta ) = \textstyle\begin{cases} ( \gamma -\delta ) ^{2}, & \text{if } ( \gamma ,\delta ) \in [ 0,3 ] \times [ 0,3 ] , \\ \vert \gamma -\delta \vert & \text{if } ( \gamma ,\delta ) \notin [ 0,3 ] \times [ 0,3 ] ,\end{cases} $$

for all \(( \gamma ,\delta ) \in \Upsilon \times \Upsilon \), with \(\mathcal{L} ( \varsigma ) =\ln ( \varsigma ) \) and \(\alpha =\ln ( 3 ) \). Then, \(( \Upsilon ,\mathbb{Q} ) \) is an F-MS.

Example 1.4

([21])

Let \(\Upsilon =\mathbb{N} \), and let \(\mathbb{Q} :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) be the mapping defined by

$$ \mathbb{Q} ( \gamma ,\delta ) = \textstyle\begin{cases} e^{ \vert \gamma -\delta \vert }, & \text{if }\gamma =\delta , \\ 0 & \text{if }\gamma \neq \delta ,\end{cases} $$

for all \(( \gamma ,\delta ) \in \Upsilon \times \Upsilon \), with \(\mathcal{L} ( \varsigma ) =\frac{-1}{\varsigma }\) and \(\alpha =1\). Then, \(( \Upsilon ,\mathbb{Q} ) \) is an F-MS.

Definition 1.5

([21])

Let \(( \Upsilon ,\mathbb{Q} ) \) be an F-MS, then:

  1. (i)

    Let \(\{ \gamma _{\zeta } \} \) be a sequence in ϒ; we say that \(\{ \gamma _{\zeta } \} \) is F-convergent to \(\gamma \in \Upsilon \) if \(\{ \gamma _{\zeta } \} \) is convergent to γ with respect to the F-MS \(\mathbb{Q} \).

  2. (ii)

    A sequence \(\{ \gamma _{\zeta } \} \) is F-Cauchy if \(\lim_{\zeta ,\eta \rightarrow \infty } \mathbb{Q} ( \gamma _{\zeta },\gamma _{\eta } ) =0\).

  3. (iii)

    We say that \(( \Upsilon ,\mathbb{Q} ) \) is F-complete if every F-Cauchy sequence in ϒ is F-convergent to an assured element in ϒ.

Theorem 1.6

([21])

Let \((\Upsilon ,\mathbb{Q} )\) be an F-MS, and let \(\Gamma :\Upsilon \rightarrow \Upsilon \) be a mapping. We postulate that the following affirmations hold:

  1. (i)

    \(( \Upsilon ,\mathbb{Q} ) \) is F-complete,

  2. (ii)

    there exists \(k\in ( 0,1 ) \) such that

    $$ \mathbb{Q} \bigl( \Gamma ( \gamma ) ,\Gamma ( \delta ) \bigr) \leq k\mathbb{Q} ( \gamma ,\delta ) ,\quad \forall ( \gamma ,\delta ) \in \Upsilon \times \Upsilon . $$

Then, Γ has a unique fixed point \(\gamma ^{\ast }\in \Upsilon \). Moreover, for any \(\gamma _{0}\in \Upsilon \), the sequence \(\{ \gamma _{\zeta } \} \subset \Upsilon \) defined by \(\gamma _{\zeta +1}=\Gamma ( \gamma _{\zeta } ) \), \(\zeta \in \mathbb{N} \) is F-convergent.

Many writers used the motif of F-MS to investigate powerful fixed-point results; for instance, Alnaser et al. [4] defined relation theoretic contractions and proved some generalized fixed-point theorems in F-metric spaces. Hussain and Kanwal [20] considered the notion of α-ψ-contraction and presented some fixed- and coupled fixed-point results in the setting of F-MSs. Lateef and Ahmad [24] defined Dass and Gupta’s contraction in the context of F-MSs and then proved some new fixed-point theorems to generalize and elaborate several known literature results. Mitrović et al. [26] proved certain common fixed-point theorems and some consequences to obtain the results of Banach, Jungck, Reich, and Berinde in F-MSs with an application for dynamic programming. Hussain [19] introduced the idea of fractional convex-type contraction and established some new fixed-point results for Reich-type α-η-contraction and Kannan-type α-η-contraction mappings in F-MS. He derived some consequences for Suzuki-type contractions, orbitally T-complete, and orbitally continuous mappings.

BCP [12] appeared in 1922 as the basis of functional analysis and plays a main role in several branches of mathematics and applied sciences, which asserts that every contraction mapping defined in complete MS has a fixed point. In many directions, this principle has been extended and generalized either by relaxing the contractive stipulations or imposing some more stipulations on space. Jungck [22] studied coincidence and common fixed points of commuting mappings and improved the BCP. In [35], coincidence-point and common fixed-point theorems for a class of Ćirić–Suzuki hybrid contractions involving a multivalued and two single-valued maps in an MS are obtained. Coincidence-point theorems for Geraghty contraction mappings have been introduced in different spaces [2729, 33, 34, 3739].

Theorem 1.7

([12])

Let \((\Upsilon ,\mathbb{Q} )\) be a complete MS and \(\Gamma :\Upsilon \longrightarrow \Upsilon \) be a contraction mapping, that is \(\forall \gamma ,\delta \in \Upsilon\), and \(k\in ( 0,1 ) \),

$$ \mathbb{Q} (\Gamma \gamma ,\Gamma \delta )\leq k\mathbb{Q} ( \gamma ,\delta ). $$

Then, Γ has a unique fixed point.

In 1973, Geraghty [17] generalized BCP and established its fixed-point results on complete MS.

Theorem 1.8

([17])

Let \((\Upsilon ,\mathbb{Q} )\) be a complete MS and \(\Gamma :\Upsilon \longrightarrow \Upsilon \) be a mapping such that \(\gamma ,\delta \in \) ϒ, and \(\beta \in \mho \),

$$ \mathbb{Q} (\Gamma \gamma ,\Gamma \delta )\leq \beta \bigl(\mathbb{Q} (\gamma ,\delta )\bigr)\mathbb{Q} (\gamma ,\delta ), $$

where is a class of functions \(\beta :[0,\infty )\rightarrow {}[ 0,1)\) satisfying \(\beta (\varsigma _{\zeta })\rightarrow 1\) \(\varsigma _{\zeta }\rightarrow 0\) as \(\zeta \rightarrow \infty \).

Then, Γ has a unique fixed point \(\gamma ^{\ast }\in \Upsilon \).

In 2013, Cho et al. [14] presented the notion of α-Geraghty contraction-type mappings and deduced the unique fixed-point theorems for such mappings in a complete MS. In 2014, Popescu [31] opened a wide field in fixed-point theory by defining the concepts of α-orbital and triangular α-orbital admissible mappings and verified the unique fixed-point theorems for the said mappings, which are generalizations of α-Geraghty contraction-type mappings. In 2012, Wardowski [36] introduced the definition of F-contraction and proved fixed-point results as a generalization of the BCP in a complete MS, see also [1, 2, 57, 11, 18].

Definition 1.9

([31])

Let \(\Gamma :\Upsilon \rightarrow \Upsilon \) be a map and \(\alpha :\Upsilon \times \Upsilon \rightarrow \mathbb{R} \) be a function. Then, Γ is said to be α-orbital admissible if \(\alpha (\gamma ,\Gamma \gamma )\geq 1\) implies \(\alpha (\Gamma \gamma ,\Gamma ^{2}\gamma )\geq 1\).

Definition 1.10

([31])

Let \(\Gamma :\Upsilon \rightarrow \Upsilon \) be a map and \(\alpha :\Upsilon \times \Upsilon \rightarrow \mathbb{R} \) be a function. Then, Γ is said to be triangular α-orbital admissible if Γ is α-orbital admissible and \(\alpha (\gamma ,\delta )\geq 1\) and \(\alpha (\delta ,\Gamma \delta )\geq 1\) imply \(\alpha (\gamma ,\Gamma \delta )\geq 1\).

Lemma 1.11

([31])

Let \(\Gamma :\Upsilon \rightarrow \Upsilon \) be a triangular α-orbital admissible mapping. Assume that there exists \(\gamma _{1}\in \Upsilon \) such that \(\alpha (\gamma _{1},\Gamma \gamma _{1})\geq 1\). Define a sequence \(\{ \gamma _{\zeta } \} \) by \(\gamma _{\zeta +1}=\Gamma \gamma _{\zeta }\). Then, we have \(\alpha ( \gamma _{\zeta },\gamma _{\eta } ) \geq 1\) for all \(\zeta ,\eta \in \mathbb{N} \) with \(\zeta <\eta \).

Definition 1.12

([23])

Let ϒ be a set. Assume that \(\Im :\Upsilon \rightarrow \Upsilon \) and \(\Gamma :\Upsilon \rightarrow 2^{\Upsilon }\). If \(w=\Im \gamma \in \Gamma \gamma \) for some \(\gamma \in \Upsilon \), then γ is called a coincidence point of and Γ, and w is called a point of coincidence of and Γ.

Mappings and Γ are called weakly compatible if \(\Im \gamma \in \Gamma \gamma \) for some \(\gamma \in \Upsilon \) implies \(\Im \Gamma ( \gamma ) \subseteq \Gamma \Im ( \gamma )\).

Proposition 1.13

([23])

Let ϒ be a set. Assume that \(\Im :\Upsilon \rightarrow \Upsilon \) and \(\Gamma :\Upsilon \rightarrow 2^{\Upsilon }\) are weakly compatible mappings. If and Γ have a unique point of coincidence \(w=\Im \gamma \in \Gamma \gamma \), then w is the unique common fixed point of and Γ.

Definition 1.14

([9])

Let \((\Upsilon ,d)\) be an MS. Let \(CB(\Upsilon )\) be the family of all nonempty closed and bounded subsets of ϒ. Let \(H:CB ( \Upsilon ) \times CB ( \Upsilon ) \rightarrow {}[ 0,\infty )\) be a function defined by

$$ H ( A,B ) =\max \Bigl\{ \sup_{\gamma \in A} \mathbb{Q} ( \gamma ,B ) ,\sup_{\delta \in B} \mathbb{Q} ( A,\delta ) \Bigr\} \quad \text{for all }A,B\in CB ( \Upsilon ) , $$

where \(\mathbb{Q} ( \gamma ,B ) =\inf \{ d ( \gamma ,\delta ) ,\delta \in B \} \). Then, H defines a metric on \(CB(\Upsilon )\) called the Hausdorff metric induced by d.

Asif et al. [10] obtain fixed points and common fixed-point results for Reich-type F-contractions for both single and set-valued mappings in F-MSs. Alansari et al. [3] studied a few fuzzy fixed-point theorems and discussed the corresponding fixed-point theorems of multivalued and single-valued mappings on F-complete F-MSs.

Lemma 1.15

([3])

Let A and B be nonempty closed and compact subsets of an F-metric space \(( \Upsilon ,\mathbb{Q} ) \). If \(a\in A\), then \(\mathbb{Q} ( a,B ) \leq H_{\mathbb{Q} } ( A,B ) \).

Let Ψ be the family of nondecreasing functions \(\psi :[0,\infty )\rightarrow {}[ 0,\infty )\) such that \(\sum_{n=1}^{\infty }\psi ^{n} ( t ) <+\infty \), \(\forall t>0\), where \(\psi ^{n}\) is the \(n{th}\) iterate of ψ.

Lemma 1.16

([8])

Let \(\psi \in \Psi \). Then,

  1. 1.

    \(\psi ( t ) < t\), \(\forall t>0\);

  2. 2.

    \(\psi ( 0 ) =0\).

Definition 1.17

([25])

Let \(\Lambda : ( 0,\infty ) \longrightarrow ( 0,\infty ) \) be a mapping verifying:

(Φ1):

Λ is nondecreasing;

(Φ2):

for each positive sequence \(\{ t_{n} \} \),

$$ \lim_{n\rightarrow \infty }\Lambda (t_{n})=0\quad \text{if and only if}\quad \lim_{n\rightarrow \infty }t_{n}=0; $$
(Φ3):

Λ is continuous.

We denote by Φ the set of functions \(\Lambda : ( 0,\infty ) \longrightarrow ( 0,\infty ) \) satisfying the conditions \(( \Phi 1 ) - ( \Phi 3 ) \).

We modify the Definition 1.17 by adding a general condition \((\Phi 4)\) that is given in the following way:

(Φ4):

\(\Lambda (\sum _{i=1}^{n}A_{i})\leq \sum _{i=1}^{n}\Lambda (A_{i}) \), for all \(A_{i}\in ( 0,\infty ), \ i=1,2,\cdots,n\),

where Φ is the set of functions \(\Lambda : ( 0,\infty ) \longrightarrow ( 0,\infty ) \) satisfying the conditions (Φ1), (Φ3), and (Φ4).

Example 1.18

Define the following functions for all \(t\in ( 0,\infty ) \),

  1. (1)

    \(\Lambda ( t ) =at\), \(a>0\);

  2. (2)

    \(\Lambda ( t ) = \vert t \vert \).

Then \(\Lambda \in \Phi \).

Now, we state and prove our main result.

Main results

In this section, we shall introduce a generalization of Geraghty contraction type mappings and establish some novel fixed-point theorems for \(\alpha _{\ast }\)-Λ-ψ-contraction multivalued mappings in the setting of F-MS.

Definition 2.1

Let \((\Upsilon ,\mathbb{Q} )\) be an F-MS, \(\alpha :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) be a function. A mapping \(\Gamma :\Upsilon \rightarrow CB ( \Upsilon ) \) is called a \(\alpha _{\ast }\)-Λ-ψ-contraction multivalued mapping if there exists \(\beta \in \mho ,~\Lambda \in \Phi \) and \(\psi \in \Psi \) such that

$$ \Lambda \bigl( \alpha _{\ast }(\Gamma \gamma ,\Gamma \delta )H_{\mathbb{Q} }(\Gamma \gamma ,\Gamma \delta ) \bigr) \leq \psi \bigl[ \Lambda \bigl( \beta \bigl( \aleph (\gamma ,\delta ) \bigr) \aleph (\gamma ,\delta ) \bigr) \bigr] , $$
(2.1)

where

$$ \aleph (\gamma ,\delta )=\max \biggl\{ \mathbb{Q} (\gamma ,\delta ),\mathbb{Q} (\gamma ,\Gamma \gamma ),\mathbb{Q} (\delta ,\Gamma \delta ),\frac{\mathbb{Q} (\gamma ,\Gamma \delta )+\mathbb{Q} (\delta ,\Gamma \gamma )}{2}\biggr\} , $$

for all \(\gamma ,\delta \in \Upsilon \).

Theorem 2.2

Let \((\Upsilon , \mathbb{Q} )\) be an F-complete F-MS, \(\alpha :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) be a function, and \(\Gamma :\Upsilon \rightarrow CB ( \Upsilon ) \) a mapping. Postulating that the following affirmations hold:

  1. (1)

    Γ is \(\alpha _{\ast }\)-Λ-ψ-contraction;

  2. (2)

    Γ is triangular \(\alpha _{\ast }\)-orbital admissible;

  3. (3)

    there exists an \(\gamma _{0}\in \Upsilon \) such that \(\alpha _{\ast }(\gamma _{0},\Gamma \gamma _{0})\geq 1\);

  4. (4)

    Γ is continuous.

Then, Γ has a unique fixed point \(\gamma ^{\ast }\in \Upsilon \).

Proof

Due to \(( 3 ) \), we define a sequence \(\{\gamma _{n}\}_{n\in \mathbb{N} }\) by assuming that \(\gamma _{1}\in \Gamma \gamma _{0}\) such that \(\alpha ( \gamma _{0},\Gamma \gamma _{0} ) =\alpha ( \gamma _{0},\gamma _{1} ) \geq 1\) and \(\gamma _{2}\in \Gamma \gamma _{1,}\) \(\gamma _{3}\in \Gamma \gamma _{2},\ldots,\gamma _{\zeta +1}\in \Gamma \gamma _{\zeta }=\Gamma ^{\zeta }\gamma _{0}\), from \(( 2 ) \) and Lemma 1.11, we have \(\alpha (\gamma _{\zeta },\gamma _{\zeta +1})\geq 1\) for all \(\zeta \in \mathbb{N} \cup \{0\}\). Using Lemma 1.15, from \(( 1 ) \) and \(( \Phi _{1} )\), we have

$$\begin{aligned} \Lambda \bigl( \mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \bigr) \leq & \Lambda \bigl( H_{\mathbb{Q} } ( \Gamma \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) \bigr) \\ \leq &\Lambda \bigl( \alpha _{\ast } ( \Gamma \gamma _{\zeta -1}, \Gamma \gamma _{\zeta } ) H_{\mathbb{Q} } ( \Gamma \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) \bigr) \\ \leq &\psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph (\gamma _{\zeta -1}, \gamma _{\zeta }) \bigr) \aleph (\gamma _{\zeta -1},\gamma _{\zeta }) \bigr] \bigr) . \end{aligned}$$
(2.2)

We evaluate

$$\begin{aligned} \aleph ( \gamma _{\zeta -1},\gamma _{\zeta } ) =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma _{\zeta -1},\Gamma \gamma _{\zeta -1} ) , \\ \mathbb{Q} ( \gamma _{\zeta },\Gamma \gamma _{\zeta } ) ,\frac{\mathbb{Q} ( \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) +\mathbb{Q} ( \gamma _{\zeta },\Gamma \gamma _{\zeta -1} ) }{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \\ \frac{\mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta +1} ) +\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta } ) }{2}\end{array}\displaystyle \right \} , \end{aligned}$$

since

$$ \frac{\mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta +1} ) }{2}\leq \max \bigl\{ \mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \bigr\} , $$

we conclude that

$$ \aleph ( \gamma _{\zeta -1},\gamma _{\zeta } ) =\max \bigl\{ \mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \bigr\} . $$

Now, if \(\max \{ \mathbb{Q} ( \gamma _{\zeta -1},\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \} =\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \) for \(\zeta \geq 1\), then from (2.2), we obtain

$$ \Lambda \bigl( \mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \bigr) \leq \psi \bigl( \Lambda \bigl[ \beta \bigl( \mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \bigr) .\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \bigr] \bigr) , $$

since \(\beta \in \mho \) and from \(( \Phi _{1} ) \), we have

$$ \mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) < \mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ), $$

which is a discrepancy as \(\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) \geq 0\). Therefore,

$$ \max \bigl\{ \mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) ,\mathbb{Q} ( \gamma _{{\zeta }},\gamma _{{\zeta }+1} ) \bigr\} =\mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) , $$

by (2.2), we have

$$\begin{aligned} \Lambda \bigl( \mathbb{Q} ( \gamma _{{\zeta }},\gamma _{{\zeta }+1} ) \bigr) \leq &\Lambda \bigl( \alpha _{\ast } ( \Gamma \gamma _{{\zeta }-1},\Gamma \gamma _{{\zeta }} ) H_{\mathbb{Q} } ( \Gamma \gamma _{{\zeta }-1},\Gamma \gamma _{{\zeta }} ) \bigr) \\ \leq &\psi \bigl( \Lambda \bigl[ \beta \bigl( \mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) \bigr) .\mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) \bigr] \bigr) \\ \leq &\psi \bigl( \Lambda \bigl[ \beta \bigl( \mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) \bigr) . \bigl( \alpha _{\ast } ( \Gamma \gamma _{{\zeta }-2},\Gamma \gamma _{{\zeta }-1} ) H_{\mathbb{Q} } ( T\gamma _{{\zeta }-2},T\gamma _{{\zeta }-1} ) \bigr) \bigr] \bigr) \\ \leq &\psi ^{2} \bigl( \Lambda \bigl[ \beta \bigl( \mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) \bigr) \beta \bigl( \mathbb{Q} ( \gamma _{{\zeta }-2},\gamma _{{\zeta }-1} ) \bigr) \mathbb{Q} ( \gamma _{{\zeta }-2},\gamma _{{\zeta }-1} ) \bigr] \bigr) \\ &\vdots \\ \leq &\psi ^{\zeta } \bigl( \Lambda \bigl[ \beta \bigl( \mathbb{Q} ( \gamma _{{\zeta }-1},\gamma _{{\zeta }} ) \bigr) \beta \bigl( \mathbb{Q} ( \gamma _{{\zeta }-2},\gamma _{{\zeta }-1} ) \bigr) ...\beta \bigl( \mathbb{Q} ( \gamma _{0}, \gamma _{1} ) \bigr) \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr] \bigr) \\ =&\psi ^{\zeta } \Biggl( \Lambda \Biggl[ \Biggl( \prod _{i=1}^{{\zeta }}\beta \bigl( \mathbb{Q} ( \gamma _{i-1},\gamma _{i} ) \bigr) \Biggr) \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \Biggr] \Biggr) \\ < &\psi ^{\zeta } \bigl( \Lambda \bigl[ \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr] \bigr) , \quad \text{for all }\zeta \in \mathbb{N} . \end{aligned}$$

Let \(\epsilon >0\) be fixed and \(( \mathcal{L} ,a ) \in \Xi \times {}[ 0,\infty )\) be such that \((\mathbb{Q} 3)\) is satisfied. By \(( \Xi 2 ) \), there exists \(\eth >0\) such that

$$ 0< \varsigma < \eth \quad \text{implies}\quad \mathcal{L} ( \varsigma ) < \mathcal{L} ( \epsilon ) -a. $$
(2.3)

Let \(\ell ( \epsilon ) \in \mathbb{N} \) such that \(0<\sum_{\zeta \geq \ell ( \epsilon ) }\psi ^{\zeta } ( \Lambda [ \mathbb{Q} ( \gamma _{0},\gamma _{1} ) ] ) <\Lambda ( \eth ) \).

Hence, by using properties of ψ, (2.3) and \(( \Xi 1 ) \), we have

$$\begin{aligned} \mathcal{L} \Biggl( \sum_{j=\zeta }^{\eta -1} \psi ^{j} \bigl( \Lambda \bigl[ \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr] \bigr) \Biggr) \leq & \mathcal{L} \biggl( \sum_{\zeta \geq \ell ( \epsilon ) }\psi ^{\zeta } \bigl( \Lambda \bigl[ \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr] \bigr) \biggr) \\ < & \mathcal{L} \bigl( \Lambda ( \epsilon ) \bigr) -a, \end{aligned}$$
(2.4)

where \(\eta >\zeta >\ell ( \epsilon ) \) with \(\mathbb{Q} ( \gamma _{\zeta },\gamma _{\eta } ) >0\) using \(( \mathbb{Q} 3 ) \) and (2.4), we have

$$\begin{aligned} \mathcal{L} \bigl( \Lambda \bigl( \mathbb{Q} ( \gamma _{\zeta },\gamma _{\eta } ) \bigr) \bigr) \leq & \mathcal{L} \Biggl( \sum_{j=\zeta }^{\eta -1}\psi ^{j} \bigl( \Lambda \bigl[ \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr] \bigr) \Biggr) +a \\ \leq & \mathcal{L} \biggl( \sum_{\zeta \geq \ell ( \epsilon ) }\psi ^{\zeta } \bigl( \Lambda \bigl[ \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr] \bigr) \biggr) +a \\ < & \mathcal{L} \bigl( \Lambda ( \epsilon ) \bigr) -a+a \\ =& \mathcal{L} \bigl( \Lambda ( \epsilon ) \bigr) , \end{aligned}$$

which implies by \(( \Xi 1 ) \) and \(( \Phi _{1} ) \) that

$$ \mathbb{Q} ( \gamma _{\zeta },\gamma _{\eta } ) < \epsilon ,\quad \forall \eta >\zeta >\ell ( \epsilon ) . $$

Therefore, \(\{ \gamma _{\zeta } \} \) is an F-Cauchy sequence in \(( \Upsilon ,\mathbb{Q} ) \). Since ϒ is F-complete, there exists \(\gamma ^{\ast }\in \Upsilon \) such that \(\gamma _{\zeta }\longrightarrow \gamma ^{\ast }\) as \(\zeta \longrightarrow \infty \), implies

$$ \lim_{\zeta \rightarrow \infty } \mathbb{Q} \bigl( \gamma ^{\ast },\gamma _{\zeta } \bigr) =0. $$
(2.5)

Now, to show that \(\gamma ^{\ast }\in \Gamma \gamma ^{\ast }\) is a fixed point of Γ, presume that \(\mathbb{Q} ( \gamma ^{\ast },\Gamma \gamma ) >0\) such that \(\gamma ^{\ast }\notin \Gamma \gamma ^{\ast }\) with \(\alpha ( \gamma ^{\ast },\gamma _{\zeta } ) \geq 1\), \(\zeta \in \mathbb{N} \). By \(( \mathbb{Q} 3 ) \) and \(( \Phi 4 ) \), we have

$$\begin{aligned} \mathcal{L} \bigl( \Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma ^{\ast },\gamma ^{\ast } \bigr) \bigr) \bigr) \leq & \mathcal{L} \bigl( \Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma ^{\ast },\Gamma \gamma _{\zeta } \bigr) +\mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a \\ \leq & \mathcal{L} \bigl( \Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma ^{\ast },\Gamma \gamma _{\zeta } \bigr) \bigr) +\Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a \\ \leq & \mathcal{L} \bigl( \Lambda \bigl( \alpha _{\ast } \bigl( \Gamma \gamma ^{\ast },\Gamma \gamma _{\zeta } \bigr) H_{\mathbb{Q} } \bigl( \Gamma \gamma ^{\ast },\Gamma \gamma _{\zeta } \bigr) \bigr) +\Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a \\ \leq & \mathcal{L} \bigl( \psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph \bigl( \gamma ^{\ast },\gamma _{\zeta } \bigr) \bigr) \aleph \bigl( \gamma ^{\ast },\gamma _{\zeta } \bigr) \bigr] \bigr) +\Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a \\ \leq & \mathcal{L} \bigl( \psi \bigl( \Lambda \bigl[ \aleph \bigl( \gamma ^{\ast },\gamma _{\zeta } \bigr) \bigr] \bigr) +\Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a \\ < & \mathcal{L} \bigl( \Lambda \bigl[ \aleph \bigl( \gamma ^{\ast }, \gamma _{\zeta } \bigr) \bigr] +\Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a, \end{aligned}$$
(2.6)

where

$$\begin{aligned} \aleph \bigl( \gamma ^{\ast },\gamma _{\zeta } \bigr) =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \gamma ^{\ast },\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma ^{\ast },\Gamma \gamma ^{\ast } ) ,\mathbb{Q} ( \gamma _{\zeta },\Gamma \gamma _{\zeta } ) , \\ \frac{\mathbb{Q} ( \gamma ^{\ast },\Gamma \gamma _{\zeta } ) +\mathbb{Q} ( \Gamma \gamma ^{\ast },\gamma _{\zeta } ) }{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \gamma ^{\ast },\gamma _{\zeta } ) ,\mathbb{Q} ( \gamma ^{\ast },\Gamma \gamma ^{\ast } ) ,\mathbb{Q} ( \gamma _{\zeta },\gamma _{\zeta +1} ) , \\ \frac{\mathbb{Q} ( \gamma ^{\ast },\gamma _{\zeta +1} ) +\mathbb{Q} ( \Gamma \gamma ^{\ast },\gamma _{\zeta } ) }{2}\end{array}\displaystyle \right \} , \end{aligned}$$

for all \(\aleph ( \gamma ^{\ast },\gamma _{\zeta } ) \) and using (2.5), \(( \Phi 2 ) \), and \(( \Xi 2 )\), we obtain

$$ \lim_{\zeta \rightarrow \infty } \mathcal{L} \bigl( \Lambda \bigl( \aleph \bigl( \gamma ^{\ast },\gamma _{\zeta } \bigr) \bigr) + \Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma _{\zeta },\gamma ^{\ast } \bigr) \bigr) \bigr) +a=-\infty , $$

which is a discrepancy. Hence, we have

$$ \mathbb{Q} \bigl( \gamma ^{\ast }, \Gamma \gamma \bigr) =0,\quad \text{that is }\gamma ^{\ast }\in \Gamma \gamma ^{\ast }. $$
(2.7)

For uniqueness, we postulate that \(\gamma ^{\ast }\) and \(\delta ^{\ast }\) are two fixed points of Γ in ϒ such that \(\gamma ^{\ast }\neq \) \(\delta ^{\ast }\). Then,

$$\begin{aligned} \Lambda \bigl( \mathbb{Q} \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) \bigr) =&\Lambda \bigl( \mathbb{Q} \bigl( \Gamma \gamma ^{\ast },\Gamma \delta ^{\ast } \bigr) \bigr) \\ \leq &\Lambda \bigl( \alpha _{\ast } \bigl( \Gamma \gamma ^{\ast },\Gamma \delta ^{\ast } \bigr) H_{\mathbb{Q} } \bigl( \Gamma \gamma ^{\ast },\Gamma \delta ^{\ast } \bigr) \bigr) \\ \leq &\psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) \bigr) \aleph \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) \bigr] \bigr) \\ < &\psi \bigl( \Lambda \bigl[ \aleph \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) \bigr] \bigr) \\ < &\Lambda \bigl[ \aleph \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) \bigr], \end{aligned}$$

where

$$\begin{aligned} \aleph \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \gamma ^{\ast },\delta ^{\ast } ) ,\mathbb{Q} ( \gamma ^{\ast },\Gamma \gamma ^{\ast } ) ,\mathbb{Q} ( \delta ^{\ast },\Gamma \delta ^{\ast } ) , \\ \frac{\mathbb{Q} ( \gamma ^{\ast },\Gamma \delta ^{\ast } ) +\mathbb{Q} ( \delta ^{\ast },\Gamma \gamma ^{\ast } ) }{2}\end{array}\displaystyle \right \} = \mathbb{Q} \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr) . \end{aligned}$$

From \(( \Phi 1 )\), this yields that

$$ \mathbb{Q} \bigl( \gamma ^{\ast }, \delta ^{\ast } \bigr) < \mathbb{Q} \bigl( \gamma ^{\ast },\delta ^{\ast } \bigr), $$

a discrepancy. Therefore, \(\gamma ^{\ast }=\delta ^{\ast }\) and Γ has a unique fixed point \(\gamma ^{\ast }\in \Upsilon \). □

Example 2.3

Let \(\Upsilon = \mathbb{R}\) be F-M and \(\mathbb{Q} \) given by

$$ \mathbb{Q} ( \gamma ,\delta ) = \textstyle\begin{cases} ( \gamma -\delta ) ^{2} & \text{if } ( \gamma ,\delta ) \in {}[ 0,3]\times {}[ 0,3] ,\\ \vert \gamma -\delta \vert & \text{if } ( \gamma ,\delta ) \notin {}[ 0,3]\times {}[ 0,3], \end{cases} $$

with \(\mathcal{L} ( \varsigma ) =\ln ( \varsigma ) \) and \(a=\ln ( 3 ) \). Then, \(( \Upsilon , \mathbb{Q} ) \) is an F-complete F- MS. Define \(\Gamma :\Upsilon \rightarrow CB ( \Upsilon ) \) by

$$ \Gamma \gamma = \textstyle\begin{cases} \{ \frac{\gamma +1}{e^{10}} \} , & \text{if }\gamma \in {}[ 0,\infty ), \\ \{ 0 \} & \text{otherwise}, \end{cases} $$

and \(\alpha :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) by

$$ \alpha ( \gamma ,\delta ) = \textstyle\begin{cases} \frac{1}{\gamma }+1 & \text{if }\gamma ,\delta \in (0,\infty ) ,\\ 0 & \text{otherwise}, \end{cases} $$

let \(\beta :\Upsilon \times \Upsilon \rightarrow {}[ 0,1)\) be as \(\beta ( \gamma ,\delta ) =\frac{4 ( \gamma +1+e^{10} ) }{e^{20} ( \gamma +1 ) }\), \(\Lambda ( t ) =t \) and \(\psi ( t ) =\frac{3}{4}t\).

Now, for all \(( \gamma ,\delta ) \in {}[ 0,3]\times {}[ 0,3]\), then

$$\begin{aligned}& \Lambda \bigl( \alpha _{\ast } ( \Gamma \gamma ,\Gamma \delta ) H_{\mathbb{Q} }(\Gamma \gamma ,\Gamma \delta ) \bigr) \\& \quad =\Lambda \biggl[ \frac{\gamma +1+e^{10}}{\gamma +1}\max \Bigl( \sup _{a\in \Gamma \delta } \mathbb{Q} ( a,\Gamma \delta ) ,\sup_{b\in \Gamma \delta } \mathbb{Q} ( \Gamma \gamma ,b ) \Bigr) \biggr] \\& \quad = \Lambda \biggl[ \frac{\gamma +1+e^{10}}{\gamma +1}\max \biggl( \sup _{a\in \Gamma \gamma } \mathbb{Q} \biggl( a, \biggl\{ \frac{\delta +1}{e^{10}} \biggr\} \biggr) ,\sup_{b\in \Gamma \delta } \mathbb{Q} \biggl( \biggl\{ \frac{\gamma +1}{e^{10}} \biggr\} ,b \biggr) \biggr) \biggr] \\& \quad =\Lambda \biggl[ \frac{\gamma +1+e^{10}}{\gamma +1}\max \biggl( \mathbb{Q} \biggl( \frac{\gamma +1}{e^{10}}, \biggl\{ \frac{\delta +1}{e^{10}} \biggr\} \biggr) ,\mathbb{Q} \biggl( \biggl\{ \frac{\gamma +1}{e^{10}} \biggr\} , \frac{\delta +1}{e^{10}} \biggr) \biggr) \biggr] \\& \quad =\Lambda \biggl[ \frac{\gamma +1+e^{10}}{\gamma +1}\max \biggl( \mathbb{Q} \biggl( \frac{\gamma +1}{e^{10}},\frac{\delta +1}{e^{10}} \biggr) ,\mathbb{Q} \biggl( \frac{\gamma +1}{e^{10}},\frac{\delta +1}{e^{10}} \biggr) \biggr) \biggr] \\& \quad \leq \frac{3}{4}\Lambda \biggl[ \frac{4 ( \gamma +1+e^{10} ) }{e^{20} ( \gamma +1 ) } ( \gamma - \delta ) ^{2} \biggr] \\& \quad \leq \psi \bigl[ \Lambda \bigl( \beta \bigl( \aleph ( \gamma ,\delta ) \bigr) \aleph ( \gamma ,\delta ) \bigr) \bigr] . \end{aligned}$$

Otherwise, we have

$$ \Lambda \bigl( \alpha _{\ast } ( \Gamma \gamma ,\Gamma \delta ) H_{\mathbb{Q} }(\Gamma \gamma ,\Gamma \delta ) \bigr) =0\leq \psi \bigl[ \Lambda \bigl( \beta \bigl( \aleph ( \gamma ,\delta ) \bigr) \aleph ( \gamma , \delta ) \bigr) \bigr] . $$

Now, for \(( \gamma ,\delta ) \in (0,3]\times (0,3]\), \(\alpha _{\ast }(\gamma ,\Gamma \gamma )\geq 1\) implies \(\alpha _{\ast }(\Gamma \gamma ,\Gamma ^{2}\gamma )\geq 1\), then Γ is \(\alpha _{\ast }\)-orbital admissible and \(\alpha (\gamma ,\delta )\geq 1\) and \(\alpha _{\ast }(\delta ,\Gamma \delta )\geq 1\) imply \(\alpha _{\ast }(\gamma ,\Gamma \delta )\geq 1\), therefore Γ is triangular \(\alpha _{\ast }\)-orbital admissible. Hence, all affirmations of Theorem 2.2 are satisfied and \(\gamma ^{\ast }=\frac{1}{e^{10}-1}\in \Upsilon \) is the fixed point of Γ.

Consequences

In this part, some consequences are discussed in F-MS.

Theorem 3.1

Let \((\Upsilon , \mathbb{Q} )\) be an F-MS, set \(\Im :\Upsilon \rightarrow \Upsilon \) and \(\Gamma :\Upsilon \rightarrow CB ( \Upsilon ) \). Presume that there exist functions \(\beta \in \mho \), \(\Lambda \in \Phi \), and \(\psi \in \Psi \) such that \(\forall \gamma ,\delta \in \Upsilon \),

$$ \Lambda \bigl( H_{\mathbb{Q} }(\Gamma \gamma ,\Gamma \delta ) \bigr) \leq \psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph _{\Im }( \gamma ,\delta ) \bigr) \aleph _{\Im }(\gamma ,\delta ) \bigr] \bigr) , $$
(3.1)

where

$$ \aleph _{\Im }(\gamma ,\delta )=\max \biggl\{ \mathbb{Q} (\Im \gamma ,\Im \delta ),\mathbb{Q} (\Im \gamma ,\Gamma \gamma ),\mathbb{Q} (\Im \delta ,\Gamma \delta ),\frac{\mathbb{Q} (\Im \gamma ,\Gamma \delta )+\mathbb{Q} (\Im \delta ,\Gamma \gamma )}{2} \biggr\} . $$

If for any \(\gamma \in \Upsilon \), \(\Gamma \Upsilon \subseteq \Im \Upsilon \) and ϒ is an F-complete subspace of ϒ.

Then, Γ and have a unique point of coincidence. Indeed, if Γ and are weakly compatible, then Γ and have a unique common fixed point \(\gamma ^{\ast }\in \Upsilon \).

Proof

Let \(\gamma _{0}\in \Upsilon \), since \(\Gamma \Upsilon \subseteq \Im \Upsilon \), we can construct a sequence \(\{ \delta _{\zeta } \} _{\zeta \in \mathbb{N}}\) by

$$ \delta _{\zeta }\in \Gamma \gamma _{\zeta -1}=\Im \gamma _{\zeta },\quad \forall \zeta \in \mathbb{N}. $$
(3.2)

Now, if there exists some \(\zeta _{0}\in \mathbb{N} \) such that \(\mathbb{Q} ( \delta _{\zeta _{0}},\delta _{\zeta _{0}+1} ) =0\), then \(\delta _{\zeta _{0}}=\delta _{\zeta _{0}+1}\), which implies that \(\Im \gamma _{\zeta _{0}}=\Gamma \gamma _{\zeta _{0}}\), thus \(\gamma _{\zeta _{0}}\) is a coincidence point of Γ and , so \(w_{0}\in \Im \gamma _{\zeta _{0}}=\Gamma \gamma _{\zeta _{0}}\) is the point of coincidence of Γ and . We postulate that \(\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) >0\) \(\forall \zeta \in \mathbb{N}\). From (3.1) and (3.2), we have

$$\begin{aligned} \Lambda \bigl( \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr) \leq &\Lambda \bigl( H_{\mathbb{Q} } ( \Gamma \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) \bigr) \\ \leq &\psi \bigl( \Lambda \bigl( \beta \bigl( \aleph _{\Im }(\gamma _{\zeta -1},\gamma _{\zeta }) \bigr) \aleph _{\Im }( \gamma _{\zeta -1},\gamma _{\zeta }) \bigr) \bigr) , \end{aligned}$$
(3.3)

where

$$\begin{aligned} \aleph _{\Im }(\gamma _{\zeta -1},\gamma _{\zeta }) =& \max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \Im \gamma _{\zeta -1},\Im \gamma _{\zeta } ) ,\mathbb{Q} ( \Im \gamma _{\zeta -1},\Gamma \gamma _{\zeta -1} ) , \\ \mathbb{Q} ( \Im \gamma _{\zeta },\Gamma \gamma _{\zeta } ) ,\frac{\mathbb{Q} ( \Im \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) +\mathbb{Q} ( \Im \gamma _{\zeta },\Gamma \gamma _{\zeta -1} ) }{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) ,\mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) ,\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) , \\ \frac{\mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta +1} ) +\mathbb{Q} ( y_{\zeta },y_{\zeta } ) }{2}\end{array}\displaystyle \right \} \\ =&\max \bigl\{ \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) ,\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr\} . \end{aligned}$$

We conclude that

$$ \aleph _{\Im } ( \gamma _{\zeta -1},\gamma _{\zeta } ) = \max \bigl\{ \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) ,\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr\} . $$

Now, if \(\max \{ \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) ,\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \} =\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \) for \(\zeta \geq 1\), then from (3.2), we obtain

$$ \Lambda \bigl( \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr) \leq \psi \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr) \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr) \bigr] . $$

Since \(\beta \in \mho \) and from \(( \Phi 1 ) \), we have

$$ \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) < \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) , $$

which is a discrepancy as \(\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \geq 0\). Therefore,

$$ \max \bigl\{ \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) ,\mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr\} =\mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) , $$
(3.4)

by (3.3) and (3.4), we have

$$\begin{aligned}& \Lambda \bigl( \mathbb{Q} ( \delta _{\zeta },\delta _{\zeta +1} ) \bigr) \\& \quad =\Lambda \bigl( \mathbb{Q} ( \Gamma \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) \bigr) \leq \Lambda \bigl( H_{\mathbb{Q} } ( \Gamma \gamma _{\zeta -1},\Gamma \gamma _{\zeta } ) \bigr) \\& \quad \leq \psi \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \Im \gamma _{\zeta -1},\Im \gamma _{\zeta } ) \bigr) .\mathbb{Q} ( \Im \gamma _{\zeta -1},\Im \gamma _{\zeta } ) \bigr) \bigr] \\& \quad =\psi \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) .\mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) \bigr] \\& \quad =\psi \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) .\mathbb{Q} ( \Gamma \gamma _{\zeta -2},\Gamma \gamma _{\zeta -1} ) \bigr) \bigr] \\& \quad \leq \psi \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) .H_{\mathbb{Q} } ( \Gamma \gamma _{\zeta -2},\Gamma \gamma _{\zeta -1} ) \bigr) \bigr] \\& \quad \leq \psi ^{2} \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) \beta \bigl( \mathbb{Q} ( \delta _{\zeta -2},\delta _{\zeta -1} ) \bigr) \mathbb{Q} ( \Gamma \gamma _{\zeta -3}, \Gamma \gamma _{\zeta -2} ) \bigr) \bigr] \\& \quad =\psi ^{2} \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) \beta \bigl( \mathbb{Q} ( \delta _{\zeta -2},\delta _{\zeta -1} ) \bigr) \mathbb{Q} ( \delta _{\zeta -2},\delta _{\zeta -1} ) \bigr) \bigr] \\& \qquad \cdots \\& \quad \leq \psi ^{\zeta } \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \Im \gamma _{\zeta -1}, \gamma _{\zeta } ) \bigr) \beta \bigl( \mathbb{Q} ( \gamma _{\zeta -2},\gamma _{\zeta -1} ) \bigr) ...\beta \bigl( \mathbb{Q} ( \gamma _{0}, \gamma _{1} ) \bigr) \mathbb{Q} ( \gamma _{0},\gamma _{1} ) \bigr) \bigr] \\& \quad =\psi ^{\zeta } \bigl[ \Lambda \bigl( \beta \bigl( \mathbb{Q} ( \delta _{\zeta -1},\delta _{\zeta } ) \bigr) \beta \bigl( \mathbb{Q} ( \delta _{\zeta -2},\delta _{\zeta -1} ) \bigr) ... \beta \bigl( \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \bigr] \\& \quad =\psi ^{\zeta } \Biggl[ \Lambda \Biggl( \Biggl[ \prod _{i=1}^{\zeta }\beta \bigl( \mathbb{Q} ( \delta _{i-1},\delta _{i} ) \bigr) \Biggr] \mathbb{Q} ( \delta _{0},\delta _{1} ) \Biggr) \Biggr] \\& \quad < \psi ^{\zeta } \bigl[ \Lambda \bigl( \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \bigr], \end{aligned}$$

for all \(\zeta \in \mathbb{N} \). Let \(\epsilon >0\) be fixed and \(( \mathcal{L} ,a ) \in \Xi \times {}[ 0,\infty )\) be such that \((\mathbb{Q} 3)\) is satisfied. By \(( \Xi 2 ) \), there exists \(\eth >0\) such that

$$ 0< \varsigma < \eth \quad \text{ implies } \mathcal{L} ( \varsigma ) < \mathcal{L} ( \epsilon ) -a. $$
(3.5)

Let \(\ell ( \epsilon ) \in \mathbb{N} \) such that \(0<\sum_{\zeta \geq \ell ( \epsilon ) }\psi ^{\zeta } [ \Lambda ( \mathbb{Q} ( \delta _{0},\delta _{1} ) ) ] <\Lambda ( \eth )\). Hence, by using the properties of ψ, (3.5), and \(( \Xi 1 ) \), we have

$$\begin{aligned} \mathcal{L} \Biggl( \sum_{j=\zeta }^{\eta -1} \psi ^{j} \bigl[ \Lambda \bigl( \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \bigr] \Biggr) \leq & \mathcal{L} \biggl( \sum_{\zeta \geq \ell }\psi ^{\zeta } \bigl[ \Lambda \bigl( \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \bigr] \biggr) \\ < & \mathcal{L} \bigl( \Lambda ( \epsilon ) \bigr) -a, \end{aligned}$$
(3.6)

where \(\eta >\zeta >\ell \) with \(\mathbb{Q} ( \delta _{\zeta },\delta _{\eta } ) >0\), using \(( \mathbb{Q} 3 ) \) and (3.6), we have

$$\begin{aligned} \mathcal{L} \bigl( \Lambda \bigl( \mathbb{Q} ( \delta _{\zeta },\delta _{\eta } ) \bigr) \bigr) \leq & \mathcal{L} \Biggl( \sum_{j=\zeta }^{\eta -1} \psi ^{j} \bigl[ \Lambda \bigl( \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \bigr] \Biggr) +a \\ \leq & \mathcal{L} \biggl( \sum_{\zeta \geq \ell }\psi ^{\zeta } \bigl[ \Lambda \bigl( \mathbb{Q} ( \delta _{0},\delta _{1} ) \bigr) \bigr] \biggr) +a \\ < & \mathcal{L} \bigl( \Lambda ( \epsilon ) \bigr) -a+a \\ =& \mathcal{L} \bigl( \Lambda ( \epsilon ) \bigr) , \end{aligned}$$

which yields by \(( \Xi 1 ) \) and \(( \Phi 1 ) \) that

$$ \mathbb{Q} ( \delta _{\zeta }, \delta _{\eta } ) < \epsilon ,\quad \forall \eta >\zeta >\ell. $$

Therefore, \(\{ \delta _{\zeta } \} = \{ \Im \gamma _{\zeta } \} \) is an F-Cauchy sequence in ϒ. Since ϒ is F-complete, there exists \(v^{\ast },u^{\ast }\in \Upsilon \) such that \(v^{\ast }=\Im u^{\ast }\), which implies

$$ \lim_{\zeta \rightarrow \infty } \mathbb{Q} \bigl( v^{\ast },\delta _{\zeta } \bigr) =0=\lim_{\eta ,\zeta \rightarrow \infty } \mathbb{Q} ( \delta _{\eta },\delta _{\zeta } ) = \lim_{\zeta \rightarrow \infty } \mathbb{Q} \bigl( \Im u^{\ast },\delta _{\zeta } \bigr) =0. $$
(3.7)

Now, we show that \(v^{\ast }\in \Gamma u^{\ast }\). Postulating that \(\mathbb{Q} ( v^{\ast },\Gamma u^{\ast } ) >0\), by (3.1), we have

$$\begin{aligned} \Lambda \bigl( \mathbb{Q} \bigl( \delta _{\zeta },\Gamma u^{\ast } \bigr) \bigr) =&\Lambda \bigl( \mathbb{Q} \bigl(\Gamma \gamma _{\zeta -1},\Gamma u^{\ast }\bigr) \bigr) \leq \Lambda \bigl( H_{\mathbb{Q} }\bigl(\Gamma \gamma _{\zeta -1},\Gamma u^{\ast } \bigr) \bigr) \\ \leq &\psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph _{\Im }\bigl( \gamma _{\zeta -1},u^{\ast }\bigr) \bigr) .\aleph _{\Im } \bigl(\gamma _{\zeta -1},u^{\ast }\bigr) \bigr] \bigr) , \end{aligned}$$
(3.8)

where

$$\begin{aligned} \aleph _{\Im }(\gamma _{\zeta -1},u) =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} (\Im \gamma _{\zeta -1},\Im u^{\ast }),\mathbb{Q} (\Im \gamma _{\zeta -1},\Gamma \gamma _{\zeta -1}), \\ \mathbb{Q} (\Im u^{\ast },\Gamma u^{\ast }),\frac{\mathbb{Q} (\Im \gamma _{\zeta -1},\Gamma u^{\ast })+\mathbb{Q} (\Im u^{\ast },\Gamma \gamma _{\zeta -1})}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} (\delta _{\zeta -1},v^{\ast }),\mathbb{Q} (\delta _{\zeta -1},\delta _{\zeta }),\mathbb{Q} (v^{\ast },\Gamma u^{\ast }), \\ \frac{\mathbb{Q} (\delta _{\zeta -1},\Gamma u^{\ast })+\mathbb{Q} (v^{\ast },\delta _{\zeta })}{2}\end{array}\displaystyle \right \} . \end{aligned}$$
(3.9)

Since \(\beta \in \mho \), from \(( \Phi 1 ) \), letting \(\zeta \rightarrow \infty \) in (3.8) and applying (3.9), we obtain

$$ \mathbb{Q} \bigl( v^{\ast },\Gamma u^{\ast } \bigr) < \mathbb{Q} \bigl(v^{\ast },\Gamma u^{\ast }\bigr), $$

which is a discrepancy. Therefore, \(\mathbb{Q} ( v^{\ast },\Gamma u^{\ast } ) =0\), which implies that \(v^{\ast }\in \Gamma u^{\ast }\). Thus, \(v^{\ast }=\Im u^{\ast }\in \Gamma u^{\ast }\), and hence Γ and have a coincidence point \(u^{\ast }\), and \(v^{\ast }\) is a point of coincidence of Γ and . By \(( \mathbb{Q} 1 ) \), we have \(\mathbb{Q} ( v^{\ast },v^{\ast } ) =0\). Postulating that \(v_{1}^{\ast }\) is another point of coincidence of Γ and such that we can find \(u_{1}^{\ast }\in \Upsilon \), such that \(v_{1}^{\ast }=\Im u_{1}^{\ast }\in \Gamma u_{1}^{\ast }\) and by \(( \mathbb{Q} 1 ) \), \(\mathbb{Q} ( v_{1}^{\ast },v_{1}^{\ast } ) =0\). Now, we prove that \(\mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) =0\) by contrast. Assume that \(\mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) >0\), from (3.1)

$$\begin{aligned}& \begin{aligned}[b] \Lambda \bigl( \mathbb{Q} \bigl( v^{\ast },v_{1}^{\ast } \bigr) \bigr) &\leq \Lambda \bigl( \mathbb{Q} \bigl( \Gamma u^{\ast },\Gamma u_{1}^{\ast } \bigr) \bigr) \leq \Lambda \bigl( H_{\mathbb{Q} } \bigl( \Gamma u^{\ast },\Gamma u_{1}^{\ast } \bigr) \bigr) \\ &\leq \psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph _{\Im } \bigl( u^{\ast },u_{1}^{\ast } \bigr) \bigr) \aleph _{\Im } \bigl( u^{\ast },u_{1}^{\ast } \bigr) \bigr] \bigr) , \end{aligned} \end{aligned}$$
(3.10)
$$\begin{aligned}& \begin{aligned}[b] \aleph _{\Im } \bigl( u^{\ast },u_{1}^{\ast } \bigr) &=\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( \Im u^{\ast },\Im u_{1}^{\ast } ) ,\mathbb{Q} ( \Im u^{\ast },\Gamma u^{\ast } ) , \\ \mathbb{Q} ( \Im u_{1}^{\ast },\Gamma u_{1}^{\ast } ) ,\frac{\mathbb{Q} ( \Im u^{\ast },\Gamma u_{1}^{\ast } ) +\mathbb{Q} ( \Gamma u^{\ast },\Im u_{1}^{\ast } ) }{2}\end{array}\displaystyle \right \} \\ &=\max \left \{ \textstyle\begin{array}{c} \mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) ,\mathbb{Q} ( v^{\ast },v^{\ast } ) ,\mathbb{Q} ( v_{1}^{\ast },v_{1}^{\ast } ) , \\ \frac{\mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) +\mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) }{2}\end{array}\displaystyle \right \} \\ &=\mathbb{Q} \bigl( v^{\ast },v_{1}^{\ast } \bigr) . \end{aligned} \end{aligned}$$
(3.11)

Since \(\beta \in \mho\), from \(( \Phi 1 )\), (3.10), and (3.11), we obtain \(\mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) <\mathbb{Q} ( v^{\ast },v_{1}^{\ast } )\), which is a discrepancy. Therefore, \(\mathbb{Q} ( v^{\ast },v_{1}^{\ast } ) =0\) implies that \(v^{\ast }=v_{1}^{\ast }\). Thus, Γ and have a unique point of coincidence. Moreover, since Γ and are weakly compatible, we have \(\Im v^{\ast }=\Gamma v^{\ast }\). Now, let \(w=\Im v^{\ast }\in \Gamma v^{\ast }\). From the uniqueness of the point of coincidence, we have \(w=v=\Im v^{\ast }\in \Gamma v^{\ast }\). Therefore, Γ and have a unique common fixed point. □

Corollary 3.2

Let \((\Upsilon ,\mathbb{Q} )\) be an F-complete F-MS, \(\alpha :\Upsilon \times \Upsilon \rightarrow {}[ 0,\infty )\) be a function. A mapping \(\Gamma :\Upsilon \rightarrow \Upsilon \) is called an improved α-Geraghty contraction mapping if there exist \(\beta \in \mho \) such that for all \(\gamma ,\delta \in \Upsilon \),

$$ \alpha (\gamma ,\delta )\mathbb{Q} (\Gamma \gamma ,\Gamma \delta )\leq \beta \bigl( \aleph (\gamma , \delta ) \bigr) .\aleph (\gamma ,\delta ), $$

where

$$ \aleph (\gamma ,\delta )=\max \biggl\{ \mathbb{Q} (\gamma ,\delta ),\mathbb{Q} (\gamma ,\Gamma \gamma ),\mathbb{Q} (\delta ,\Gamma \delta ),\frac{\mathbb{Q} (\gamma ,\Gamma \delta )+\mathbb{Q} (\delta ,\Gamma \gamma )}{2}\biggr\} , $$

for all \(\gamma ,\delta \in \Upsilon \), satisfying the following stipulations:

  1. (1)

    Γ is an improved α-Geraghty contraction;

  2. (2)

    Γ is triangular α-orbital admissible;

  3. (3)

    there exists an \(\gamma _{0}\in \Upsilon \) such that \(\alpha (\gamma _{0},\Gamma \gamma _{0})\geq 1\);

  4. (4)

    Γ is continuous.

Then, Γ has a unique fixed point \(\gamma ^{\ast }\in \Upsilon \).

Corollary 3.3

Let \((\Upsilon ,\mathbb{Q} )\) be an F-MS, and \(\Gamma ,\Im :\Upsilon \rightarrow \Upsilon \) be two mappings with \(\Gamma \Upsilon \subseteq \Im \Upsilon \) and ϒ is F-complete. The pair \(( \Gamma ,\Im ) \) is an improved Geraghty contraction if there exists \(\beta \in \mho \) such that for all \(\gamma ,\delta \in \Upsilon \),

$$ \mathbb{Q} (\Gamma \gamma ,\Gamma \delta ) \leq \beta \bigl( \aleph _{\Im }(\gamma ,\delta ) \bigr) .\aleph _{\Im }(\gamma ,\delta ), $$

where

$$ \aleph _{\Im }(\gamma ,\delta )=\max \biggl\{ \mathbb{Q} (\Im \gamma ,\Im \delta ),\mathbb{Q} (\Im \gamma ,\Gamma \gamma ),\mathbb{Q} (\Im \delta ,\Gamma \delta ),\frac{\mathbb{Q} (\Im \gamma ,\Gamma \delta )+\mathbb{Q} (\Im \delta ,\Gamma \gamma )}{2} \biggr\} . $$

Then, Γ and g have a unique point of coincidence. Indeed, if Γ and are weakly compatible, then Γ and have a unique common fixed point \(\gamma ^{\ast }\in \Upsilon \).

Example 3.4

Let \(\Upsilon =[0,\infty )\) and F-M \(\mathbb{Q} \) given by

$$ \mathbb{Q} ( \gamma ,\delta ) = \textstyle\begin{cases} e^{ \vert \gamma -\delta \vert } & \text{if }\gamma \neq \delta ,\\ 0 & \text{if }\gamma =\delta, \end{cases} $$

with \(\mathcal{L} ( \varsigma ) =\frac{-1}{\varsigma }\) and \(a=1\). Then, \(( \Upsilon ,\mathbb{Q} ) \) is F-complete F-MS. Define \(\Im :\Upsilon \rightarrow \Upsilon \) and \(\Gamma :\Upsilon \rightarrow CB ( \Upsilon ) \) by

$$ \Gamma \gamma = \textstyle\begin{cases} \{ \frac{\gamma }{8} \} , & \text{if }\gamma \in \mathbb{N} \cup \{ 0 \} ,\\ \{ 0 \} & \text{otherwise}, \end{cases}\displaystyle \quad \text{and}\quad \Im \gamma = \textstyle\begin{cases} \frac{3\gamma }{2} & \text{if }\gamma \in \mathbb{N} \cup \{ 0 \} ,\\ 0 & \text{otherwise}. \end{cases} $$

Clearly, for all \(\gamma \in \mathbb{N} \cup \{ 0 \} \), \(\Gamma ( \Upsilon ) \subseteq \Im ( \Upsilon ) \) and \(\Im ( \Upsilon ) \) is an F-complete subset of ϒ; let \(\beta :\Upsilon \times \Upsilon \rightarrow {}[ 0,1)\) be as \(\beta ( \gamma ,\delta ) =\frac{1}{2},~\Lambda ( t ) =t\) and \(\psi ( t ) =\frac{2}{3}t\). Now, for all \(( \gamma ,\delta ) \in \mathbb{N} \cup \{ 0 \} \) with \(\gamma \neq \delta \), then

$$\begin{aligned} \Lambda \bigl( H_{\mathbb{Q} } ( \Gamma \gamma ,\Gamma \delta ) \bigr) =& \Lambda \bigl( \max \bigl( \sup_{a\in \Gamma \gamma } \mathbb{Q} ( a,\Gamma \delta ) ,\sup_{b\in \Gamma \delta } \mathbb{Q} ( \Gamma \gamma ,b ) \bigr) \bigr) \\ =&\Lambda \biggl( \max \biggl( \sup_{a\in \Gamma \gamma } \mathbb{Q} \biggl( a, \biggl\{ \frac{\delta }{8} \biggr\} \biggr) ,\sup_{b\in \Gamma \delta } \mathbb{Q} \biggl( \biggl\{ \frac{\gamma }{8} \biggr\} ,b \biggr) \biggr) \biggr) \\ =&\Lambda \biggl( \max \biggl( \mathbb{Q} \biggl( \frac{\gamma }{8}, \biggl\{ \frac{\delta }{8} \biggr\} \biggr) ,\mathbb{Q} \biggl( \biggl\{ \frac{\gamma }{8} \biggr\} ,\frac{\delta }{8} \biggr) \biggr) \biggr) \\ =&\Lambda \biggl( \max \biggl( \mathbb{Q} \biggl( \frac{\gamma }{8},\frac{\delta }{8} \biggr) ,\mathbb{Q} \biggl( \frac{\gamma }{8},\frac{\delta }{8} \biggr) \biggr) \biggr) \\ =&\Lambda \biggl( \mathbb{Q} \biggl( \frac{\gamma }{8},\frac{\delta }{8} \biggr) \biggr) \\ =&\Lambda \bigl( e^{ \vert \frac{\gamma }{8}-\frac{\delta }{8} \vert } \bigr) =\Lambda \bigl( e^{\frac{1}{4} \vert \frac{\gamma }{2}-\frac{\delta }{2} \vert } \bigr) \\ \leq &\frac{2}{3}\Lambda \biggl( \frac{1}{2}e^{ \vert \frac{3\gamma }{2}-\frac{3\delta }{2} \vert } \biggr) \\ \leq &\psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph _{\Im }(\gamma , \delta ) \bigr) .\aleph _{\Im }(\gamma ,\delta ) \bigr] \bigr) . \end{aligned}$$

If \(\gamma =\delta \), then we have

$$ \Lambda \bigl( H_{\mathbb{Q} } ( \Gamma \gamma ,\Gamma \delta ) \bigr) =0\leq \psi \bigl( \Lambda \bigl[ \beta \bigl( \aleph _{\Im }(\gamma ,\delta ) \bigr) .\aleph _{\Im }(\gamma ,\delta ) \bigr] \bigr) . $$

Otherwise, we have that (3.1) trivially holds. Therefore, all stipulations of Theorem 3.1 are satisfied. Since \(\Upsilon 0=\Im 0=0\), thus \(\gamma =0\) is a common fixed point of Γ and .

Application for the existence of a solution to a functional equation

In this section, we use our main results to verify the existence and uniqueness of a solution to the functional equation:

$$ \varrho ( \gamma ) =\sup_{\delta \in \Upsilon } \bigl\{ \digamma (\gamma , \delta )+\Pi \bigl( \gamma ,\delta ,\varrho \bigl( \mu (\gamma ,\delta ) \bigr) \bigr) \bigr\} ,\quad \gamma \in \Game , $$
(4.1)

where \(\digamma :\Game \times \Upsilon \rightarrow \mathbb{R} \) and \(\Pi :\Game \times \Upsilon \times \mathbb{R} \rightarrow \mathbb{R} \) are bounded, \(\mu :\Game \times \Upsilon \rightarrow \Game\), and ϒ are BSs. Equations of the type \(( 4.1 ) \) have applications in mathematical optimization, computer programming, and in dynamic programming, giving tools for solutions to boundary value problems arising in engineering and physical sciences. Bhakta and Mitra [13] introduced the existence theorems that proved the existence and uniqueness of the solution of a functional equation under certain conditions in Banach spaces. Deepmala [15] utilized the fixed-point theorems to establish the existence, uniqueness, and iterative approximation of the solution for a functional equation in Banach spaces and complete metric spaces. In [30, 32], common solutions of certain functional equations arising in dynamic programming and common fixed-point theorems for a quadruple of self-mappings satisfying weak compatibility and JH-operator pairs on a complete metric space were discussed.

Let denote the set of all bounded real-valued functions on . The pair , where , is a BS along with the metric \(\mathbb{Q} \) given by

$$ \mathbb{Q} ( h,k ) =\sup _{\varsigma \in \Game } \bigl\vert h ( \varsigma ) -k ( \varsigma ) \bigr\vert = \Vert h-k \Vert . $$

To show the existence of a solution to (4.1), we put in place the following stipulations:

\(( S1 )\) Ϝ and Π are bounded,

\(( S2 ) \) for all and \(\gamma \in \Game \), we define the operator as

$$ ( \Gamma h ) ( \gamma ) =\sup_{\delta \in \Upsilon } \bigl\{ \digamma (\gamma ,\delta )+\Pi \bigl( \gamma ,\delta ,h \bigl( \mu (\gamma ,\delta ) \bigr) \bigr) \bigr\} . $$
(4.2)

Undoubtedly, Γ is well defined since Ϝ and Π are bounded,

\(( S3 ) \) for \(a>1\), and \(\varsigma \in \Game \), we have

$$ \bigl\vert \Pi \bigl( \gamma ,\delta ,h ( \varsigma ) \bigr) -\Pi \bigl( \gamma ,\delta ,k ( \varsigma ) \bigr) \bigr\vert \leq e^{-a}\aleph ( h,k ) , $$
(4.3)

where

$$ \aleph ( h,k ) =\max \biggl\{ \mathbb{Q} ( h,k ) ,\mathbb{Q} ( h,\Gamma h ) ,\mathbb{Q} ( k,\Gamma k ) , \frac{\mathbb{Q} ( k,\Gamma h ) +\mathbb{Q} ( h,\Gamma k ) }{2} \biggr\} . $$

We shall verify the following theorem.

Theorem 4.1

Postulate that the stipulations \(( S1 ) - ( S3 ) \) hold, then the functional Eq. (4.1) has a bounded solution.

Proof

Let \(\lambda >0\) be arbitrary, \(\gamma \in \Game \) and . The space is an F-complete F-MS. There exist \(\delta _{1},\delta _{2}\in \Upsilon \) such that

$$\begin{aligned}& ( \Gamma h ) ( \gamma ) < \digamma ( \gamma ,\delta _{1} ) +\Pi \bigl( \gamma ,\delta _{1},h \bigl( \mu ( \gamma ,\delta _{1} ) \bigr) \bigr) +\lambda , \end{aligned}$$
(4.4)
$$\begin{aligned}& ( \Gamma k ) ( \gamma ) < \digamma ( \gamma ,\delta _{2} ) +\Pi \bigl( \gamma ,\delta _{2},k \bigl( \mu ( \gamma ,\delta _{2} ) \bigr) \bigr) +\lambda , \end{aligned}$$
(4.5)
$$\begin{aligned}& ( \Gamma h ) ( \gamma ) \geq \digamma ( \gamma ,\delta _{2} ) +\Pi \bigl( \gamma ,\delta _{2},h \bigl( \mu ( \gamma ,\delta _{2} ) \bigr) \bigr) , \end{aligned}$$
(4.6)
$$\begin{aligned}& ( \Gamma k ) ( \gamma ) \geq \digamma ( \gamma ,\delta _{1} ) +\Pi \bigl( \gamma ,\delta _{1},k \bigl( \mu ( \gamma ,\delta _{1} ) \bigr) \bigr) . \end{aligned}$$
(4.7)

Then from (4.4) and (4.7), we obtain

$$\begin{aligned} ( \Gamma h ) ( \gamma ) - ( \Gamma k ) ( \gamma ) < &\Pi \bigl( \gamma ,\delta _{1},h \bigl( \mu ( \gamma ,\delta _{1} ) \bigr) \bigr) -\Pi \bigl( \gamma ,\delta _{1},k \bigl( \mu ( \gamma ,\delta _{1} ) \bigr) \bigr) +\lambda \\ \leq & \bigl\vert \Pi \bigl( \gamma ,\delta _{1},h \bigl( \mu ( \gamma ,\delta _{1} ) \bigr) \bigr) -\Pi \bigl( \gamma ,\delta _{1},k \bigl( \mu ( \gamma ,\delta _{1} ) \bigr) \bigr) \bigr\vert +\lambda \\ \leq &e^{-a}\aleph ( h,k ) +\lambda . \end{aligned}$$
(4.8)

Similarly from (4.5) and (4.6), we obtain

$$\begin{aligned} ( \Gamma k ) ( \gamma ) - ( \Gamma h ) ( \gamma ) < &\Pi \bigl( \gamma ,\delta _{2},k \bigl( \mu ( \gamma ,\delta _{2} ) \bigr) \bigr) -\Pi \bigl( \gamma ,\delta _{2},h \bigl( \mu ( \gamma , \delta _{2} ) \bigr) \bigr) +\lambda \\ \leq & \bigl\vert \Pi \bigl( \gamma ,\delta _{2},k \bigl( \mu ( \gamma ,\delta _{2} ) \bigr) \bigr) -\Pi \bigl( \gamma ,\delta _{2},h \bigl( \mu ( \gamma ,\delta _{2} ) \bigr) \bigr) \bigr\vert +\lambda \\ \leq &e^{-a}\aleph ( h,k ) +\lambda . \end{aligned}$$
(4.9)

Combining (4.8) and (4.9), we obtain

$$ \bigl\vert ( \Gamma h ) ( \gamma ) - ( \Gamma k ) ( \gamma ) \bigr\vert \leq e^{-a}\aleph ( h,k ) +\lambda , $$

which implies for \(\lambda >0\) and \(\gamma \in \Game \) such that

$$ e\times \mathbb{Q} ( \Gamma h,\Gamma k ) \leq \frac{1}{e^{a-1}}\aleph ( h,k ). $$

Taking \(\alpha ( h,k ) =e\geq 1\) and \(\beta ( h,k ) =\frac{1}{e^{a-1}}\in {}[ 0,1)\), we have

$$ \alpha ( h,k ) \mathbb{Q} ( \Gamma h,\Gamma k ) \leq \beta \bigl( \aleph ( h,k ) \bigr) \aleph ( h,k ). $$

All the stipulations of Corollary 3.2 are fulfilled, and Γ has a unique fixed point, so Eq. (4.1) has a bounded solution. □

Example 4.2

Let \(\Game =\Upsilon = \mathbb{R} \) be a BS with the standard norm \(\Vert \gamma \Vert = \vert \gamma \vert \), for all \(\gamma \in \Game \). Postulating that \(S=[0,1]\subseteq \Game \) is the state space and \(D=[0,\infty )\subseteq \Upsilon \) the decision space. Define \(\mu :S\times D\rightarrow S\) and \(\digamma :S\times D\rightarrow \mathbb{R} \) by

$$ \mu ( \gamma ,\delta ) =\frac{\gamma \delta ^{2}}{1+\delta ^{2}}\quad \text{and}\quad \digamma ( \gamma ,\delta ) =0,\quad \forall \gamma \in S, \text{ and } \delta \in D. $$

Define \(\varrho :S\rightarrow \mathbb{R} \) by

Now, for all , \(\gamma \in S\), we define a map as,

$$\begin{aligned} \Gamma h ( \gamma ) =&\sup_{\delta \in D} \bigl\{ \digamma ( \gamma ,\delta ) +\Pi \bigl( \gamma ,\delta ,h \bigl( \mu ( \gamma ,\delta ) \bigr) \bigr) \bigr\} , \\ \Gamma k ( \gamma ) =&\sup_{\delta \in D} \bigl\{ \digamma ( \gamma ,\delta ) +\Pi \bigl( \gamma ,\delta ,k \bigl( \mu ( \gamma ,\delta ) \bigr) \bigr) \bigr\} , \end{aligned}$$

where \(\Pi :S\times D\times \mathbb{R} \rightarrow \mathbb{R} \) is defined by

$$ \Pi ( \gamma ,\delta ,\varsigma ) =\frac{1}{32}\varsigma \sin \biggl( \frac{\delta }{\delta +2} \biggr) . $$

Hence,

Similarly,

Note that Π and Ϝ are bounded; this implies that stipulations \(( S_{1} ) \) and \(( S_{2} ) \) of Theorem 4.1 are satisfied. Now,

$$\begin{aligned} \bigl\vert \Pi \bigl( \gamma ,\delta ,h ( \varsigma ) \bigr) -\Pi \bigl( \gamma ,\delta ,k ( \varsigma ) \bigr) \bigr\vert =& \biggl\vert \frac{1}{32}h ( \varsigma ) \sin \biggl( \frac{\delta }{\delta +2} \biggr) - \frac{1}{32}h ( \varsigma ) \sin \biggl( \frac{\delta }{\delta +2} \biggr) \biggr\vert \\ =&\frac{1}{32} \biggl\vert \sin \biggl( \frac{\delta }{\delta +2} \biggr) \biggr\vert \bigl\vert h ( \varsigma ) -k ( \varsigma ) \bigr\vert \\ \leq &\frac{1}{32} \bigl\vert h ( \varsigma ) -k ( \varsigma ) \bigr\vert \\ \leq &\frac{1}{e^{2}} \Vert h-k \Vert . \end{aligned}$$

Thus, all the assertions of Theorem 4.1 are satisfied and the functional Eq. (4.1) has a bounded solution in .

Conclusion

In this paper, we introduced a new notion of \(\alpha _{\ast }\)-ψ-Λ-contraction multivalued mappings and proved some novel fixed-point theorems for such contraction in F-MSs. Some consequences are studied to investigate coincidence-point results for this contraction in F-MSs. Also, we gave some examples to clarify our obtained results; we utilized the main results to discuss the existence and uniqueness of a solution to a functional equation. The new concepts lead to further investigations and applications.

Availability of data and materials

Not applicable.

References

  1. Abbas, M., Berzig, M., Nazir, T., Karapinar, E.: Iterative approximation of fixed points for presic type F-contraction operators. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 78, 147–160 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Aksoy, Ü., Karapınar, E., Erhan, İ.M.: F-contraction mappings on metric-like spaces in connection with integral equations on time scales, RAC-SAM. https://doi.org/10.1007/s13398-020-00877-5

  3. Alansari, M., Mohammed, S.S., Azam, A.: Fuzzy fixed point results in F-metric spaces with applications. J. Funct. Spaces 2020, 5142815 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Alnaser, L.A., Lateef, D., Fouad, H.A., Ahmad, J.: Relation theoretic contraction results in F-metric spaces. J. Nonlinear Sci. Appl. 12, 337–344 (2019)

    MathSciNet  Article  Google Scholar 

  5. Alsulami, H.A., Karapinar, E., Piri, H.: Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces. Discrete Dyn. Nat. Soc. 2015, 969726 (2015)

    MathSciNet  Article  Google Scholar 

  6. Alsulami, H.H., Gülyaz, S., Karapınar, E., Erhan, İ.M.: An Ulam stability result on quasi-b-metric-like spaces. Open Math. 14(1) (2016)

  7. Alsulami, H.H., Karapinar, E., Piri, H.: Fixed points of modified F-contractive mappings in complete metric-like spaces. J. Funct. Spaces 2015, 270971 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Altun, I., Arifi, N.A., Jleli, M., Lashin, A., Samet, B.: A new approach for the approximations of solutions to a common fixed-point problem in metric fixed point theory. J. Funct. Spaces (2016). 5 pages

  9. Altun, I., Minak, G., Dağ, H.: Multivalued F-contractions on complete metric spaces. J. Nonlinear Convex Anal. 16(4), 659–666 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Asif, A., Nazam, M., Arshad, M., Kim, S.O.: F-Metric, F-contraction and common fixed-point theorems with applications. Mathematics 7, 586 (2019)

    Article  Google Scholar 

  11. Aydi, H., Karapinar, E., Yazidi, H.: Modified F-contractions via alpha-admissible mappings and application to integral equations. Filomat 31, 1141–1148 (2017)

    MathSciNet  Article  Google Scholar 

  12. Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations itegrals. Fundam. Math. 3, 133–181 (1922)

    Article  Google Scholar 

  13. Bhakta, P.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98(2), 348–362 (1984)

    MathSciNet  Article  Google Scholar 

  14. Cho, S.H., Bae, J., Karapinar, E.: Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2013, 329 (2013)

    MathSciNet  Article  Google Scholar 

  15. Deepmala: Existence theorems for solvability of a functional equation arising in dynamic programming. Int. J. Math. Math. Sci. 2014, 1–9 (2014)

    MathSciNet  Article  Google Scholar 

  16. Frechet, M.R.: Sur guelgues points du calcul fonctionnel (1906)

  17. Geraghty, M.A.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)

    MathSciNet  Article  Google Scholar 

  18. Hazarika, B., Karapinar, E., Arab, R., Rabbani, M.: Metric-like spaces to prove existence of solution for nonlinear quadratic integral equation and numerical method to solve it. J. Comput. Appl. Math. 328, 302–313 (2018). https://doi.org/10.1016/j.cam.2017.07.012

    MathSciNet  Article  MATH  Google Scholar 

  19. Hussain, A.: Fractional convex type contraction with solution of fractional differential equation. AIMS Math. 5(5), 5364–5380 (2020)

    MathSciNet  Article  Google Scholar 

  20. Hussain, A., Kanwal, T.: Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results. Trans. A. Razmadze Math. Inst. 172, 481–490 (2018)

    MathSciNet  Article  Google Scholar 

  21. Jleli, M., Samet, B.: On a new generalization of metric spaces. J. Fixed Point Theory Appl. 20, 128 (2018)

    MathSciNet  Article  Google Scholar 

  22. Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83, 261–263 (1976). https://doi.org/10.2307/2318216

    MathSciNet  Article  MATH  Google Scholar 

  23. Kaewcharoen, A., Kaewkhao, A.: Common fixed points for single-valued and multi-valued mappings in G-metric spaces. Int. J. Math. Anal. 5(36), 1775–1790 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Lateef, D., Ahmad, J.: Dass and Gupta’s fixed point theorem in F-metric spaces. J. Nonlinear Sci. Appl. 12, 405–411 (2019)

    MathSciNet  Article  Google Scholar 

  25. Liu, X.D., Chang, S.S., Xiao, Y., Zhao, L.C.: Some fixed point theorems concerning \(( \psi ,\phi ) \)-type contraction in complete metric spaces. J. Nonlinear Sci. Appl. 9, 4127–4136 (2016)

    MathSciNet  Article  Google Scholar 

  26. Mitrović, Z.D., Aydi, H., Hussain, N., Mukheimer, A.: Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application. Mathematics 7, 387 (2019)

    Article  Google Scholar 

  27. Mudhesh, M., Arshad, M., Ameer, E.: Fixed point results for generalized goeraghty and quasi \(( \alpha ,\beta ) \)-admissible type contraction mappings in b-metric-like spaces. Adv. Fixed Point Theory 10, 13 (2020)

    Google Scholar 

  28. Nazam, M., Arshad, M., Postolache, M.: Coincidence and common fixed point theorems for four mappings satisfying (alpha (s), F)-contraction. Nonlinear Anal., Model. Control 23(5), 664–690 (2018)

    MathSciNet  Article  Google Scholar 

  29. Nazam, M., Arshad, M., Postolache, M.: On common fixed point theorems in dualistic partial metric spaces. J. Math. Anal. 9, 76–89 (2018)

    MathSciNet  Google Scholar 

  30. Pathak, H.K., Tiwari, R.: Common fixed points for weakly compatible mappings and applications in dynamic programming. Ital. J. Pure Appl. Math. 30, 253–268 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Popescu, O.: Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 190 (2014)

    MathSciNet  Article  Google Scholar 

  32. Razani, A., Moeini, B.: JH-Operator pairs with application to functional equations arising in dynamic programming. Abstr. Appl. Anal. 2014, 283158 (2014)

    Article  Google Scholar 

  33. Samreen, M., Kamran, T., Postolache, M.: Extended b-metric space, extended b-comparison function and nonlinear contractions. Politeh. Buch. Ser. A 80(4), 21–28 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Shatanawi, W., Postolache, M., Ansari, A.H., Kassab, W.: Common fixed points of dominating and weak annihilators in ordered metric spaces via C-class functions. J. Math. Anal. 8(3), 54–68 (2017)

    MathSciNet  Google Scholar 

  35. Singh, S.L., Kamal, R., Sen, M.D.l., Chugh, R.: A new type of coincidence and common fixed point theorem with applications. Abstr. Appl. Anal. V, 642378 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)

    MathSciNet  Article  Google Scholar 

  37. Wiriyapongsanony, A., Phudolsitthiphat, N.: Coincidence Point Theorems for Geraghty Type Contraction Mappings in Generalized Metric Spaces. Thai J. Math., 145–158 (2018)

  38. Yao, Y., Postolache, M., Yao, J.C.: An iterative algorithm for solving generalized variational inequalities and fixed points problems. Mathematics 7(1), 61 (2019)

    MathSciNet  Article  Google Scholar 

  39. Yu, D., Chen, C., Wang, H.: Common fixed point theorems for \((T,g)_{F}\)-contraction in b-metric-like spaces. J. Inequal. Appl. 2018, 222 (2018)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

M.M.: conceptualization, supervision, writing—original draft; N.M.: conceptualization, supervision, writing—original draft; M.A: investigation, writing—review and editing; A.H.: investigation, writing—review and editing; E.A.: writing—original draft, methodology; R. G.: investigation, writing—review and editing; W.S.: writing—original draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nabil Mlaiki or Wasfi Shatanawi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mudhesh, M., Mlaiki, N., Arshad, M. et al. Novel results of \(\alpha _{\ast }\)-ψ-Λ-contraction multivalued mappings in F-metric spaces with an application. J Inequal Appl 2022, 113 (2022). https://doi.org/10.1186/s13660-022-02842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02842-9

MSC

  • 47H09
  • 47H10
  • 54H25

Keywords

  • Fixed and coincidence points
  • F-metric spaces
  • \(\alpha _{\ast }\)-ψ-Λ-contraction
  • Functional equations