Skip to main content

On fractional Simpson type integral inequalities for co-ordinated convex functions

Abstract

In this study, we prove equality for twice partially differentiable mappings involving the double generalized fractional integral. Using the established identity, we offer some Simpson’s type inequalities for partially differentiable co-ordinated convex functions in a rectangle from the plane \(\mathbb{R} ^{2}\).

1 Introduction

The following inequality is one of the well-known results in the literature called Simpson’s inequality.

Theorem 1

Let \(\digamma:[\kappa _{1},\kappa _{2}]\rightarrow{\mathbb{R}}\) be a four times continuously differentiable mapping on \((\kappa _{1},\kappa _{2})\) and \(\| \digamma ^{4}\|_{\infty}=\sup |\digamma ^{4}(x)|<\infty \). Then, the following inequality holds:

$$\begin{aligned} &\biggl\vert \frac{1}{6} \biggl[\digamma (\kappa _{1})+ \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2} \biggr) +\digamma (\kappa _{2}) \biggr]- \frac{1}{\kappa _{2}-\kappa _{1}} \int _{\kappa _{1}}^{\kappa _{2}}\digamma (x)\,dx \biggr\vert \\ &\quad\leq \frac{1}{2880} \bigl\Vert \digamma ^{(4)} \bigr\Vert _{\infty}(\kappa _{2}- \kappa _{1})^{4}. \end{aligned}$$

For recent refinements, counterparts, generalizations, and new Simpson’s type inequalities, see [1, 48, 1117, 1928].

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1

A function \(\digamma:\bigtriangleup:{[\kappa _{1},\kappa _{2}]\times {}[ \kappa _{3},\kappa _{4}]}\rightarrow {\mathbb{R}}\) is called co-ordinated convex on for all \((x,u)\), \((y,v)\in {\bigtriangleup }\) and \(t,s\in {[0,1]}\) if it satisfies the following inequality:

$$\begin{aligned} &\digamma \bigl(tx+(1-t)y,su+(1-s)v\bigr) \\ &\quad \leq ts\digamma (x,u)+t(1-s)\digamma (x,v)+s(1-t) \digamma (y,u)+(1-s) (1-t)\digamma (y,v). \end{aligned}$$
(1.1)

The mapping Ϝ is co-ordinated concave on , and the inequality (1.1) holds in reversed direction for all \(t,s\in {[0,1]}\) and \((x,u),(y,v)\in {\bigtriangleup }\).

In [5], Dragomir et al. proved the following some recent developments on Simpson’s inequality for which the remainder is expressed in terms of lower derivatives than the fourth.

Theorem 2

Suppose \(\digamma:[\kappa _{1},\kappa _{2}]\rightarrow {\mathbb{R}}\) is an absolutely continuous mapping on \([\kappa _{1},\kappa _{2}]\) whose derivative belongs to \(L_{p}[\kappa _{1},\kappa _{2}]\). Then, the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[\digamma (\kappa _{1})+4 \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2} \biggr)+\digamma (\kappa _{2}) \biggr]- \frac{1}{\kappa _{2}-\kappa _{1}} \int _{\kappa _{1}}^{\kappa _{2}} \digamma (x)\,dx \biggr\vert \\ & \quad\leq \frac{1}{6} \biggl[\frac{2^{q+1}+1}{3(q+1)} \biggr]^{\frac{1}{q}}( \kappa _{2}-\kappa _{1})^{\frac{1}{q}} \bigl\Vert \digamma ^{\prime } \bigr\Vert _{p}, \end{aligned}$$

where \(\frac{1}{p}+\frac{1}{q}=1\).

In [19], Sarikaya et al. obtained inequalities for differentiable convex mappings that are connected with Simpson’s inequality, and they used the following lemma to prove it.

Lemma 1

Let \(\digamma:I\subset {\mathbb{R}}\rightarrow {\mathbb{R}}\) be an absolutely continuous mapping on \(I^{\circ }\) (\(I^{\circ }\) is the interior of I) such that \(\digamma ^{\prime }\in {L_{1}[\kappa _{1},\kappa _{2}]}\), where \(\kappa _{1},\kappa _{2}\in {I^{\circ }}\) with \(\kappa _{1}<\kappa _{2}\), then the following equality holds:

$$\begin{aligned} & \frac{1}{6} \biggl[\digamma (\kappa _{1})+4\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2} \biggr)+\digamma (\kappa _{2}) \biggr]- \frac{1}{(\kappa _{2}-\kappa _{1})} \int _{\kappa _{1}}^{\kappa _{2}} \digamma (x)\,dx \\ &\quad =\frac{\kappa _{2}-\kappa _{1}}{2} \int _{0}^{1} \biggl[ \biggl( \frac{t}{2}-\frac{1}{3} \biggr)\digamma ^{\prime } \biggl(\frac{(1+t)\kappa _{1}}{2}+ \frac{(1-t)\kappa _{2}}{2} \biggr)\\ &\qquad{}+ \biggl(\frac{1}{3}-\frac{t}{2} \biggr) \digamma ^{\prime } \biggl(\frac{(1+t)\kappa _{1}}{2}+ \frac{(1-t)\kappa _{2}}{2} \biggr) \biggr]\,dt. \end{aligned}$$

The main aim of this article is to set up new Simpson’s type inequalities for mappings whose twice partially derivatives in absolute value are co-ordinated convex via generalized fractional integral operators.

2 Generalized fractional integrals operators

In this section, we summarize the generalized fractional integrals defined by Sarikaya and Ertuğral in [18].

Let us define a function \(\phi:[0,\infty )\rightarrow {}[ 0,\infty )\) satisfying the following condition:

$$\begin{aligned} \int _{0}^{1}\frac{\phi ( t ) }{t}\,dt< \infty. \end{aligned}$$

We consider the following left-sided and right-sided generalized fractional integral operators

$$\begin{aligned} {}_{a+}I_{\phi }f(x)= \int _{a}^{x}\frac{\phi ( x-t ) }{x-t}f(t)\,dt, \quad x>a \end{aligned}$$
(2.1)

and

$$\begin{aligned} {}_{b-}I_{\phi }f(x)= \int _{x}^{b}\frac{\phi ( t-x ) }{t-x}f(t)\,dt,\quad x< b, \end{aligned}$$
(2.2)

respectively.

Some forms of fractional integrals, namely, Riemann–Liouville fractional integrals, k-Riemann–Liouville fractional integrals, Katugampola fractional integrals, conformable fractional integrals, Hadamard fractional integrals, etc. are generalized as the most significant feature of generalized fractional integrals. These important special cases of the integral operators (2.1) and (2.2) are mentioned below:

  1. (1)

    If we choose \(\phi ( t ) =t\), the operators (2.1) and (2.2) reduce to the Riemann integral.

  2. (2)

    Considering \(\phi ( t ) = \frac{t^{\alpha }}{\Gamma ( \alpha ) }\) and \(\alpha >0\), the operators (2.1) and (2.2) reduce to the Riemann–Liouville fractional integrals \(J_{{a+}}^{\alpha }f(x) \) and \(J_{b-}^{\alpha }f(x)\), respectively. Here, Γ is the Gamma function.

  3. (3)

    For \(\phi ( t ) = \frac{1}{k\Gamma _{k} ( \alpha ) }t^{\frac{\alpha }{k}}\) and \(\alpha,k>0\), the operators (2.1) and (2.2) reduce to the k-Riemann–Liouville fractional integrals \(J_{{a+,k}}^{\alpha }f(x)\) and \(J_{b-,k}^{\alpha }f(x)\), respectively. Here, \(\Gamma _{k}\) is the k-Gamma function.

There are several papers on inequalities for generalized fractional integrals in the literature. In [18], Sarikaya and Ertuğral also proved Hermite–Hadamard inequalities for generalized fractional integrals. In addition, Budak et al. proved Midpoint type inequalities and extensions of Hermite–Hadamard inequalities in the papers [2] and [3], respectively. In [9], Ertuğral and Sarikaya presented some Simpson-type inequalities for these fractional integral operators.

Generalized double fractional integrals are given by Turkay et al. in [26], as follows:

Definition 2

The Generalized double fractional integrals \({}_{a+,c+}I_{\phi,\psi }\), \({}_{a+,d-}I_{\phi,\psi }\), \({}_{b-,c+}I_{\phi,\psi }\), \({}_{b-,d-}I_{\phi,\psi }\) are defined by

$$\begin{aligned} &{}_{a+,c+}I_{\phi,\psi }f ( x,y ) = \int _{a}^{x} \int _{c}^{y} \frac {\phi ( x-t ) }{x-t}\frac {\psi ( y-s ) }{y-s}f ( t,s ) \,ds\,dt,\quad x>a, y>c, \end{aligned}$$
(2.3)
$$\begin{aligned} &{}_{a+,d-}I_{\phi,\psi }f ( x,y ) = \int _{a}^{x} \int _{y}^{d} \frac {\phi ( x-t ) }{x-t}\frac {\psi ( s-y ) }{s-y}f ( t,s ) \,ds\,dt,\quad x>a, y< d, \end{aligned}$$
(2.4)
$$\begin{aligned} &{}_{b-,c+}I_{\phi,\psi }f ( x,y ) = \int _{x}^{b} \int _{c}^{y} \frac {\phi ( t-x ) }{t-x}\frac {\psi ( y-s ) }{y-s}f ( t,s ) \,ds\,dt,\quad x< b, y>c, \end{aligned}$$
(2.5)

and

$$\begin{aligned} {}_{b-,d-}I_{\phi,\psi }f ( x,y ) = \int _{x}^{b} \int _{y}^{d} \frac {\phi ( t-x ) }{t-x}\frac {\psi ( s-y ) }{s-y}f ( t,s ) \,ds\,dt,\quad x< b, y< d. \end{aligned}$$
(2.6)

Here, \(f\in L_{1}([a,b]\times {}[ c,d])\), and the functions \(\phi,\psi: [ 0,\infty ) \rightarrow [ 0,\infty ) \) satisfy \(\int _{0}^{1}\frac {\phi ( t ) }{t}\,dt<\infty \) and \(\int _{0}^{1}\frac {\psi ( s ) }{s}\,ds<\infty \), respectively.

Using Definition 2, well-known fractional integrals can be obtained by some special choices. For example,

  1. (1)

    If we choose \(\phi ( t ) =t\) and \(\psi ( s ) =s\), the operators (2.3), (2.4), (2.5) and (2.6) reduce to the double Riemann integral.

  2. (2)

    Considering \(\phi ( t ) =\frac{t^{\alpha }}{\Gamma (\alpha )} \), \(\psi ( s ) =\frac{s^{\beta }}{\Gamma (\beta )}\), then for \(\alpha,\beta >0\), the operators (2.3), (2.4), (2.5) and (2.6) reduce to the Riemann–Liouville fractional integrals \(J_{a+,c+}^{\alpha,\beta }f ( x,y ) \), \(J_{a+,d-}^{\alpha,\beta }f ( x,y ) \) \(J_{b-,c+}^{\alpha,\beta }f ( x,y ) \) and \(J_{b-,d-}^{\alpha,\beta }f ( x,y ) \), respectively.

  3. (3)

    For \(\phi ( t ) = \frac{t^{\frac{\alpha }{k}}}{k\Gamma _{k}(\alpha )}\) and \(\psi ( s ) = \frac{s^{\frac{\beta }{k}}}{k\Gamma _{k}(\beta )}\), for \(\alpha,\beta,k>0\), the operators (2.3), (2.4), (2.5) and (2.6) reduce to the k-Riemann–Liouville fractional integrals \(J_{a+,c+}^{\alpha,\beta,k}f ( x,y ) \), \(J_{a+,d-}^{\alpha,\beta,k}f ( x,y ) \), \(J_{b-,c+}^{\alpha,\beta,k}f ( x,y ) \) and \(J_{b-,d-}^{\alpha,\beta,k}f ( x,y ) \), respectively ([10]).

In this paper, utilizing generalized double fractional integrals, we extend the results proved in [9] to co-ordinated convex functions.

3 An identity for generalized double fractional integrals

Throughout this paper, for conciseness, we define

$$\begin{aligned} \Lambda ({t})= \int _{0}^{t} \frac{\phi ( \frac{b-a}{2}u ) }{u}\,du,\qquad \bigtriangledown ({s})= \int _{0}^{s} \frac{\psi ( \frac{d-c}{2}u ) }{u}\,du. \end{aligned}$$

In this section, we start the usage of generalized fractional essential operators by subsequent lemma:

Lemma 2

Let \(\digamma:\Delta:= [ \kappa _{1},\kappa _{2} ] \times [ \kappa _{3},\kappa _{4} ] \rightarrow \mathbb{R} \) be a twice partially differentiable mapping on \(\Delta ^{\circ }\) (\(\Delta ^{\circ }\) is the interior of Δ). If \(\frac {\partial ^{2}\digamma }{\partial t\,\partial s}\in L(\Delta )\), then we have the following equality for generalized fractional integrals:

$$\begin{aligned} & \Re (\kappa _{1},\kappa _{2};\kappa _{3}, \kappa _{4}) \\ &\quad = \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4\Lambda (1)\bigtriangledown (1)} \\ &\qquad{} \times \biggl\{ \int _{0}^{1} \int _{0}^{1} \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &\qquad{}\times \digamma \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2}, \frac{1-s}{2}\kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ & \qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &\qquad{}\times\digamma \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1+s}{2}\kappa _{3}+ \frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{} + \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &\qquad{}\times\digamma \biggl(\frac{1+t}{2}\kappa _{1}+ \frac{1-t}{2}\kappa _{2},\frac{1-s}{2}\kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ & \qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &\qquad{}\times\digamma \biggl(\frac{1+t}{2}\kappa _{1}+ \frac{1-t}{2}\kappa _{2},\frac{1+s}{2}\kappa _{3}+ \frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \biggr\} , \end{aligned}$$

where

$$\begin{aligned} &\Re (\kappa _{1},\kappa _{2};\kappa _{3}, \kappa _{4}) \\ &\quad= \frac{\digamma (\kappa _{1},\kappa _{3})+\digamma (\kappa _{2},\kappa _{4})+\digamma (\kappa _{2},\kappa _{3})+\digamma (\kappa _{1},\kappa _{4})}{36} \\ &\qquad{}+\frac{1}{9} \biggl[\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \kappa _{4} \biggr)+\digamma \biggl(\kappa _{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+ \digamma \biggl(\kappa _{1},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+4\digamma \biggl(\frac{\kappa _{2}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr]+ \frac{1}{4\Lambda (1)\bigtriangledown (1)} \biggl[_{\kappa _{2}^{-},\kappa _{4}^{-}}I_{\phi,\psi }\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+{}_{\kappa _{2}^{-},\kappa _{3}^{+}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+{}_{ \kappa _{1}^{+},\kappa _{4}^{-}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+{}_{\kappa _{1}^{+},\kappa _{3}^{+}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}-\frac{1}{12\Lambda (1)} \biggl[_{\kappa _{2}^{-}}I_{\phi }\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr)+{}_{\kappa _{2}^{-}}I_{ \phi } \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+{}_{\kappa _{1}^{+}}I_{\phi } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr) \\ &\qquad{}+{}_{\kappa _{1}^{+}}I_{\phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+4_{\kappa _{2}^{-}}I_{\phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+4_{\kappa _{1}^{+}}I_{\phi } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}-\frac{1}{12\bigtriangledown (1)} \biggl[_{\kappa _{4}^{-}}I_{\psi } \digamma \biggl(\kappa _{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+{}_{\kappa _{4}^{-}}I_{ \psi } \digamma \biggl(\kappa _{1},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+{}_{\kappa _{3}^{+}}I_{\psi } \digamma \biggl(\kappa _{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+{}_{\kappa _{3}^{+}}I_{\psi }\digamma \biggl(\kappa _{1}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4_{\kappa _{4}^{-}}I_{\psi } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+4_{\kappa _{3}^{+}}I_{\psi } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr]. \end{aligned}$$

Proof

It suffices to be aware that

$$\begin{aligned} I ={}& \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\,ds \,dt \\ &{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1+s}{2}\kappa _{3}+ \frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1+t}{2}\kappa _{1}+ \frac{1-t}{2}\kappa _{2},\frac{1-s}{2}\kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1+t}{2}\kappa _{1}+ \frac{1-t}{2}\kappa _{2},\frac{1+s}{2}\kappa _{3}+ \frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \\ ={}&I_{1}+I_{2}+I_{3}+I_{4}. \end{aligned}$$

Integrating with the aid of using by parts, we obtain

$$\begin{aligned} I_{1} ={}& \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\,ds \,dt \\ ={}& \int _{0}^{1} \biggl(\frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl[\frac{2}{\kappa _{4}-\kappa _{3}} \biggl( \frac{\bigtriangledown ({1})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr) \\ &{}\times\frac{\partial \digamma }{\partial t} \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\vert _{0}^{1} \\ &{}-\frac{1}{\kappa _{4}-\kappa _{3}} \int _{0}^{1} \frac{\Psi (\frac{\kappa _{4}-\kappa _{3}}{2}s )}{s} \frac{\partial \digamma }{\partial t} \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds \biggr]\,dt \\ ={}&\frac{2}{\kappa _{4}-\kappa _{3}} \int _{0}^{1} \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial \digamma }{\partial t} \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\kappa _{4} \biggr)\,dt \\ &{}+\frac{2}{\kappa _{4}-\kappa _{3}} \int _{0}^{1} \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3} \biggr)\frac{\partial \digamma }{\partial t} \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\,dt \\ &{}-\frac{1}{\kappa _{4}-\kappa _{3}} \int _{0}^{1} \int _{0}^{1} \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \frac{\psi (\frac{\kappa _{4}-\kappa _{3}}{2}s )}{s} \\ &{}\times\frac{\partial \digamma }{\partial t} \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2} \kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt. \end{aligned}$$

By changing the variables and applying integration on integrals, we obtain

$$\begin{aligned} I_{1} ={}& \frac{\Lambda ({1})\triangledown (1)}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma (\kappa _{2},\kappa _{4})+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma \biggl(\frac{\kappa _{2}+\kappa _{1}}{2},\kappa _{4} \biggr) \\ &{}- \frac{\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{2}^{-}}I_{\phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr)+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl(\kappa _{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr) \\ &{}+\frac{4\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{\kappa _{2}^{-}}I_{ \phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}- \frac{\Lambda ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{\kappa _{4}^{-}}I_{\psi }\digamma \biggl(\kappa _{2}, \frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\Lambda ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{4}^{-}}I_{\psi } \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}+\frac{1}{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{2}^{-}\kappa _{4}^{-}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr). \end{aligned}$$

Similarly, we obtain

$$\begin{aligned} I_{2} ={}& \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2},\frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr)\,ds \,dt \\ ={}& \frac{\Lambda ({1})\triangledown (1)}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma (\kappa _{2},\kappa _{3})+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl(\frac{\kappa _{2}+\kappa _{1}}{2},\kappa _{3} \biggr) \\ &{}- \frac{\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} { }_{\kappa _{2}^{-}}I_{\phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl(\kappa _{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr) \\ &{}+ \frac{4\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{ }_{\kappa _{2}^{-}}I_{ \phi }\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}+ \frac{\Lambda ({1})}{3(\kappa _{3}-\kappa _{4})(\kappa _{2}-\kappa _{1})}_{\kappa _{3}^{+}}I_{\psi }\digamma \biggl(\kappa _{2}, \frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}+ \frac{2\Lambda ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} { }_{\kappa _{3}^{+}}I_{\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}+\frac{1}{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{2}^{-},\kappa _{3}^{+}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr), \\ I_{3} ={}& \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\,ds \,dt \\ ={}& \frac{\Lambda ({1})\triangledown (1)}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma (\kappa _{1},\kappa _{4})+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl(\frac{\kappa _{2}+\kappa _{1}}{2},\kappa _{4} \biggr) \\ &{}- \frac{\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{1}^{+}}I_{\phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr)+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl(\kappa _{1},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr) \\ &{}+ \frac{4\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{\kappa _{1}^{+}}I_{ \phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}- \frac{\Lambda ({1})}{3(\kappa _{3}-\kappa _{4})(\kappa _{2}-\kappa _{1})}_{\kappa _{4}^{-}}I_{\psi }\digamma \biggl(\kappa _{1}, \frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\Lambda ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{4}^{-}}I_{\psi } \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}+\frac{1}{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{1}^{+},\kappa _{4}^{-}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr), \end{aligned}$$

and

$$\begin{aligned} I_{4} ={}& \int _{0}^{1} \int _{0}^{1} \biggl(\frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \frac{\partial ^{2}}{\partial t\,\partial {s}} \\ &{}\times\digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2},\frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr)\,ds \,dt \\ ={}& \frac{\Lambda ({1})\triangledown (1)}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma (\kappa _{1},\kappa _{3})+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl( \frac{\kappa _{2}+\kappa _{1}}{2},\kappa _{3} \biggr) \\ &{}- \frac{\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{1}^{+}}I_{\phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+ \frac{2\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}\digamma \biggl(\kappa _{1},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr) \\ &{}+\frac{4\Lambda ({1})\bigtriangledown ({1})}{9(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\bigtriangledown ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{\kappa _{1}^{+}}I_{ \phi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}- \frac{\Lambda ({1})}{3(\kappa _{3}-\kappa _{4})(\kappa _{2}-\kappa _{1})}_{\kappa _{3}^{+}}I_{\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{4}+\kappa _{3}}{2} \biggr)\\ &{}- \frac{2\Lambda ({1})}{3(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{3}^{+}}I_{\psi }\digamma \biggl(\kappa _{1}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &{}+\frac{1}{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}_{ \kappa _{1}^{+},\kappa _{3}^{+}}I_{\phi,\psi }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr). \end{aligned}$$

By adding the above integrals and multiply by \(\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{\Lambda (1)\bigtriangledown (1)}\), we can write

$$\begin{aligned} \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4\Lambda (1)\bigtriangledown (1)} [ I_{1}+I_{2}+I_{3}+I_{4} ] =\Re (\kappa _{1},\kappa _{2}; \kappa _{3}, \kappa _{4}), \end{aligned}$$

which completes the proof. □

Corollary 1

Under the assumption of Lemma 2, with \(\phi (t)=t\) and \(\psi (s)=s\), then we obtain the following equality for Riemann integrals:

$$\begin{aligned} & \Upsilon (\kappa _{1},\kappa _{2};\kappa _{3}, \kappa _{4}) \\ &\quad =\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4}\int _{0}^{1} \int _{0}^{1} \biggl( \frac{t}{2}- \frac{1}{3} \biggr) \biggl( \frac{s}{2}-\frac{1}{3} \biggr) \\ &\qquad{}\times \frac{\partial ^{2}\digamma }{\partial t\,\partial s} \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{} +\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4}\int _{0}^{1} \int _{0}^{1} \biggl( \frac{t}{2}- \frac{1}{3} \biggr) \biggl( \frac{1}{3}-\frac{s}{2} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}\digamma }{\partial t\,\partial s} \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1+s}{2} \kappa _{3}+ \frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{} +\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4}\int _{0}^{1} \int _{0}^{1} \biggl( \frac{1}{3}- \frac{t}{2} \biggr) \biggl( \frac{s}{2}-\frac{1}{3} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}\digamma }{\partial t\,\partial s} \biggl(\frac{1+t}{2}\kappa _{1}+ \frac{1-t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ & \qquad{}+\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4}\int _{0}^{1} \int _{0}^{1} \biggl( \frac{1}{3}- \frac{t}{2} \biggr) \biggl( \frac{1}{3}-\frac{s}{2} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}\digamma }{\partial t\,\partial s} \biggl(\frac{1+t}{2}\kappa _{1}+ \frac{1-t}{2}\kappa _{2},\frac{1+s}{2} \kappa _{3}+ \frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt, \end{aligned}$$

where \(\Upsilon (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined by

$$\begin{aligned} & \Upsilon (\kappa _{1},\kappa _{2};\kappa _{3}, \kappa _{4}) \\ &\quad = \frac{\digamma (\kappa _{1},\frac{\kappa _{3}+\kappa _{4}}{2})+\digamma (\kappa _{2},\frac{\kappa _{3}+\kappa _{4}}{2})+4\digamma (\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2})+\digamma (\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3})+\digamma (\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4})}{9} \\ &\qquad{}+ \frac{\digamma (\kappa _{1},\kappa _{3})+\digamma (\kappa _{2},\kappa _{3})+\digamma (\kappa _{2},\kappa _{4})+\digamma (\kappa _{2},\kappa _{4})}{36} \\ & \qquad{}-\frac{1}{6(\kappa _{2}-\kappa _{1})} \int _{\kappa _{1}}^{\kappa _{2}} \biggl[\digamma (x,\kappa _{3})+4\digamma \biggl(x, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+ \digamma (x,\kappa _{4}) \biggr]\,dx \\ &\qquad{} -\frac{1}{6(\kappa _{4}-\kappa _{3})} \int _{\kappa _{3}}^{\kappa _{4}} \biggl[\digamma (\kappa _{1},y)+4\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},y \biggr)+ \digamma (x,\kappa _{4}) \biggr]\,dy \\ & \qquad{}+\frac{1}{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})} \int _{ \kappa _{1}}^{\kappa _{2}} \int _{\kappa _{3}}^{\kappa _{4}}\digamma (x,y)\,dy\,dx. \end{aligned}$$

Corollary 2

Under the assumption of Lemma 2, with \(\phi (t)=\frac{t^{\alpha }}{\Gamma {(\alpha )}}\) and \(\psi (s)=\frac{s^{\beta }}{\Gamma {(\beta )}}\), then we obtain the following equality for Riemann–Liouville fractional integrals:

$$\begin{aligned} &\Omega (\kappa _{1},\kappa _{2};\kappa _{3}, \kappa _{4}) \\ &\quad=\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4} \\ &\qquad{}\times \biggl\{ \int _{0}^{1} \int _{0}^{1} \biggl( \frac{t^{\alpha }}{2}- \frac{1}{3} \biggr) \biggl(\frac{s^{\beta }}{2}-\frac{1}{3} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}}{\partial t\,\partial {s}}\digamma \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1-s}{2}\kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{t^{\alpha }}{2}- \frac{1}{3} \biggr) \biggl(\frac{1}{3}- \frac{s^{\beta }}{2} \biggr) \\ &\qquad{}\times \frac{\partial ^{2}}{\partial {t}\partial {s}}\digamma \biggl(\frac{1-t}{2} \kappa _{1}+\frac{1+t}{2} \kappa _{2},\frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{1}{3}- \frac{t^{\alpha }}{2} \biggr) \biggl(\frac{s^{\beta }}{2}- \frac{1}{3} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}}{\partial {t}\partial {s}}\digamma \biggl(\frac{1+t}{2} \kappa _{1}+\frac{1-t}{2} \kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{1}{3}- \frac{t^{\alpha }}{2} \biggr) \biggl(\frac{1}{3}- \frac{s^{\beta }}{2} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}}{\partial {t}\partial {s}}\digamma \biggl(\frac{1+t}{2} \kappa _{1}+\frac{1-t}{2} \kappa _{2},\frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \biggr\} , \end{aligned}$$

where

$$\begin{aligned} &\Omega (\kappa _{1},\kappa _{2};\kappa _{3}, \kappa _{4}) \\ &\quad= \frac{\digamma (\kappa _{1},\kappa _{3})+\digamma (\kappa _{2},\kappa _{4})+\digamma (\kappa _{2},\kappa _{3})+\digamma (\kappa _{1},\kappa _{4})}{36} \\ &\qquad{}+\frac{1}{9} \biggl[\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \kappa _{4} \biggr)+\digamma \biggl(\kappa _{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+ \digamma \biggl(\kappa _{1},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+4\digamma \biggl(\frac{\kappa _{2}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}+ \frac{2^{\alpha +\beta -2}\Gamma (\alpha +1)\Gamma (\beta +1)}{ ( \kappa _{2}-\kappa _{1} ) ^{\alpha } ( \kappa _{4}-\kappa _{3} ) ^{\beta }} \biggl[J_{\kappa _{2}^{-},\kappa _{4}^{-}}^{\alpha,\beta } \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+J_{\kappa _{2}^{-},\kappa _{3}^{+}}^{\alpha,\beta }\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+J_{\kappa _{1}^{+},\kappa _{4}^{-}}^{\alpha,\beta }\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+J_{\kappa _{1}^{+},\kappa _{3}^{+}\phi,\psi }^{\alpha,\beta } \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}- \frac{2^{\alpha -1}\Gamma (\alpha +1)}{6 ( \kappa _{2}-\kappa _{1} ) ^{\alpha }} \biggl[J_{\kappa _{2}^{-}}^{\alpha }\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr)+J_{\kappa _{2}^{-}}^{ \alpha } \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+J_{\kappa _{1}^{+}}^{\alpha } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr) \\ &\qquad{}+J_{\kappa _{1}^{+}}^{\alpha }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+4J_{\kappa _{2}^{-}}^{\alpha }\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4J_{\kappa _{1}^{+}}^{\alpha } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}- \frac{2^{\beta -1}\Gamma (\beta +1)}{6 ( \kappa _{4}-\kappa _{3} ) ^{\beta }} \biggl[J_{\kappa _{4}^{-}}^{\beta }\digamma \biggl(\kappa _{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+J_{\kappa _{4}^{-}}^{ \beta } \digamma \biggl(\kappa _{1},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+J_{\kappa _{3}^{+}}^{\beta } \digamma \biggl(\kappa _{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+J_{\kappa _{3}^{+}}^{\beta }\digamma \biggl(\kappa _{1}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4J_{\kappa _{4}^{-}}^{\beta } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4J_{\kappa _{3}^{+}}^{\beta } \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr]. \end{aligned}$$

Corollary 3

Under the assumption of Lemma 2, with \(\phi (t)=\frac{t^{\frac{\alpha }{k}}}{k\Gamma _{k}{(\alpha )}}\) and \(\psi (s)=\frac{s^{\frac{\beta }{k}}}{k\Gamma _{k}({\beta )}}\), then we obtain the following equality for k-Riemann–Liouville fractional integrals:

$$\begin{aligned} &\$(\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \\ &\quad=\frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4} \\ &\qquad{}\times \biggl\{ \int _{0}^{1} \int _{0}^{1} \biggl( \frac{t^{\frac{\alpha }{k}}}{2}- \frac{1}{3} \biggr) \biggl(\frac{s^{\frac{\beta }{k}}}{2}-\frac{1}{3} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}}{\partial t\,\partial {s}}\digamma \biggl( \frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr) \,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{t^{\frac{\alpha }{k}}}{2}- \frac{1}{3} \biggr) \biggl(\frac{1}{3}- \frac{s^{\frac{\beta }{k}}}{2} \biggr) \\ &\qquad{}\times\frac{\partial ^{2}}{\partial t\,\partial {s}}\digamma \biggl( \frac{1-t}{2} \kappa _{1}+\frac{1+t}{2}\kappa _{2},\frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{1}{3}- \frac{t^{\frac{\alpha }{k}}}{2} \biggr) \biggl(\frac{s^{\frac{\beta }{k}}}{2}- \frac{1}{3} \biggr) \\ &\qquad{}\times \frac{\partial ^{2}}{\partial t\,\partial {s}}\digamma \biggl( \frac{1+t}{2} \kappa _{1}+\frac{1-t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr)\,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl(\frac{1}{3}- \frac{t^{\frac{\alpha }{k}}}{2} \biggr) \biggl(\frac{1}{3}- \frac{s^{\frac{\beta }{k}}}{2} \biggr) \\ &\qquad{}\times \frac{\partial ^{2}}{\partial t\,\partial {s}}\digamma \biggl( \frac{1+t}{2} \kappa _{1}+\frac{1-t}{2}\kappa _{2},\frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr)\,ds\,dt \biggr\} , \end{aligned}$$

where

$$\begin{aligned} &\$(\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \\ &\quad= \frac{\digamma (\kappa _{1},\kappa _{3})+\digamma (\kappa _{2},\kappa _{4})+\digamma (\kappa _{2},\kappa _{3})+\digamma (\kappa _{1},\kappa _{4})}{36} \\ &\qquad{}+\frac{1}{9} \biggl[\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \kappa _{4} \biggr)+\digamma \biggl(\kappa _{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+ \digamma \biggl(\kappa _{1},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+4\digamma \biggl(\frac{\kappa _{2}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}+ \frac{2^{\frac{\alpha +\beta }{k}-2}\Gamma _{k}(\alpha +k)\Gamma _{k}(\beta +k)}{ ( \kappa _{2}-\kappa _{1} ) ^{\alpha } ( \kappa _{4}-\kappa _{3} ) ^{\beta }} \biggl[J_{\kappa _{2}^{-}, \kappa _{4}^{-}}^{\alpha,\beta,k}\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+J_{\kappa _{2}^{-},\kappa _{3}^{+}}^{\alpha,\beta,k}\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+J_{\kappa _{1}^{+},\kappa _{4}^{-}}^{\alpha,\beta,k}\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+J_{\kappa _{1}^{+},\kappa _{3}^{+}\phi,\psi }^{\alpha,\beta,k} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}- \frac{2^{\frac{\alpha }{k}-1}\Gamma _{k}(\alpha +k)}{6 ( \kappa _{2}-\kappa _{1} ) ^{\frac{\alpha }{k}}} \biggl[J_{\kappa _{2}^{-}}^{\alpha,k}\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr)+J_{\kappa _{2}^{-}}^{ \alpha,k} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+J_{\kappa _{1}^{+}}^{\alpha,k} \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{4} \biggr) \\ &\qquad{}+J_{\kappa _{1}^{+}}^{\alpha,k}\digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\kappa _{3} \biggr)+4J_{\kappa _{2}^{-}}^{ \alpha,k}\digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4J_{\kappa _{1}^{+}}^{\alpha,k} \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr] \\ &\qquad{}- \frac{2^{\frac{\beta }{k}-1}\Gamma _{k}(\beta +k)}{6 ( \kappa _{4}-\kappa _{3} ) ^{\frac{\beta }{k}}} \biggl[J_{\kappa _{4}^{-}}^{\beta,k}\digamma \biggl( \kappa _{2}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+J_{\kappa _{4}^{-}}^{\beta,k} \digamma \biggl(\kappa _{1}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+J_{\kappa _{3}^{+}}^{\beta,k} \digamma \biggl(\kappa _{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \\ &\qquad{}+J_{\kappa _{3}^{+}}^{\beta,k}\digamma \biggl(\kappa _{1}, \frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4J_{\kappa _{4}^{-}}^{\beta,k} \digamma \biggl(\frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr)+4J_{\kappa _{3}^{+}}^{\beta,k} \digamma \biggl( \frac{\kappa _{1}+\kappa _{2}}{2},\frac{\kappa _{3}+\kappa _{4}}{2} \biggr) \biggr]. \end{aligned}$$

4 Simpson type inequalities for generalized double fractional integrals

In this section, we present some Simpson-type inequalities for generalized fractional integrals.

Theorem 3

We assume that the conditions of Lemma 2hold. If the mapping \(\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s} \vert \) is convex on , then we have the following inequality for generalized fractional integrals:

$$\begin{aligned} & \bigl\vert \Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4\Lambda (1)\triangledown (1)} \biggl( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda (t)}{2}- \frac{\Lambda (1)}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown (s)}{2}- \frac{\bigtriangledown (1)}{3} \biggr\vert \,ds\,dt \biggr) \\ &\qquad{}\times \biggl[ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr], \end{aligned}$$

where \(\Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Lemma 2.

Proof

By taking modulus in Lemma 2, we obtain

$$\begin{aligned} & \bigl\vert \Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4\Lambda (1)\bigtriangledown (1)} \\ &\qquad{}\times \biggl\{ \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}-\frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({1})}{3}-\frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\qquad{}+ \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({1})}{3}-\frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \biggr\} . \end{aligned}$$
(4.1)

Since the mapping \(|\frac{\partial \digamma }{\partial t\,\partial s} |\) is co-ordinated convex on , we obtain

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad\leq \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert + \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr)\,ds\,dt. \end{aligned}$$
(4.2)

Similarly, we obtain

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert \end{aligned}$$
(4.3)
$$\begin{aligned} &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad\leq \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({1})}{3}-\frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert + \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr)\,ds\,dt, \\ & \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert \biggl\vert \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad\leq \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \biggl( \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert + \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr)\,ds\,dt \end{aligned}$$
(4.4)

and

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert \biggl\vert \biggl(\frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad\leq \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert \biggl\vert \biggl( \frac{\bigtriangledown ({1})}{3}-\frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert \biggl( \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert \\ &\qquad{}\times \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert + \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert \\ &\qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr)\,ds\,dt. \end{aligned}$$
(4.5)

Using the inequalities (4.2)–(4.5) in (4.1), the proof is completed. □

Corollary 4

If we take \(\phi (t)=t\) and \(\psi (s)=s\) in Theorem 3, then Theorem 3reduces to [15, Theorem 3].

Corollary 5

In Theorem 3, if we use \(\phi (t)=\frac{t^{\alpha }}{\Gamma {(\alpha )}}\) and \(\psi (s)=\frac{s^{\beta }}{\Gamma (\beta )}\), then we obtain the following inequality for Riemann–Loiuville fractional integrals:

$$\begin{aligned} & \bigl\vert \Omega (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad \leq \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4} \\ &\qquad{}\times \biggl( \frac{\alpha }{\alpha +1} \biggl( \frac{2}{3} \biggr) ^{ \frac{1}{\alpha }+1}+\frac{1}{2(\alpha +1)}- \frac{1}{3} \biggr) \biggl( \frac{\beta }{\beta +1} \biggl( \frac{2}{3} \biggr) ^{\frac{1}{\beta }+1}+ \frac{1}{2(\beta +1)}- \frac{1}{3} \biggr) \\ & \qquad{}\times \biggl[ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr], \end{aligned}$$

where \(|\Omega (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})|\) is defined as in Corollary 2.

Corollary 6

If we take \(\phi (t)=\frac{t^{\frac{\alpha }{k}}}{k\Gamma _{k}{(\alpha )}}\) and \(\psi (s)=\frac{s^{\frac{\beta }{k}}}{k\Gamma _{k}{(\beta )}}\) in Theorem 3, we obtain the following inequality for k-Riemann–Louville fractional integrals:

$$\begin{aligned} & \bigl\vert \$(\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4} \biggl( \frac{\alpha }{\alpha +k} \biggl( \frac{2}{3} \biggr) ^{ \frac{k}{\alpha }+1}+\frac{k}{2(\alpha +k)}- \frac{1}{3} \biggr) \\ &\qquad{}\times \biggl( \frac{\beta }{\beta +k} \biggl( \frac{2}{3} \biggr) ^{\frac{k}{\beta }+1}+ \frac{k}{2(\beta +k)}- \frac{1}{3} \biggr) \\ &\qquad{}\times \biggl[ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert + \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert \biggr], \end{aligned}$$

where \(\$(\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Corollary 3.

Theorem 4

Suppose that the assumptions of Lemma 2hold. If the mapping \(\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s} \vert ^{q}\) is co-ordinated convex on Δ, then we have the following inequality for generalized fractional integrals:

$$\begin{aligned} & \bigl\vert \Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{4\Lambda (1)\bigtriangledown (1)} \\ &\qquad{}\times \biggl[ \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \frac{ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \frac{\bigtriangledown ({1})}{3}-\frac{\bigtriangledown ({s})}{2} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \frac{3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \frac{3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{1} \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \frac{9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}} \biggr], \end{aligned}$$

where \(\Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Lemma 2and \(\frac{1}{p}+\frac{1}{q}=1\).

Proof

From Hölder’s inequality and co-ordinated convexity of \(|\frac{\partial ^{2}\digamma }{\partial t\,\partial s} |^{q}\), we have

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert \biggl\vert \biggl(\frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert \\ & \qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ & \quad\leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ & \qquad{}\times \biggl( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\partial ^{2}}{\partial {t}\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2} \kappa _{2},\frac{1-s}{2}\kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert ^{q}\,dtds \biggr)^{\frac{1}{q}} \\ & \quad\leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ & \qquad{}\times \int _{0}^{1} \int _{0}^{1} \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \qquad{}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}}\,ds\,dt \\ & \quad= \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{} \times \biggl( \frac{ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(4.6)

Similarly, we obtain

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \end{aligned}$$
(4.7)
$$\begin{aligned} &\qquad{} \times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr) \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \biggl( \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ & \qquad{}\times \biggl( \frac{3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}}, \\ & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ & \qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \biggl( \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr) \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \\ &\qquad{} \times \biggl( \frac{3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(4.8)

and

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \\ & \qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ & \quad\leq \biggl( \int _{0}^{1} \biggl\vert \biggl( \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr) \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{1} \biggl\vert \biggl(\frac{\bigtriangledown ({1})}{3}-\frac{\bigtriangledown ({s})}{2} \biggr) \biggr\vert ^{p} \,ds \biggr)^{\frac{1}{p}} \\ &\qquad{} \times \biggl( \frac{9 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \vert ^{q}+3 \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \vert ^{q}+ \vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{4}) \vert ^{q}}{16} \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(4.9)

Using the inequalities (4.6)–(4.9) in (4.1), we obtain the required result. □

Corollary 7

If we take \(\phi (t)=t\) and \(\psi (s)=s\) in Theorem 3, we have the following Simpson inequality for Riemann integrals:

$$\begin{aligned} & \bigl\vert \Upsilon (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \frac{(\kappa _{2}-\kappa _{1})(\kappa _{4}-\kappa _{3})}{144} \biggl(\frac{1+2^{p+1}}{3(p+1)} \biggr)^{\frac{2}{p}} \biggl(\frac{1}{16} \biggr)^{ \frac{1}{q}} \\ &\qquad{}\times \biggl[ \biggl( \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{2},\kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr], \end{aligned}$$

where \(\Upsilon (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Corollary 1.

Corollary 8

If we take \(\phi (t)=\frac{t^{\alpha }}{\Gamma {(\alpha )}}\) and \(\psi (s)=\frac{t^{\beta }}{\Gamma {(\beta )}}\) in Theorem 3, we obtain the following Simpson inequality for Riemann–Liouville fractional integrals:

$$\begin{aligned} & \bigl\vert \Omega (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \biggl( \int _{0}^{1} \biggl\vert \frac{t^{\alpha }}{2}- \frac{1}{3} \biggr\vert ^{p}\,dt \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{1} \biggl\vert \frac{s^{\alpha }}{2}- \frac{1}{3} \biggr\vert ^{p}\,ds \biggr)^{\frac{1}{p}} \biggl(\frac{1}{16} \biggr)^{\frac{1}{q}} \\ &\qquad{}\times \biggl[ \biggl( \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{2},\kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr], \end{aligned}$$

where \(\Omega (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Corollary 2.

Corollary 9

If we take \(\phi (t)=\frac{t^{\frac{\alpha }{k}}}{k\Gamma _{k}{(\alpha )}}\) and \(\psi (s)=\frac{t^{\frac{\beta }{k}}}{k\Gamma _{k}{(\beta )}}\) in Theorem 3, we obtain the following Simpson inequality for k-Riemann–Liouville fractional integrals:

$$\begin{aligned} & \bigl\vert \$(\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad\leq \biggl( \biggl\vert \frac{t^{\frac{\alpha }{k}}}{2}-\frac{1}{3} \biggr\vert \,dt \biggr)^{\frac{1}{p}} \biggl( \biggl\vert \frac{s^{\frac{\beta }{k}}}{2}-\frac{1}{3} \biggr\vert \,ds \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl[ \biggl( \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{2},\kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{}+ \biggl(9 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}( \kappa _{1},\kappa _{3}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{4}) \biggr\vert ^{q}+3 \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr], \end{aligned}$$

where \(\$(\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Corollary 3.

Theorem 5

Suppose that the assumptions of Lemma 2hold. If the mapping \(\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s} \vert ^{q}\), \(q>1\), is co-ordinated convex on Δ, then we have the following inequality for generalized fractional integrals:

$$\begin{aligned} & \bigl\vert \Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4}) \bigr\vert \\ &\quad \leq \frac{(\kappa _{4}-\kappa _{3})(\kappa _{2}-\kappa _{1})}{\Lambda (1)\bigtriangledown (1)} \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}-\frac{\Lambda ({1})}{3} \biggr\vert \,dt \biggr)^{1-\frac{1}{q}} \biggl( \biggl\vert \frac{\bigtriangledown ({s})}{2}-\frac{\bigtriangledown ({1})}{3} \biggr\vert \,ds \biggr)^{1-\frac{1}{q}} \\ & \qquad{}\times \biggl\{ ( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}-\frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ & \qquad{}\times \biggl[ \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ &\qquad{} + \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}} \\ &\qquad{} + ( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ &\qquad{} \times \biggl[ \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ &\qquad{} + \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}} \\ &\qquad{} + ( \int _{0}^{1} \int _{0}^{1} ( \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ & \qquad{}\times \biggl[ \biggl( \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}} \\ & \qquad{}+ ( \int _{0}^{1} \int _{0}^{1} ( \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \\ & \qquad{}\times \biggl[ \biggl( \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \qquad{} + \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2},\kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}} \biggr\} , \end{aligned}$$

where \(\Re (\kappa _{1},\kappa _{2};\kappa _{3},\kappa _{4})\) is defined as in Lemma 2.

Proof

Using the power mean inequality and coordinate-convexity of \(|\frac{\partial ^{2}\digamma }{\partial t\,\partial s} |^{q}\), we have

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ &\qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+ \frac{1+t}{2}\kappa _{2},\frac{1-s}{2} \kappa _{3}+ \frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \,dt \biggr)^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \,ds \biggr)^{1-\frac{1}{q}} \\ & \qquad{}\times \biggl( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ & \qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert ^{q}\,dtds \biggr)^{\frac{1}{q}} \\ & \quad\leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \,dt \biggr)^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \,ds \biggr)^{1-\frac{1}{q}} \\ & \qquad{}\times ( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ &\qquad{} \times \biggl[ \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \qquad{}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}}. \end{aligned}$$
(4.10)

Similarly, we obtain

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \end{aligned}$$
(4.11)
$$\begin{aligned} & \qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1-t}{2}\kappa _{1}+\frac{1+t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ & \quad\leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \,dt \biggr)^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \,ds \biggr)^{1-\frac{1}{q}} \\ &\qquad{} \times ( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ &\qquad{} \times \biggl[ \biggl( \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \quad\qquad{}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}}, \\ & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ &\qquad{} \times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1-s}{2} \kappa _{3}+\frac{1+s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ &\quad \leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \,dt \biggr)^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \,ds \biggr)^{1-\frac{1}{q}} \\ & \qquad{}\times ( \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({t})}{2}- \frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ &\qquad{} \times \biggl[ \biggl( \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}}, \end{aligned}$$
(4.12)

and

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \\ & \qquad{}\times \biggl\vert \frac{\partial ^{2}}{\partial t\,\partial {s}} \digamma \biggl(\frac{1+t}{2}\kappa _{1}+\frac{1-t}{2}\kappa _{2}, \frac{1+s}{2} \kappa _{3}+\frac{1-s}{2}\kappa _{4} \biggr) \biggr\vert \,ds\,dt \\ & \quad\leq \biggl( \int _{0}^{1} \biggl\vert \frac{\Lambda ({1})}{3}- \frac{\Lambda ({t})}{2} \biggr\vert \,dt \biggr)^{1-\frac{1}{q}} \biggl( \int _{0}^{1} \biggl\vert \frac{\bigtriangledown ({1})}{3}- \frac{\bigtriangledown ({s})}{2} \biggr\vert \,ds \biggr)^{1-\frac{1}{q}} \\ & \qquad{}\times ( \int _{0}^{1} \int _{0}^{1} ( \biggl\vert \frac{\Lambda ({t})}{2}-\frac{\Lambda ({1})}{3} \biggr\vert \biggl\vert \frac{\bigtriangledown ({s})}{2}- \frac{\bigtriangledown ({1})}{3} \biggr\vert \\ & \qquad{}\times \biggl[ \biggl( \biggl(\frac{1+t}{2} \biggr) \biggl( \frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1+t}{2} \biggr) \biggl(\frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{1},\kappa _{4}) \biggr\vert ^{q} \\ & \qquad{}+ \biggl(\frac{1-t}{2} \biggr) \biggl(\frac{1+s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{3}) \biggr\vert ^{q}+ \biggl(\frac{1-t}{2} \biggr) \biggl( \frac{1-s}{2} \biggr) \biggl\vert \frac{\partial ^{2}\digamma }{\partial t\,\partial s}(\kappa _{2}, \kappa _{4}) \biggr\vert ^{q} \biggr]\,ds\,dt \biggr)^{\frac{1}{q}}. \end{aligned}$$
(4.13)

By substituting the inequalities (4.10)–(4.12) in (4.1), we obtain the desired result. □

Remark 1

By special choices of the functions ϕ and ψ in Theorem 5, one can obtain several new Simpson-type inequalities. These are left to the reader.

5 Concluding remarks

In this paper, we present several generalized fractional Simpson-type inequalities for functions whose partial derivatives in absolute value are co-ordinated convex functions. We also show that the results given here are a strong generalization of some already published ones. In the forthcoming papers, researchers can use the techniques of this work to obtain similar inequalities for other kinds of co-ordinated convexity.

Availability of data and materials

Data sharing not applicable to this paper as no data sets were generated or analysed during the current study.

References

  1. Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Collect. 12(4), Article ID 9 (2009)

    Google Scholar 

  2. Budak, H., Kara, H., Kapucu, R.: New midpoint type inequalities for generalized fractional integral. Comput. Methods Differ. Equ. 10(1), 93–108 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Budak, H., Pehlivan, E., Kösem, P.: On new extensions of Hermite–Hadamard inequalities for generalized fractional integrals. Sahand Commun. Math. Anal. 18(1), 73–88 (2021)

    MATH  Google Scholar 

  4. Dragomir, S.S.: On Simpson’s quadrature formula for Lipschitzian mappings and applications. Soochow J. Math. 25, 175–180 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Dragomir, S.S., Agarwal, R.P., Cerone, P.: On Simpson’s inequality and applications. J. Inequal. Appl. 5, 533–579 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Du, T., Li, Y., Yang, Z.: A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput. 293, 358–369 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Du, T.S., Luo, C.Y., Cao, Z.J.: On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 29(7), Article ID 2150188 (2021)

    Article  Google Scholar 

  8. Du, T.S., Zhou, T.C.: On the fractional double integral inclusion relations having exponentila kernels via interval-valued co-ordinated convex mappings. Chaos Solitons Fractals 156, Article ID 111846 (2020)

    Article  Google Scholar 

  9. Ertuğral, F., Sarikaya, M.Z.: Simpson type integral inequalities for generalized fractional integral. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(4), 3115–3124 (2019)

    Article  MathSciNet  Google Scholar 

  10. Farid, G., Rehman, A., Zahra, M.: On Hadamard inequalities for k-fractional integrals. Nonlinear Funct. Anal. Appl. 21(3), 463–478 (2016)

    MATH  Google Scholar 

  11. Hussain, S., Qaisar, S.: More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 5, Article ID 77 (2016)

    Article  Google Scholar 

  12. Kavurmaci, H., Akdemir, A.O., Set, E., Sarikaya, M.Z.: Simpson’s type inequalities for m-and \((\alpha,m)\)- geometrically convex functions. Konuralp J. Math. 2(1), 90–101 (2014)

    MATH  Google Scholar 

  13. Liu, B.Z.: An inequality of Simpson type. Proc. R. Soc. A 461, 2155–2158 (2005)

    Article  MathSciNet  Google Scholar 

  14. Luo, C.Y., Yu, B., Zhang, Y., Du, T.S.: Certain bounds related to multi-parametrized k-fractional integral inequalities and their applications. IEEE Access 7, 12466–124673 (2019)

    Google Scholar 

  15. Ozdemir, M.E., Akdemir, A.O., Kavurmaci, H.: On the Simpson’s inequality for convex functions on the coordinates. Turk. J. Anal. Number Theory 2(5), 165–169 (2014)

    Article  Google Scholar 

  16. Pecaric, J., Varosanec, S.: A note on Simpson’s inequality for functions of bounded variation. Tamkang J. Math. 31(3), 239–242 (2000)

    Article  MathSciNet  Google Scholar 

  17. Qaisar, S., He, C.J., Hussain, S.: A generalizations of Simpson’s type inequality for differentiable functions using \((\alpha,m)\)-convex functions and applications. J. Inequal. Appl. 2013, 13 (2013)

    Article  MathSciNet  Google Scholar 

  18. Sarikaya, M.Z., Ertugral, F.: On the generalized Hermite–Hadamard inequalities. In: Annals of the University of Craiova. Mathematics and Computer Science Series, vol. 47, pp. 193–213 (2020)

    MATH  Google Scholar 

  19. Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 60, 2191–2199 (2010)

    Article  MathSciNet  Google Scholar 

  20. Sarikaya, M.Z., Set, E., Özdemir, M.E.: On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Collect. 13(2), Article ID 2 (2010)

    MATH  Google Scholar 

  21. Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9, Article ID 1 (2013)

    Article  MathSciNet  Google Scholar 

  22. Sarikaya, M.Z., Tunc, T., Budak, H.: Simpson’s type inequality for F-convex function. Facta Univ., Ser. Math. Inform. 32(5), 747–753 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Set, E., Ozdemir, M.E., Sarikaya, M.Z.: On new inequalities of Simpson’s type for quasi-convex functions with applications. Tamkang J. Math. 43(3), 357–364 (2012)

    Article  MathSciNet  Google Scholar 

  24. Set, E., Sarikaya, M.Z., Uygun, N.: On new inequalities of Simpson’s type for generalized quasi-convex functions. Adv. Inequal. Appl. 2017, Article ID 3 (2017)

    Article  Google Scholar 

  25. Tseng, K.L., Yang, G.S., Dragomir, S.S.: On weighted Simpson type inequalities and applications. J. Math. Inequal. 1(1), 13–22 (2007)

    Article  MathSciNet  Google Scholar 

  26. Turkay, M.E., Sarikaya, M.Z., Budak, H., Yildirim, H.: Some Hermite–Hadamard type inequalities for co-ordinated convex functions via generalized fractional integrals. J. Appl. Math. Comput. 2(1), 1–21 (2021)

    Google Scholar 

  27. Ujevic, N.: Double integral inequalities of Simpson type and applications. J. Appl. Math. Comput. 14(1–2), 213–223 (2004)

    Article  MathSciNet  Google Scholar 

  28. Yang, Z.Q., Li, Y.J., Du, T.: A generalization of Simpson type inequality via differentiable functions using \((s,m)\)-convex functions. Ital. J. Pure Appl. Math. 35, 327–338 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

SK: computation, writing original draft. HB: supervision, writing-review, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hüseyin Budak.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Budak, H. On fractional Simpson type integral inequalities for co-ordinated convex functions. J Inequal Appl 2022, 94 (2022). https://doi.org/10.1186/s13660-022-02830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02830-z

MSC

Keywords