- Research
- Open access
- Published:
Refinements of some classical inequalities via superquadraticity
Journal of Inequalities and Applications volume 2022, Article number: 86 (2022)
Abstract
Some new refined versions of the Jensen, Minkowski, and Hardy inequalities are stated and proved. In particular, these results both generalize and unify several results of this type. Some results are also new for the classical situation.
1 Introduction
Classical inequalities are of great importance for the development of several areas both within the mathematical sciences and beyond. Hence, it is not surprising that the area “Inequalities” has been developed to an independent area of increasing interest. Several wonderful generalizations, sharpening, and applications have been presented. In particular, fairly lately even refinements of these inequalities have been derived. See e.g. [1–4, 12, 14, 20] and the references given there.
In this paper we derive new such refinements of some classical inequalities. More exactly, the main content of this paper is as follows:
In Sect. 2 some new refinements of Jensen’s inequality can be found (see Theorems 2.3 and 2.4). In Sect. 3 we state, prove, and apply some new refinements of the Minkowski inequality and new Beckenbach–Dresher type inequality (see Theorems 3.3 and 3.6). In Sect. 4 we derive some corresponding refinements of Hardy’s inequality even in a Banach function space setting. Finally, in Sect. 5 we give some concluding remarks and results, which in particular put our results to a more general context.
In all our results we use the concept of superquadratic function, so we finish this section with the following crucial information.
Definition 1.1
(See [2, Definition 2.1])
A function \(\varphi : [0,\infty )\rightarrow {\mathbf{R}}\) is superquadratic provided that for all \(x\geq 0\) there exists a constant \(C_{x}\in {\mathbf{R}}\) such that
for all \(y\geq 0\).
We say that f is subquadratic if −f is superquadratic.
We cite the following result, which is very useful in the proofs of our main results (see [2, 3], and [21] for further details).
Theorem 1.2
(See [2, Theorem 2.3])
Let \((\Omega ,\mu )\) be a probability measure space. The inequality
holds for all probability measures μ and all nonnegative μ-integrable functions f if and only if φ is superquadratic. Moreover, (1) holds in the reversed direction if and only if φ is subquadratic.
If φ is a nonnegative superquadratic function, then φ is convex (see [2, Lemma 2.2]) and inequality (1) is a refinement of the Jensen inequality for a convex function which states
Convention. Throughout this paper we assume that f is a measurable function on the considered measure space.
2 Refinements of Jensen’s inequality
We need the following useful special case of Theorem 1.2.
Lemma 2.1
Let φ be a superquadratic function, and let t be a nonnegative measurable function such that \(T=\int _{\Omega} t(s)\,\mathrm{d}s\). The inequality
holds for all nonnegative functions f, where \(\overline{f}=\frac {1}{T}\int _{\Omega}t(s)f(s)\,\mathrm{d}s\). Moreover, (2) holds in the reversed direction if φ is subquadratic.
Proof
Set \(\mathrm{d}\mu (s)=\frac {t(s)}{T} \,\mathrm{d}s\). Then (2) follows from (1). The proof is complete. □
Example 2.2
Let φ be a superquadratic function, let \(x_{1}\), \(x_{2}\) be two nonnegative real numbers and \(\lambda \in [0,1]\). Then
Moreover, (3) holds in the reversed direction if φ is subquadratic.
In fact, by taking \(\Omega =[0,1]\), \(t(s)=1\), and
we see that (3) follows from (2).
Consider the nonnegative measurable functions α and β satisfying
Denote
Our first main result in this section reads as follows.
Theorem 2.3
Let \(\varphi : [0,\infty )\rightarrow {\mathbf{R}}\) be a superquadratic function, and let f be a nonnegative and measurable function. Then the following refined variant of Jensen type inequality
holds, where
Moreover, (4) holds in the reversed direction if φ is subquadratic.
Proof
Set \(x_{1}=\overline{f}_{Q}\), \(x_{2}=\overline{f}_{R}\), and \(\lambda =\frac {Q}{T}\). It is clear that
Then from Example 2.2 it follows that
Moreover, using the fact that
we obtain inequality (4). The proof is complete since the proof of the reversed inequality is similar to the proof above, and we can omit the details. □
By making a further restriction of φ, we can also state the following version of Theorem 2.3.
Theorem 2.4
Let \(\varphi : [0,\infty )\rightarrow {\mathbf{R}}\) be a nondecreasing and superquadratic function such that
Then the following refined variant of Jensen-type inequality
holds for all nonnegative measurable functions f, where
Proof
We proved the first inequality \(\varphi (\overline{f} )\leq I \) in Theorem 2.3, so we only need to prove the second inequality.
By applying Lemma 2.1 in the first two terms of I, we get that
where
and
To finish the proof, it is enough to prove that
Now, by using the triangle inequality, the nondecreasing property of φ, and (5), we obtain that
and
Hence (6) follows as a sum of the above two inequalities. The proof is complete. □
3 Refinements of continuous Minkowski inequality
In the following discussion we consider the measurable spaces \((X, \mu )\), \((X, \lambda )\), and \((Y, \nu )\). Moreover, dμ, dλ, and dν are notations for \(\mathrm{d}\mu (x)\), \(\mathrm{d}\lambda (x)\), and \(\mathrm{d}\nu (y)\), respectively. First, we remind about the following interesting refinement of the Hölder inequality by G. Sinnamon [21, Theorem 1.1].
Lemma 3.1
Let \(p\geq 2\) and \(\frac {1}{p}+\frac {1}{q}=1\). Then
holds for any two nonnegative ν-measurable functions f and g, where
Moreover, (7) holds in the reversed direction if \(1< p\leq 2\).
The continuous Minkowski inequality reads as follows (see [17, p. 41]).
Theorem 3.2
Let f be a nonnegative measurable function on \(X\times Y\) with respect to the measure \(\mu \times \nu \), and let \(p\geq 1\). Then
Our first main result in this section is the following refinement of the Minkowski inequality.
Theorem 3.3
Let f be a nonnegative measurable function on \(X\times Y\) with respect to the measure \(\mu \times \nu \), and let \(p\geq 2\). Then
where
If \(1< p\leq 2\), then (8) holds in the reversed direction.
Proof
Let \(H(x)=\int _{Y} f(x,y)\,\mathrm{d}\nu \). Let \(p\geq 2\) and \(\frac {1}{p}+\frac {1}{q}=1\). Using Lemma 3.1, by replacing \(f(x)\) and \(g(x)\) with \(f(x,y)\) and \(H^{p-1}(x)\), respectively, we get that
where
We integrate inequality (9) over Y, apply Fubini’s theorem on the left side of the inequality to find that
Since \(H(x)=\int _{Y} f(x,y)\,\mathrm{d}\nu \) and \(1-\frac {1}{q}=\frac {1}{p}\), we deduce that
The proof of the case \(1< p\leq 2\) is similar so we omit the details and the proof is complete. □
Next, we point out the following discrete version of the above theorem.
Corollary 3.4
Let \(p\geq 2\) and let \(f_{1}, f_{2},\ldots,f_{n}\) be nonnegative μ-measurable functions. Then
where
If \(1< p\leq 2\), then (11) holds in the reversed direction.
Proof
Let \(Y=\bigcup_{i=1}^{n} Y_{i}\), where \(Y_{i}=[i-1,i)\), for all \(i=1,\ldots,n\), and let \(\mathrm{d}\nu =\mathrm{d}y\) be the Lebesgue measure.
Define \(f(x,y)=\sum_{i=1}^{n} f_{i}(x)\chi _{Y_{i}}(y)\). Then
and
where
Therefore, by applying Theorem 3.3, one can complete the proof. □
The continuous form of the Beckenbach–Dresher inequality was first derived in [9, Theorem 3.1] (see also [22]). It has the following form.
Theorem 3.5
Let f and u be nonnegative measurable functions on \(X\times Y\) with respect to the measures \(\mu \times \nu \) and \(\lambda \times \nu \), respectively, and let
-
(i)
\(s\geq 1\), \(q \leq 1\leq p\), \((q\neq0)\) or
-
(ii)
\(s\leq 0\), \(p \leq 1\leq q\), \((p\neq0)\).
Then
provided all occurring integrals exist.
If \(0< s\leq 1\), \(p\leq 1\), and \(q\leq 1\) \((p, q \neq0)\), then inequality (12) is reversed.
Our new result related to the continuous Beckenbach–Dresher inequality reads as follows.
Theorem 3.6
Let f and u be nonnegative measurable functions on \(X\times Y\) with respect to the measures \(\mu \times \nu \) and \(\lambda \times \nu \), respectively, and let \(1< q\leq 2\leq p\), \(s\geq 1\). Then
where
Proof
Let \(1< q\leq 2\leq p\). Then, in view of Theorem 3.3, for \(p\geq 2\) and \(1< q\leq 2\), we have that
where \(a^{\frac{1}{s}}= (\int _{X} (f^{p}-h^{p} )\,\mathrm{d} \mu )^{\frac{1}{p}}\) and \(b^{\frac{1}{1-s}}= (\int _{X} (u^{q}-r^{q} ) \,\mathrm{d}\lambda )^{\frac{1}{q}}\). In the last inequality we used the reverse Hölder inequality for two functions a and b when one exponent \((1-s)\) is negative and the other exponent s is positive. The proof is complete. □
By using Theorem 3.6 and similar arguments as those in the proof of Corollary 3.4, we can also derive the following discrete version.
Corollary 3.7
Let \(1< q\leq 2\leq p\), \(s\geq 1\), \(f_{i}, u_{i}: X\rightarrow [0,\infty )\), \(f_{i}^{p}, u_{i}^{q}\in L^{1}\) for all \(i=1,\ldots, n\). Then
where
As an application of Corollary 3.7, by making the substitution \(s=\frac {p}{p-q}\), \(p\neq q\), we obtain the following Beckenbach–Dresher type inequality.
Example 3.8
Let \(1< q\leq 2\leq p\), \(q\neq p, f_{i}\), \(u_{i}: X\rightarrow [0,\infty )\), \(f_{i}^{p}, u_{i}^{q}\in L^{1}\) for all \(i=1,\ldots, n\). Then
where \(h_{i}\) and \(r_{i}\) are as in Corollary 3.7.
4 Refinements of Hardy’s inequality
The results in this section may be seen as complements and further generalizations of some results in [14] and [19]. In [6, Theorem 2.1] the following Hardy-type inequality was given.
Theorem 4.1
Let \(0< b\leq \infty \), \(-\infty \leq a< c\leq \infty \), let φ be a positive convex function on \((a,c)\) and E be a Banach function space on \([0,b)\). If E has the Fatou property and \(a< f(x)< c\), then
provided that both sides have sense.
To prove our main results, we need the following lemma (see [13, 18]).
Lemma 4.2
(See [18])
Assume that the Banach function space E has the Fatou property. Let \(f(x,t)\geq 0\) on \(\Omega \times T\) and let for almost every \(t\in T\), \(f(x,t)\in E\). If the function \(\|f^{r}(x,t)\|_{E}^{\frac{1}{r}}\) is integrable on T, then, for \(r\geq 1\),
Our first main result in this section reads as follows.
Theorem 4.3
Let \(0< b\leq \infty \), \(-\infty \leq a< c\leq \infty \), let φ be a positive and superquadratic function on \((a,c)\) and E be a Banach function space on \([0,b)\). If E has the Fatou property and \(a< f(x)< c\), then
provided that both sides have sense.
Proof
Let \(D=\{(x,t): 0\leq x\leq b, 0\leq t\leq x\}\). Then
By using Theorem 1.2, the lattice property of E, Lemma 4.2 with \(r=1\), and (13), we find that
The proof is complete. □
Here we just give one example of application of Theorem 4.3 (cf. [19, Proposition 2.1] and [14, Theorem 2.3]).
Corollary 4.4
Let \(0< b\leq \infty \), \(u: (0,b)\rightarrow {\mathbf{R}}\) be a nonnegative weight function such that the function \(x\mapsto \frac{u(x)}{x^{2}}\) is locally integrable on \((0,b)\), and define the weight function v by
If the real-valued function φ is positive and superquadratic on \((a, c)\), \(0\leq a< c\leq \infty \), then the inequality
holds for all f with \(a< f(x)< c\), \(0< x\leq b\).
Proof
It is known that \(E=L^{1} ((0,b), \frac{u(x)}{x}\,\mathrm{d}x )\) satisfy the Fatou property (see e.g. [7]). Moreover,
Therefore, (14) follows from (15) and Theorem 4.3. The proof is complete. □
Next we state a “dual” version of Theorem 4.3. Note that the natural dual operator of the Hardy operator \(H:H(f)(x)=\frac {1}{x}\int _{0}^{x} f(t)\,\mathrm{d}t\) is \(\hat{H}:\hat{H}(f)(x)=\int _{x}^{\infty}\frac {f(t)}{t}\,\mathrm{d}t\), but here we use its alternative \(H^{\ast}: H^{\ast}(f)(x)=x\int _{x}^{\infty}\frac {f(t)}{t^{2}} \,\mathrm{d}t\).
Theorem 4.5
Let \(-\infty \leq a< c\leq \infty \), let φ be a positive and superquadratic function on \((a, c)\) and E be a Banach function space on \([b, \infty )\), \(b\geq 0\), with the Fatou property. Then, whenever \(a< f(x)< c\),
Proof
Let \(D=\{(x,t): b\leq x, x\leq t<\infty \}\). Then
By using (16) and the same arguments as in the proof of Theorem 4.3 we obtain that
The proof is complete. □
We give the following example of application of Theorem 4.5 (cf. [19, Proposition 2.2]).
Corollary 4.6
Let \(0\leq b<\infty \), \(u: (b,\infty )\rightarrow {\mathbf{R}}\) be a nonnegative locally integrable function on \((b, \infty )\), and define the function v by
If the real-valued function φ is positive and superquadratic on \((a, c)\), \(0\leq a< c\leq \infty \), then the inequality
holds for all f with \(a< f(x)< c\), \(x\geq b\).
Proof
It is known that \(E=L^{1} ([b,\infty ), \frac{u }{x}\,\mathrm{d}x )\) satisfy the Fatou property (see e.g. [7]). Moreover,
Therefore, (17) follows from (18) and Theorem 4.5, so the proof is complete. □
5 Concluding remarks and results
Remark 5.1
The natural “turning point” in Minkowski and Beckenbach–Dresher type inequalities is 1, but in our versions of these inequalities, we have proved the first inequalities of this type with turning point 2 (see Theorem 3.3 and 3.6).
Our first new result of this type in this section is the following improved version of the inequality in [23, Theorem 1.2].
Proposition 5.2
Let p, s, and t be different real numbers such that \(s\geq 2\), \(t\geq 2\) and \((s-t)/(p-t)>1\). Then, for any positive μ-measurable functions \(f_{1},\ldots, f_{n}\),
where
Moreover, if \(p\neq 0\), \(1< t<2\), \(1< s<2\), and \((s-t)/(p-t)<1\), then (19) holds in the reversed direction.
Proof
Let \(s\geq 2\), \(t\geq 2\) such that \(\frac {s-t}{p-t}>1\). Then, by Hölder’s inequality,
In view of Corollary 3.4, the above inequality becomes
where
The proof of the other case is similar, so we omit the details and the proof is complete. □
Remark 5.3
In [23, Theorem 1.2] only the case \(n=2\) was considered, so Proposition 5.2 is both a generalization and refinement of this result.
Proposition 5.4
Suppose that ν is a measure, and \(f_{1}\) and \(f_{2}\) are nonnegative measurable functions such that \(f_{i}^{p}\) are ν-integrable for \(i=1,2\).
-
(a)
If \(p>0\), then
$$ \Biggl\Vert \sum_{i=1}^{2} f_{i} \Biggr\Vert _{L^{p}(\nu )}^{p}\leq \Biggl(\sum _{i=1}^{2} \Vert f_{i} \Vert _{L^{p}(\nu )} \Biggr)^{p}+ \frac {1}{2}\sum _{i=1}^{2} \Vert f_{i}+h_{i} \Vert _{L^{p}(\nu )}^{p}. $$ -
(b)
If \(p\geq \frac {1}{2}\), then
$$ \Biggl\Vert \sum_{i=1}^{2} f_{i} \Biggr\Vert _{L^{p}(\nu )}^{p}\leq \Biggl(\sum _{i=1}^{2} \Vert f_{i} \Vert _{L^{p}(\nu )} \Biggr)^{p}+ \frac {1}{2}\sum _{i=1}^{2} \bigl( \Vert f_{i}+h_{i} \Vert _{L^{p}(\nu )}^{p}- \Vert f_{i} \Vert _{L^{p}(\nu )}^{p} \bigr), $$where
$$ h_{i}= \biggl\vert g_{i}^{p}- \frac {f_{i}^{p} \Vert g_{i} \Vert _{L^{p}(\nu )}^{p}}{ \Vert f_{i} \Vert _{L^{p}(\nu )}^{p}} \biggr\vert ^{\frac{1}{p}},\quad g_{i}= (f_{1}+f_{2})-f_{i}, i=1,2. $$
Proof
In view of [2, Theorem 4.3], we have
for \(p>0\) and
for \(p\geq \frac{1}{2}\).
By substituting \(F=\frac {f_{2}^{p}}{f_{1}^{p}}\) and \(\mathrm{d}\mu =\frac {f_{1}^{p}}{\int f_{1}^{p}\,\mathrm{d}\nu} \,\mathrm{d}\nu \) in both of inequalities (20) and (21), we obtain that
for \(p>0\) and
for \(p\geq \frac{1}{2}\), where
By interchanging the role of \(f_{1}\) and \(f_{2}\) in the above discussion, we have that
for \(p>0\) and
for \(p\geq \frac{1}{2}\), where
Consequently, by taking the sum of inequalities (22) with (24) and (23) with (25), we get the results in (a) and (b). The proof is complete. □
Remark 5.5
The concept of superquadratic function was formally introduced in [2, 3] but this idea seems to be known even before (see e.g. [21] and the references therein).
Remark 5.6
The first important book in the area of inequalities was (the bible) [11], but after that more than 30 books or monographs in this area have been published.
Remark 5.7
Concerning Hardy-type inequalities in Sect. 4, the first result was proved in 1925 (see [10]). The dramatic history and prehistory up to 2007 is described in the book [15] (see also [20]). The corresponding history up to 2017 is given in detail in the book [16]. Our results in Sect. 4 are just one example of the fact that the development of the theory of this fascinating inequality still continues. For the development of classical inequalities in a continuous and/or Banach function space setting, we refer to [18] and the references given there, see also [5, 6], and [8].
Availability of data and materials
Not applicable.
References
Abramovich, S.: New inequalities related to superquadratic functions. Aequ. Math. 96, 201–219 (2021)
Abramovich, S., Jameson, G., Sinnamon, G.: Refining of Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roum. 47(95), 3–14 (2004)
Abramovich, S., Jameson, G., Sinnamon, G.: Inequalities for averages of convex and superquadratic functions. J. Inequal. Pure Appl. Math. 7(2), 70 (2004)
Banić, S., Pečarić, J., Varošanec, S.: Superquadratic functions and refinements of some classical inequalities. J. Korean Math. Soc. 45(2), 513–525 (2008)
Barza, S., Nikolova, L.: Carleson and Hardy-type inequalities in some Banach function spaces. Nonlinear Stud. 26(4), 755–766 (2019)
Barza, S., Nikolova, L., Persson, L.-E., Yimer, M.: Some Hardy-type inequalities in Banach function spaces. Math. Inequal. Appl. 24(4), 1001–1016 (2021)
Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)
Berezhnoi, E.I.: Inequalities with weights in function spaces. In: Function Spaces (Poznan, 1989). Teubner-Texte Math, vol. 120, pp. 75–79. Teubner, Stuttgart (1991)
Guljaš, B., Pearce, C.E.M., Pečarić, J.: Some generalizations of the Beckenbach-Dresher inequality. Houst. J. Math. 22(3), 629–638 (1996)
Hardy, G.H.: Notes on some points in the integral calculus. LX. An inequality between integrals. Messenger Math. 54, 150–156 (1925)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952) (1st edn. 1934)
Klaričić Bakula, M.: Jensen-Steffensen inequality for strongly convex functions. J. Inequal. Appl. 2018, 306 (2018)
Krein, S.C., Semenov, E.M., Petunin, J.U.I.: Interpolation of Linear Operators. Nauka, Moscow (1978) (Russian), English transl. in, Am. Math. Soc, Providence, 1982
Krulić, K., Pečarić, J., Pokaz, D.: Boas-type inequalities via superquadratic functions. J. Math. Inequal. 5(2), 275–286 (2011)
Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequalities, About Its History and Some Related Results. Vydavatelsky Servis Publishing House, Pilsen (2007)
Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type, 2nd edn. World Scientific, New Jersey (2017)
Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. Am. Math. Soc., Providence (2001)
Nikolova, L., Persson, L.-E., Varošanec, S.: A new look at classical inequalities involving Banach lattice norms. J. Inequal. Appl. 2017, 302 (2017)
Oguntuase, J.A., Persson, L.-E.: Refinement of Hardy’s inequalities via superquadratic and subquadratic functions. J. Math. Anal. Appl. 339, 1305–1312 (2008)
Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series. Longman, Harlow (1990)
Sinnamon, G.: Refining the Hölder and Minkowski inequalities. J. Inequal. Appl. 6, 633–640 (2001)
Varošanec, S.: A generalized Beckenbach-Dresher inequality and related results. Banach J. Math. Anal. 4(1), 13–20 (2010)
Zhao, C.J., Cheung, W.S.: On Minkowski’s inequality and its application. J. Inequal. Appl. 2011, 71 (2011)
Acknowledgements
The forth named author thanks International Science Program (ISP) in Uppsala, Sweden, for financial support. We thank both referees for good suggestions, which have improved the final version of this paper.
Funding
The publication charges for this manuscript are supported by a grant from the publication fund of UiT The Arctic University of Norway. Open access funding provided by UiT The Arctic University of Norway (incl University Hospital of North Norway).
Author information
Authors and Affiliations
Contributions
All the authors contributed equally and significantly in writing this paper. LEP analyzed and interpreted the results regarding the position in recent research, and he and MFY are the main authors concerning the results from Sects. 3, 4, and 5. LN’s and SV’s main contributions are in Sects. 2 and 3. MFY typed the manuscript. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Nikolova, L., Persson, LE., Varošanec, S. et al. Refinements of some classical inequalities via superquadraticity. J Inequal Appl 2022, 86 (2022). https://doi.org/10.1186/s13660-022-02821-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-022-02821-0