Skip to main content

Fixed points of single-valued and multi-valued mappings in sb-metric spaces

Abstract

In this paper, we have established some fixed point theorems in the context of strong b-metric spaces. For this purpose, Ciric type contraction for single-valued mapping and Nadler’s type Banach and Chatterjea contractions for set-valued mappings are applied to obtain fixed point and common fixed points. A simple and different technique has been used to obtain the results. Our results unify, extend and generalize the existence of corresponding present and conventional results existing in the literature of fixed point theory.

Introduction

To approximate the solutions of linear and nonlinear differential and integral equations, FP results provide delightful conditions in the study of mathematical analysis [25]. The theory of FP is a strange combination of geometry, topology and analysis, that’s why this theory has arisen as an effective and essential tool to study nonlinear phenomena [22]. This theory [13], is an energetic part of both pure and applied mathematics. Normally FP methods have been useful in diverse sectors such as game theory, biology, engineering, nonlinear programming, economics and theory of differential equations [28, 29, 32, 33]. From previous 20–30 years, the theory of FP was a thriving region of analysis for several arithmeticians.

In 1922, Banach [9] introduced a remarkable result in metricr FP theory investigated as “Banach contraction principle”. It is the influential research of modern exploration and is extensively perceived as an origin of fixed point theory in metric spaces. It not only ensures the existence but also guarantees the peculiarity of FP. In the same way this theorem provides an impressive illustration of FP in analysis.

Kannan [14], introduced Kannan contractive theorem to find FPs of mappings which are not continuous. Nadler [23] extended Banach’s contraction principle and proved an FP theorem for multivalued contraction. Chatterjea [10] contraction was also followed by a number of generalizations. Some other contractions are also studied by Abuloha et al. [1], Alghamdi et al. [3], Patle et al. [26] etc.

Due to wide applications of the Banach contraction principle [9], the study of the existence and uniqueness of FPs of a mapping and CFPs of two or more mappings has garnered a considerable attention. Many scholars put their efforts in this theory and gave new extensions of Banach and Nadler’s theorems in different directions.

Many branches of computer science and mathematics, for example theory of optimization, image processing and fractals [31, 34], rely heavily on the idea of Hausdorff distance. Hausdorff metric is an essential and very important concept, it is the greatest of all the distances from a point in one set to the closest point in the other set. This includes a way for studying “fixed point theory” of set-valued mappings in the spaces which have the structure of generalized metrics.

Bakhtin [8] proposed a domain where a weaker criterion was applied rather than the triangle inequality in 1989, with the purpose of generalizing the Banach contraction principle [9], which was used by Czerwic [12] significantly. These spaces were termed b-metric spaces (b-MS). For a nonempty set Ω and \(w\geq 1\) being a real-number, a function \(d: \Omega \times \Omega \rightarrow R^{+}\) is called b-metric. If axioms given below are fulfilled for all \(\mu, \nu, \xi \in \Omega \):

  1. 1.

    \(d ( \mu,\nu ) \geq 0\) and \(d ( \nu,\mu ) =0\) iff \(\mu =\nu \);

  2. 2.

    \(d ( \mu,\nu ) =d ( \nu,\mu )\);

  3. 3.

    \(d(\mu,\xi )\leq w [ d ( \mu,\nu ) +d(\nu,\xi ) ]\).

Then (\(\Omega,d\)) is called b-metric space.

A lot of work has been done in the above-mentioned spaces. Fixed point and common fixed point results for single-valued as well as multi-valued mappings have been investigated in b-metric spaces, for example see Afshari et al. [2], Ali et al. [4], Aydi et al. [5, 6], Kanwal et al. [1517], Karapinar et al. [1820], Ozyurt [24], Qawaqneh et al. [27] Shoaib et al. [30] and the references therein.

Kirk and Shahzad [21] proposed the concept of strong b-MSs in 2019 by leveraging the disparity in the midst of the classes of b-MSs and MSs.

Strong b-MSs have the benefit over b-MSs in that those open balls are open in the induced topology, and therefore they share a number of features with the traditional metric space. The aim of the present paper is to formulate and prove FP theorems of contractive mappings in sb-MSs. In Theorem 3.1, Ciric [11] type contraction is applied to find a fixed point of a single-valued map and give extension in sb-MS. Theorem 3.2 and Theorem 3.3 generalize Nadler’s fixed-point theorem [23] by using Banach [9] type and Chatterjea [10] type set-valued contractions in the context of complete b-MSs. The paper is organized as follows. Section 2 is devoted to recalling the basic definitions and lemmas that will be crucial throughout the paper. In Sect. 3, the existence and uniqueness theorems for single-valued mappings satisfying certain contractive condition in sb-MS are proved. In addition, two FP theorems for set-valued mappings having Nadler’s type contractions are designed and proved.

Preliminaries

Definition 2.1

A FP of a self-mapping \(G:\Omega \to \Omega \) on a nonempty set Ω is an element \(a \in \Omega \) which is mapped onto itself, i.e. a is called a FP of G if \(\boldsymbol{G} ( \boldsymbol{a} ) =\boldsymbol{a}\).

Example

The mapping \(F:R \to R\) defined by \(F(a) = \sin a\) has 0 as a fixed point.

Definition 2.2

A pair of self-mappings have a common FP \(F,G:\Omega \to \Omega \) is a point \(a \in \Omega \) for which

$$\begin{aligned} F(a) = G(a) = a. \end{aligned}$$

Definition 2.3

Let \(( \Omega,d )\) be a MS and \(CB(\Omega )\) denote the family of all non-empty bounded and closed subsets of Ω. Consider a map \(H:CB(\Omega ) \times CB(\Omega ) \to R\) for \(U,V \in CB ( \Omega )\), define

$$\begin{aligned} H(U,V) = \max \Bigl\{ \sup_{u \in U}d(u,V),\sup _{v \in V}d(v,U) \Bigr\} , \end{aligned}$$

where \(d ( u,V ) = \inf\{ d ( u,v ):v \in V\}\) is the distance of a point u to the set V. This H is a metric on \(CB(\Omega )\), called Hausdorff metric induced by the metric d.

Definition 2.4

([21])

Let Ω be an arbitrary nonempty set and \(s \ge 1\) be a given real number. Strong b-metric on Ω is a function \(d:\Omega \times \Omega \to R\) satisfying the following axioms for all \(\eta _{1},\eta _{2},\eta _{3} \in \Omega \):

$$\begin{aligned} &(sbM1)d(\eta _{1},\eta _{2}) \ge 0; \\ &(sbM2)d(\eta _{1},\eta _{2}) = 0 \quad\Leftrightarrow\quad \eta _{1} = \eta _{2}; \\ &(sbM3)d(\eta _{1},\eta _{2}) = d(\eta _{2},\eta _{1}); \\ &(sbM4)d(\eta _{1},\eta _{2}) \le d(\eta _{1}, \eta _{3}) + sd(\eta _{3},\eta _{2}). \end{aligned}$$

The triplet (\(\Omega,d,s\)) is known as strong b- MS.

Definition 2.5

Let (\(\Omega,d,s\)) be an sb-MS. Suppose that \(\{ a_{n} \}\) is a sequence in Ω and \(a\in \Omega \), then

  1. i.

    \(\{ a_{n} \}\) will converge to a if \(\lim_{n\rightarrow \infty} d ( a_{n},a ) =0\).

  2. ii.

    \(\{ a_{n} \}\) in Ω is known as Cauchy if for every ε >0 there exists a natural number \(N=N(\varepsilon )\) such that \(d ( a_{n}, a_{m} ) <\varepsilon \) for every \(m,n>N \).

  3. iii.

    Ω is called complete if every Cauchy sequence in Ω is convergent in Ω.

Definition 2.6

([9])

Let \(\Omega = (\Omega,d)\) be an MS. A mapping \(G:\Omega \to \Omega \) is known as a Banach contraction on G if there is a positive real number \(0 < \alpha < 1\) such that \(\forall a,b \in \Omega \),

$$\begin{aligned} d(Ga,Gb) \le \alpha d(a,b). \end{aligned}$$

Definition 2.7

([10])

Let (\(\Omega,d\))be an MS and \(G:\Omega \to \Omega \) be a mapping if there exists \(\alpha \in (0,\frac{1}{2})\) such that, for all \(a_{1},a_{2} \in \Omega \), we have

$$\begin{aligned} d(Ga_{1},Ga_{2}) \le \alpha \bigl\{ d(a_{1},Ga_{2}) + d(a_{2},Ga_{1}) \bigr\} . \end{aligned}$$

Then G is known as Chatterjee contraction.

Definition 2.8

([7])

Consider a multivalued mapping G: \(\Omega \rightarrow \mathrm{CB}( \Omega )\) on a nonempty set Ω, \(\mathrm{CB}( \Omega )\) be the family of all nonempty closed and bounded subsets of Ω. A point \(y\in \Omega \mathbf{i}\) s called FP of G if \(y\in Gy\).

Lemma 2.1

([7])

Let (\(\Omega,d\))be a b-MS, \(CB(\Omega )\) be the family of all nonempty closed and bounded subsets of Ω. Then, for \(U,V \in CB(\Omega )\),

  1. (1)

    \(d(a,U) \le H(U,V), a \in U\);

  2. (2)

    For \(\varepsilon > 0\) and \(a \in U, \exists b \in V\) such that

    $$d(a,b) \le H(U,V) + \varepsilon . $$

Main result

Theorem 3.1

Consider a complete sb-MS (\(\Omega,d,s\)) with \(s \ge 1\). Let \(G:\Omega \to \Omega \) be a single-valued mapping such that

$$\begin{aligned} &d(Ga,Gb) \le \varpi _{1}d(a,b) + \varpi _{2}d(a,Ga) + \varpi _{3}d(b,Gb) + \varpi _{4} \bigl[d(b,Ga) + d(a,Gb) \bigr], \\ &\quad\textit{where }\varpi _{1} + (1 + s)\varpi _{2} + \varpi _{3} + (1 + s)\varpi _{4} < 1 \end{aligned}$$
(3.1)

\(\forall a,b \in \Omega \). Then there exists \(a^{ *} \in \Omega \) such that \(a_{n} \to a^{ *}\) and \(a^{ *}\) is the unique FP.

Proof

Let \(a_{0} \in \Omega \) and \(\{ a_{n}\}\) be a sequence in Ω defined as

$$\begin{aligned} a_{n} = Ga_{n - 1} = G^{n}a_{o},\quad n = 1,2,3,\ldots \end{aligned}$$
(3.2)

Now

$$\begin{aligned} &d(a_{n},a_{n + 1}) = d(Ga_{n - 1},Ga_{n}), \\ & d ( a_{n},a_{n + 1} ) \le \varpi _{1}d ( a_{n - 1},a_{n} ) + \varpi _{2}d ( a_{n - 1},a_{n} ) + \varpi _{3}d ( a_{n},a_{n + 1} ) \\ &\phantom{d ( a_{n},a_{n + 1} ) \le}{} + \varpi _{4} \bigl[ d ( a_{n},a_{n} ) + d ( a_{n - 1},a_{n + 1} ) \bigr]. \end{aligned}$$

Using the triangular inequality of (\(sbM4\)), we get

$$\begin{aligned} &\le \varpi _{1}d ( a_{n - 1},a_{n} ) + \varpi _{2}d ( a_{n - 1},a_{n} ) + \varpi _{3}d ( a_{n},a_{n + 1} ) + \varpi _{4} \bigl[ d ( a_{n - 1},a_{n} ) + sd ( a_{n},a_{n + 1} ) \bigr] \\ &\le \varpi _{1}d ( a_{n - 1},a_{n} ) + \varpi _{2}d ( a_{n - 1},a_{n} ) + \varpi _{3}d ( a_{n},a_{n + 1} ) + \varpi _{4}d ( a_{n - 1},a_{n} ) + s\varpi _{4}d ( a_{n},a_{n + 1} ), \\ &( 1 - \varpi _{3} - s\varpi _{4} )d ( a_{n},a_{n + 1} ) \le ( \varpi _{1} + \varpi _{2} + \varpi _{4} )d ( a_{n - 1},a_{n} ), \\ &\quad\Rightarrow\quad d ( a_{n},a_{n + 1} ) \le \biggl( \frac{\varpi _{1} + \varpi _{2} + \varpi _{4}}{1 - s\varpi _{2} - \varpi _{3} - s\varpi _{4}} \biggr)d ( a_{n - 1},a_{n} ) \\ &\phantom{\quad\Rightarrow\quad d ( a_{n},a_{n + 1} )}\le kd ( a_{n - 1},a_{n} ), \end{aligned}$$

where \(k = \frac{\varpi _{1} + \varpi _{2} + \varpi _{4}}{1 - s\varpi _{2} - \varpi _{3} - s\varpi _{4}}\).

$$\begin{aligned} d ( a_{n},a_{n + 1} ) &\le kd ( a_{n - 1},a_{n} ) \\ &\le k^{2}d ( a_{n - 2},a_{n - 1} ). \end{aligned}$$

Continuing this process, we get

$$\begin{aligned} \le k^{n}d(a_{o},a_{1}). \end{aligned}$$
(3.3)

Now we will show that \(\{ a_{n}\}\) is a Cauchy sequence in Ω.

Consider \(m,n \in \mathbb{N}\) with \(m > n\):

$$\begin{aligned} d(a_{n},a_{m}) \le d(a_{n},a_{n + 1}) + sd(a_{n + 1},a_{n + 2}) + s^{2}d(a_{n + 2},a_{n + 3}) + \cdots. \end{aligned}$$

Using (3.3) we can write

$$\begin{aligned} &\le k^{n}d(a_{o},a_{1}) + sk^{n + 1}d(a_{o},a_{1}) + s^{2}k^{n + 2}d(a_{o},a_{1}) + \cdots + s^{m - 1}k^{n + m - 1}d(a_{o},a_{1}) \\ &\le k^{n}d ( a_{o},a_{1} ) \bigl[ 1 + sk + (sk)^{2} + \cdots + (sk)^{m - 1} \bigr] \\ &\le k^{n}d(a_{o},a_{1}) \biggl[ \frac{1 - (sk)^{m}}{1 - sk} \biggr]. \end{aligned}$$

When \(m,n \to \infty \), \(d(a_{n},a_{m}) \to 0\).

Hence \(\{ a_{n}\}\) is a Cauchy sequence in Ω. Since Ω is complete, \(\{ a_{n}\}\) converges to an element of Ω, say \(a^{ *} \), \(a^{ *} \in \Omega \).

Now,

$$\begin{aligned} &d \bigl(a^{ *},Ga^{ *} \bigr) \le d \bigl(a^{ *},a_{n + 1} \bigr) + sd \bigl(a_{n + 1},Ga^{ *} \bigr) \\ &\phantom{d (a^{ *},Ga^{ *} )}\le d \bigl(a^{ *},a_{n + 1} \bigr) + sd \bigl(Ga_{n},Ga^{ *} \bigr) \\ &\phantom{d (a^{ *},Ga^{ *} )}\le d \bigl(a^{*},a_{n + 1} \bigr) + s\varpi _{1}d \bigl(a_{n},a^{*} \bigr) + s\varpi _{2}d(a_{n},Ga_{n}) \\ &\phantom{d (a^{ *},Ga^{ *} )\le}{}+ s\varpi _{3}d \bigl(a^{*},Ga^{*} \bigr) + s \varpi _{4}d \bigl(a^{*},Ga_{n} \bigr) + s\varpi _{4}d \bigl(a_{n},Ga^{*} \bigr) \\ &\phantom{d (a^{ *},Ga^{ *} )}\le d \bigl(a^{*},a_{n + 1} \bigr) + s\varpi _{1}d \bigl(a_{n},a^{*} \bigr) + s\varpi _{2}d(a_{n},Ga_{n}) + s\varpi _{3}d \bigl(a^{*},Ga^{*} \bigr) \\ &\phantom{d (a^{ *},Ga^{ *} )\le}{}+ s\varpi _{4}d \bigl(a^{*},a_{n + 1} \bigr) + s\varpi _{4}d \bigl(a_{n},a^{*} \bigr) + s^{2} \varpi _{4}d \bigl(a^{*},Ga^{*} \bigr) \\ &\quad\Rightarrow\quad \bigl(1 - s\varpi _{3} - s^{2}\varpi _{4} \bigr)d \bigl(a^{*},Ga^{*} \bigr)\\ & \phantom{\quad\Rightarrow\quad}\quad\le (1 + s \varpi _{4})d \bigl(a^{*},a_{n + 1} \bigr) + (s\varpi _{1} + s\varpi _{4})d \bigl(a_{n},a^{*} \bigr) + s\varpi _{2}d(a_{n},a_{n + 1}) \\ &\quad\Rightarrow\quad d \bigl(a^{ *},Ga^{ *} \bigr) \le \biggl[ \frac{1 + s\varpi _{4}}{1 - s\varpi _{3} - s^{2}\varpi _{4}} \biggr]d \bigl(a^{*},a_{n + 1} \bigr) + \biggl[ \frac{s\varpi _{1} + s\varpi _{4}}{1 - s\varpi _{3} - s^{2}\varpi _{4}} \biggr]d \bigl(a_{n},a^{*} \bigr) \\ &\phantom{\quad\Rightarrow\quad d (a^{ *},Ga^{ *} ) \le}{}+ \biggl[ \frac{s\varpi _{2}}{1 - s\varpi _{3} - s^{2}\varpi _{4}} \biggr]d(a_{n},a_{n + 1}) \\ &\quad\Rightarrow\quad d \bigl(a^{*},Ga^{*} \bigr) \le 0 \quad\text{as } n \to \infty. \end{aligned}$$

\(\Rightarrow a^{*} = Ga^{*}\). Hence \(a^{*}\) is an FP of G.

Uniqueness. Assume that \(a^{ \circ} \) is another FP of G. Then we have

$$\begin{aligned} Ga^{ \circ} = a^{ \circ}. \end{aligned}$$

Consider

$$\begin{aligned} &d\bigl(a^{*},a^{ \circ} \bigr) \\ &\quad= d \bigl(Ga^{*},Ga^{ \circ} \bigr) \\ & \quad\le \varpi _{1}d \bigl(a^{*},a^{ \circ} \bigr) + \varpi _{2}d \bigl(a^{*},Ga^{*} \bigr) + \varpi _{3}d \bigl(a^{ \circ},Ga^{ \circ} \bigr) + \varpi _{4} \bigl[d \bigl(a^{ \circ},Ga^{*} \bigr) + d \bigl(a^{*},Ga^{ \circ} \bigr) \bigr] \\ &\quad\le \varpi _{1}d \bigl(a^{*},a^{ \circ} \bigr) + \varpi _{2}d \bigl(a^{*},a^{*} \bigr) + \varpi _{3}d \bigl(a^{ \circ},a^{ \circ} \bigr) + \varpi _{4} \bigl[d \bigl(a^{ \circ},a^{*} \bigr) + d \bigl(a^{*},a^{ \circ} \bigr) \bigr] \\ &\quad\le \varpi _{1}d \bigl(a^{*},a^{ \circ} \bigr) + \varpi _{4}d \bigl(a^{ \circ},a^{*} \bigr) + \varpi _{4}d \bigl(a^{*},a^{ \circ} \bigr), \\ &d \bigl(a^{ \circ},a^{*} \bigr) \le (\varpi _{1} + 2 \varpi _{4})d \bigl(a^{ \circ},a^{*} \bigr). \end{aligned}$$

It is a contradiction, hence \(a^{ \circ} = a^{*}\). □

Corollary 1

Let (\(\Omega,d\))be a complete MS and \(G:\Omega \to \Omega \) be a mapping such that

$$\begin{aligned} &d ( Ga,Gb ) \le \varpi _{1}d ( a,b ) + \varpi _{2}d ( a,Ga ) + \varpi _{3}d ( b,Gb ) + \varpi _{4} \bigl[ d(b,Ga) + d(a,Gb) \bigr], \\ &\quad \textit{where }\varpi _{1} + 2\varpi _{2} + \varpi _{3} + 2\varpi _{4} < 1 \end{aligned}$$

for all \(a,b \in \Omega \). Then there exists \(a^{ *} \in \Omega \) such that \(a_{n} \to a^{ *}\) and \(a^{ *}\) is the unique FP of G.

Theorem 3.2

Let (\(\Omega,d,s\)) be a complete sb- MS with constant \(s \ge 1\). Let \(F,G:\Omega \to \Omega \) be two maps for which \(\eta _{1},\eta _{2} \in [0,\frac{1}{3})\) such that

$$\begin{aligned} d(Fx,Gy) \le \eta _{1}d(x,y) + \eta _{2} \bigl[ d(x,Fx) + d(y,Gx) \bigr]. \end{aligned}$$

Then there exists a CFP of F and G.

Proof

Let \(a_{o} \in \Omega \). Consider the sequence {an } so that \(a_{2n + 2} = Ga_{2n + 1}\), \(a_{2n + 1} = Fa_{2n}\). Then

$$\begin{aligned} &d(a_{2n + 2},a_{2n + 1}) = d(Ga_{2n + 1},Fa_{2n}) \\ &\phantom{d(a_{2n + 2},a_{2n + 1})}\le \eta _{1}d(a_{2n + 1},a_{2n}) + \eta _{2} \bigl[ d(a_{2n + 1},Ga_{2n + 1}) + d(a_{2n},Fa_{2n}) \bigr] \\ &\phantom{d(a_{2n + 2},a_{2n + 1})}\le \eta _{1}d(a_{2n + 1},a_{2n}) + \eta _{2}d(a_{2n + 1},a_{2n + 2}) + \eta _{2}d(a_{2n},a_{2n + 1}), \\ &(1 - \eta _{2})d(a_{2n + 1},a_{2n + 2}) \le (\eta _{1} + \eta _{2})\eta _{2}d(a_{2n},a_{2n + 1}), \\ &d(a_{2n + 1},a_{2n + 1}) \le \biggl[ \frac{\eta _{1} + \eta _{2}}{1 - \eta _{2}} \biggr]d(a_{2n + 1},a_{2n})\le kd(a_{2n + 1},a_{2n}), \end{aligned}$$

where \(k = [ \frac{\eta _{1} + \eta _{2}}{1 - \eta _{2}} ]\). As \(\eta _{1},\eta _{2} \in [0,\frac{1}{3}]\), So \(\eta _{1} + 2\eta _{2} < 1\)

$$\begin{aligned} \Rightarrow\quad \eta _{1} + \eta _{2} < 1 - \eta _{2}. \end{aligned}$$

This implies that \(\frac{\eta _{1} + \eta _{2}}{1 - \eta _{2}} < 1\), i.e. \(k < 1\).

So,

$$\begin{aligned} d(a_{2n + 2},a_{2n + 1}) &\le kd(a_{2n + 1},a_{2n}) \\ &\le k^{2}d(a_{2n},a_{2n - 1}). \end{aligned}$$

Continuing this process, we obtain

$$\begin{aligned} d(a_{2n + 2},a_{2n + 1}) \le k^{n}d(a_{o},a_{1}). \end{aligned}$$

In general,

$$\begin{aligned} d(a_{n},a_{n + 1}) \le k^{n}d(a_{o},a_{1}). \end{aligned}$$

Now, let \(m,n \in \mathbb{N}\) with \(m > n\)

$$\begin{aligned} &d(a_{n},a_{m}) \le d(a_{n},a_{n + 1}) + sd(a_{n + 1},a_{n + 2}) + s^{2}d(a_{n + 2},a_{n + 3}) + \cdots + s^{m - 1}d(a_{m - 1},a_{m}) \\ &\phantom{d(a_{n},a_{m})}\le k^{n}d(a_{1},a_{0}) + sk^{n + 2}d(a_{1},a_{0}) + s^{2}k^{n + 2}d(a_{1},a_{0}) + \cdots + s^{m - 1}k^{n + m - 1}d(a_{1},a_{0}) \\ &\phantom{d(a_{n},a_{m})}\le k^{n}d(a_{1},a_{0}) \bigl[ 1 + sk + (sk)^{2} + \cdots + (sk)^{m - 1} \bigr], \\ &d(a_{n},a_{m}) \le k^{n}d(a_{1},a_{0}) \biggl[ \frac{1 - (sk)^{m})}{1 - sk} \biggr]. \end{aligned}$$

When \(m,n \to \infty \), \(\lim_{n \to \infty} d(a_{n},a_{m}) = 0\).

Hence \(\{ a_{n}\}_{n = 1}^{\infty}\) is a Cauchy sequence in Ω. Since Ω is complete, \(\{ a_{n}\}\) converges to \(b \in \Omega \).

Now,

$$\begin{aligned} &d(b,Gb) \le d(b,Fa_{2n}) + sd(Fa_{2n},Gb) \\ &\phantom{d(b,Gb)}\le d(b,a_{2n + 1}) + s \bigl[\eta _{1}d(a_{2n},b) + \eta _{2}d(b,Gb) + \eta _{2}d(a_{2n},Fa_{2n}) \bigr], \\ &d(b,Gb) \le \biggl( \frac{1}{1 - s\eta _{2}} \biggr)d(b,a_{2n + 1}) + \biggl( \frac{s\eta _{1}}{1 - s\eta _{2}} \biggr)d(a_{2n},b) + \biggl( \frac{s\eta _{2}}{1 - s\eta _{2}} \biggr)d(a_{2n},a_{2n + 1}). \end{aligned}$$

When \(n \to \infty \), \(d(b,Gb) \le 0\)

$$\begin{aligned} \Rightarrow b = Gb. \end{aligned}$$

Now

$$\begin{aligned} &d(b,Fb) \le d(b,Ga_{2n + 1}) + sd(Ga_{2n},Fb), \\ &( 1 - s\eta _{2} )d(b,Fb) \le d(b,a_{2n + 2}) + s\eta _{1}d(a_{2n + 1},b) + s\eta _{2}d(a_{2n + 1},a_{2n + 2}), \\ &d(b,Fb) \le \frac{1}{1 - s\eta _{2}} \bigl[ d(b,a_{2n + 2}) + s\eta _{1}d(a_{2n + 1},b) + s\eta _{2}d(a_{2n + 1},a_{2n + 2}) \bigr]. \end{aligned}$$

When \(n \to \infty \), \(d(b,Fb) \to 0\), \(\Rightarrow b = Fb\). Thus \(Gb = Fb = b\). Hence b is a common fixed point of G and F. □

Corollary

Let (\(\Omega,d\)) be a complete MS. Let \(F,G:\Omega \to \Omega \) be two maps for which \(\eta _{1},\eta _{2} \in [0,\frac{1}{3})\) such that

$$\begin{aligned} d(Fa,Gb) \le \eta _{1}d(a,b) + \eta _{2} \bigl[d(a,Fa) + d(b,Ga) \bigr],\quad \forall a,b \in \Omega. \end{aligned}$$

Then there exists a CFP of F and G.

Theorem 3.3

Let (\(\Omega,d,s\))be a complete sb-MS and \(F:\Omega \to CB(\Omega )\) be a set-valued mapping with contraction

$$\begin{aligned} H(Fa,Fb) \le \alpha \bigl[d(a,Fb) + d(b,Fa) \bigr] \end{aligned}$$
(3.4)

for all \(a,b \in \Omega \) and \(\alpha \in (0,\frac{1}{2s}) (s \ge 1)\). Then there exists an FP of F (i.e. \(\exists u \in \Omega \) such that \(u \in Fu\)), where CB(Ω) is the set of all closed and bounded subsets of Ω.

Proof

Consider a sequence { \(a_{n}: n\epsilon \mathbbm{ }\mathbb{N}\) } such that \(a_{n+1} \in F a_{n}\). Then, by Lemma 2.1, for \(a_{1} \in Fa_{0}\), there exists \(a_{2} \in Fa_{1}\) such that we have

$$\begin{aligned} &d(a_{1},a_{2}) \le H(Fa_{0},Fa_{1}) + \alpha \\ &\phantom{d(a_{1},a_{2}) }\le \alpha \bigl[d(a_{0},Fa_{1}) + d(a_{1},Fa_{0}) \bigr] + \alpha \\ &\phantom{d(a_{1},a_{2}) }\le \alpha \bigl[d(a_{0},a_{2}) + d(a_{1},a_{1}) \bigr] + \alpha, \\ &d(a_{1},a_{2}) \le \alpha d(a_{0},a_{2}) + \alpha. \end{aligned}$$

Using (\(sbM4\)),

$$\begin{aligned} \begin{aligned} &d(a_{1},a_{2}) \le \alpha d(a_{0},a_{1}) + \alpha sd(a_{1},a_{2}) + \alpha, \\ &(1 - \alpha s)d(a_{1},a_{2}) \le \alpha d(a_{0},a_{1}) + \alpha, \\ &d(a_{1},a_{2}) \le \frac{\alpha}{(1 - \alpha s)}d(a_{0},a_{1}) + \frac{\alpha}{(1 - \alpha s)}, \\ &d(a_{1},a_{2}) \le \beta d(a_{0},a_{1}) + \beta, \end{aligned} \end{aligned}$$
(3.5)

where \(\beta = \frac{\alpha}{1 - \alpha s}\) as \(\alpha \in (0,\frac{1}{2s})\), then \(\beta \in (0,\frac{1}{s})\).

Now, again by Lemma 2.1,

$$\begin{aligned} d(a_{2},a_{3})& \le H(Fa_{2},Fa_{1}) + \alpha \beta \\ &\le \alpha \bigl[d(a_{1},Fa_{2}) + d(a_{2},Fa_{1}) \bigr] + \alpha \beta \quad (\text{by given contraction}) \\ &\le \alpha \bigl[d(a_{1},a_{3}) + d(a_{2},a_{2}) \bigr] + \alpha \beta \\ &\le \alpha d(a_{1},a_{3}) + \alpha \beta. \end{aligned}$$

Using (\(sbM4\)), we have

$$\begin{aligned} &d(a_{2},a_{3}) \le \alpha \bigl[d(a_{1},a_{2}) + sd(a_{2},a_{3}) \bigr] + \alpha \beta \\ & \phantom{d(a_{2},a_{3}) }\le \alpha d(a_{1},a_{2}) + \alpha sd(a_{2},a_{3}) + \alpha \beta, \\ &(1 - \alpha s)d(a_{2},a_{3}) \le \alpha d(a_{1},a_{2}) + \alpha \beta \\ &\quad\Rightarrow\quad d(a_{2},a_{3}) \le \frac{\alpha}{(1 - \alpha s)}d(a_{1},a_{2}) + \frac{\alpha \beta}{(1 - \alpha s)} \\ &\phantom{\quad\Rightarrow\quad d(a_{2},a_{3})}\le \beta d(a_{1},a_{2}) + \beta ^{2}. \end{aligned}$$

Using (3.5), we can write

$$\begin{aligned} &d (a_{2}, a_{3} )\le \beta \bigl[\beta d(a_{0},a_{1}) + \beta \bigr] + \beta ^{2} \\ &\phantom{d (a_{2}, a_{3} )}= \beta ^{2}d(a_{0},a_{1}) + 2 \beta ^{2} \\ &\quad\Rightarrow\quad d(a_{2},a_{3}) \le \beta ^{2}d(a_{0},a_{1}) + 2\beta ^{2}. \end{aligned}$$

In general,

$$\begin{aligned} d(a_{n},a_{n + 1}) \le \beta ^{n}d(a_{0},a_{1}) + n\beta ^{n}. \end{aligned}$$
(3.6)

Now we show that \(\{ a_{n}\}_{n = 1}^{\infty}\) is a Cauchy sequence in Ω. For this, let \(m,n \in \mathbb{N}\) with \(m > n\)

$$\begin{aligned} d(a_{n},a_{m}) \le d(a_{n},a_{n + 1}) + sd(a_{n + 1},a_{n + 2}) + s^{2}d(a_{n + 2},a_{n + 3}) + \cdots+ s^{m-n-1} d ( x_{m-1}, x_{m} ). \end{aligned}$$

Using (3.6), we get

$$\begin{aligned} \le{}& \beta ^{n}d(a_{o},a_{1}) + n\beta ^{n} + s\beta ^{n + 1}d(a_{o},a_{1}) + s(n + 1)\beta ^{n + 1} + s^{2}\beta ^{n + 2}d(a_{o},a_{1}) \\ &{}+ s^{3}(n + 2)\beta ^{n + 3} + \cdots + s^{m - n - 1} \beta ^{m - 1}d(a_{0},a_{1}) + s^{m - n - 1}(m - 1) \beta ^{m - 1} \\ \le{}& \beta ^{n}d(a_{o},a_{1}) \biggl[ \frac{1 - (s\beta )^{m - n - 1)}}{1 - s\beta} \biggr] + \sum_{i = n}^{m - 1} is^{i - n} \beta ^{i}. \end{aligned}$$

When we take \(m,n \to \infty \), \(\Rightarrow d(a_{n},a_{m}) = 0\).

Accordingly, {\(a_{n}\)}is a Cauchy grouping in Ω. Since Ω is finished, so there exists u Ω to such an extent that \(a_{n} \to u\).

Now,

$$\begin{aligned} d ( u, Fu ) &\leq d ( u, a_{n} ) +sd ( a_{n}, Fu ) \\ &\leq d ( u, a_{n} ) +sH ( Fa_{n-1}, Fu ) \\ &\leq d ( u, a_{n} ) +s\alpha \bigl[ d ( a_{n-1}, Fu ) +d ( u, F a_{n-1} ) \bigr]. \end{aligned}$$

As \(n \to \infty \), \(d(u,Fu) \le d(u,u) + s[\alpha d(u,Fu) + d(u,Fu)]\)

$$\begin{aligned} \Rightarrow \quad d(u,Fu) \le 0. \end{aligned}$$

The only possibility is \(d(u,Fu) = 0 \Rightarrow u \in Fu\).

Thus, u is the FP of F. □

Corollary

Let (\(\Omega,d\))be a complete MS and \(F:\Omega \to CB(\Omega )\) be a set-valued mapping with contraction

$$H(Fa,Fb) \le \alpha \bigl[d(a,Fb) + d(b,Fa)\bigr] \quad \textit{for all }a,b \in \Omega \textit{ and } \alpha \in \biggl(0,\frac{1}{2}\biggr). $$

Then there exists an FP of F (i.e., there is \(u \in \Omega \) such that \(u \in Fu\)).

Theorem 3.4

Consider a complete strong b-MS (\(\Omega,d\)) and \(G:\Omega \to CB(\Omega )\) be a multivalued map defined as

$$\begin{aligned} H(Ga,Gb) \le \alpha d(a,b), \quad\forall a,b \in \Omega \textit{ and } \alpha \in [ 0, 1 ), s\geq 1. \end{aligned}$$

Then there exists \(b \in \Omega \) such that \(b \in Gb\).

Proof

Let \(a_{0} \in \Omega \), \(Ga_{0} \ne 0\) be closed and bounded subsets of Ω. Furthermore, let \(a_{1} \in Gx_{0}\), \(Ga_{1} \ne \phi \) be closed and bounded subsets of Ω. By Lemma 2.1, there exists \(a_{2} \in Ga_{1}\) such that

$$\begin{aligned} d(a_{1},a_{2}) \le H(Ga_{0},Ga_{1}) + \alpha. \end{aligned}$$
(3.7)

Now, \(Ga_{2} \ne \phi \) closed and bounded subsets of Ω, there exists \(a_{3} \in Ga_{2}\) such that

$$\begin{aligned} d(a_{2},a_{3}) \le H(Ga_{1},Ga_{2}) + \alpha ^{2}. \end{aligned}$$
(3.8)

By a given contraction condition,

$$\begin{aligned} &d(a_{2},a_{3}) \le \alpha d(a_{1},a_{2}) + \alpha ^{2}, \\ &d(a_{3},a_{4}) \le Hd(Ga_{2},Ga_{3}) + \alpha ^{3} \\ &\phantom{d(a_{3},a_{4})}\le \alpha d(a_{2},a_{3}) + \alpha ^{3}. \end{aligned}$$

Using (3.8), we have

$$\begin{aligned} d(a_{3},a_{4}) &\le \alpha \bigl[\alpha d(a_{1},a_{2}) + \alpha ^{2} \bigr] + \alpha ^{3} \\ &\le \alpha ^{2}d(a_{1},a_{2}) + 2\alpha ^{3} \\ &\le \alpha ^{2} \bigl[H(Ga_{0},Ga_{1}) + \alpha \bigr] + 2\alpha ^{3} \\ &\le \alpha ^{2} \bigl[\alpha d(a_{0},a_{1}) + \alpha \bigr] + 2\alpha ^{3} \\ &\le \alpha ^{3}d(a_{0},a_{1}) + \alpha ^{3} + 2\alpha ^{3} \\ &\le \alpha ^{3}d(a_{0},a_{1}) + 3\alpha ^{3}. \end{aligned}$$

In general,

$$\begin{aligned} d(a_{n},a_{n + 1}) \le \alpha ^{n}d(a_{0},a_{1}) + n\alpha ^{n}. \end{aligned}$$

For convenience, we set

\(d(a_{n},a_{n + 1}) = d_{n}\), so the above result can be written as

$$\begin{aligned} d_{n} \le \alpha ^{n}d_{0} + n\alpha ^{n}. \end{aligned}$$
(3.9)

For \(m,n \in N\), \(m \ge n\), we have

$$\begin{aligned} d(a_{n},a_{m}) \le d(a_{n},a_{n + 1}) + sd(a_{n + 1},a_{n + 2}) + s^{2}d(a_{n + 2},a_{n + 3}) +\cdots +s^{m - n - 1}d(a_{m - 1},a_{m}). \end{aligned}$$

Using (3.9), we get

$$\begin{aligned} d(a_{n},a_{m}) \le{}& d(a_{n},a_{n + 1}) + sd(a_{n + 1},a_{n + 2}) + s^{2}d(a_{n + 2},a_{n + 3}) \\ &{}+ \cdots + s^{m - n - 1}\alpha ^{m - 1}d(a_{m - 1},a_{m}) + s^{m - n - 1}(m - 1)\alpha ^{m - 1}. \end{aligned}$$

Using (3.9), we get

$$\begin{aligned} &\le \alpha ^{n}d_{0} + s\alpha ^{n + 1}d_{0} + s^{2}\alpha ^{n + 2}d_{0} + \cdots + s^{m - n - 1}\alpha ^{m - 1}d_{0} \\ &\phantom{\le}{}+ n\alpha ^{n} + s(n + 1)\alpha ^{n + 1} + s^{2}(n + 2)\alpha ^{n + 2} + \cdots +s^{m - n - 1}(m - 1) \alpha ^{m - 1} \\ &\le \alpha ^{n}d_{0} \bigl(1 + \alpha s + (\alpha s)^{2} + (\alpha s)^{3} + \cdots + s^{m - n - 1}\alpha ^{m - n - 1} \bigr) + \sum_{i = n}^{m - i} is^{i - n} \alpha ^{i}, \\ &d(a_{n},a_{m}) \le \alpha ^{n}d_{0} \biggl[\frac{1 + (s\alpha )^{m - n - 1}}{1 - s\alpha} \biggr] + \sum_{i = n}^{m - i} is^{i - n} \alpha ^{i}. \end{aligned}$$

In the limiting case when \(m,n \to \infty \),

$$\begin{aligned} d(a_{n},a_{m}) = 0 \end{aligned}$$

\(\Rightarrow \{ a_{n}\}\) is a Cauchy sequence in Ω, the completeness of Ω implies that there exists \(b \in \Omega \) such that

$$\begin{aligned} x_{n} \to b. \end{aligned}$$

Now we will prove that b is a fixed point of G.

$$\begin{aligned} d(b,Gb) \le d(b,a_{n}) + sd(a_{n},Gb). \end{aligned}$$

By Lemma 2.1,

$$\begin{aligned} &\leq d ( b, a_{n} ) +sH(G a_{n-1}, Gb) \\ &\leq d ( b, a_{n} ) +s\alpha d( a_{n-1}, b). \end{aligned}$$

In the limiting case when \(n \to \infty \), \(d(b,Gb) \le 0\).

This implies that \(b \in Gb\). Hence b is an FP of G. □

Corollary

Let (\(\Omega,d\))be a complete metric space and \(G:\Omega \to CB(\Omega )\) be a multivalued map such that

$$\begin{aligned} H(Ga,Gb) \le \alpha d(a,b),\quad \forall a,b \in \Omega \textit{ and } \alpha \in [0,1). \end{aligned}$$

Then there exists \(y \in \Omega \) such that \(y \in Gy\).

Conclusion

Fixed point techniques are extremely helpful and appealing tools. Functional inclusions, optimization theory, fractal graphics, discrete dynamics for set-valued operators and other fields of nonlinear functional analysis could all benefit from this theory. In sb-MS, we have generalized and proven FP and CFP theorems for single-valued mappings satisfying Ciric type contractions. Furthermore, in these spaces, two FP theorems for multi-valued mappings with Nadler’s type contractions have been established and demonstrated. These generalizations could be useful in future research and applications.

Availability of data and materials

No new data were collected or generated for this article.

Abbreviations

FP:

fixed point

CFP:

common fixed point

MS:

metric space

References

  1. Abuloha, M., Rizk, D., Abodayeh, K., Mukheimer, A., Souayah, N.: Fs-contractive mappings in controlled metric type spaces. Res. Nonlinear Anal. 4(3), 149–158 (2021). https://doi.org/10.53006/rna.928319

    Article  Google Scholar 

  2. Afshari, H., Aydi, H., Karapinar, E.: Existence of fixed points of set-valued mappings in b-metric spaces. East Asian Math. J. 32(3), 319–322 (2016)

    Article  Google Scholar 

  3. Alghamdi, M.A., Gulyaz-Ozyurt, S., Karapınar, E.: A note on extended Z-contraction. Mathematics 8(2), 195 (2020). https://doi.org/10.3390/math8020195

    Article  Google Scholar 

  4. Ali, M.U., Aydi, H., Alansari, M.: New generalizations of set valued interpolative Hardy–Rogers type contractions in b-metric spaces. J. Funct. Spaces 2021, Article ID 6641342 (2021). https://doi.org/10.1155/2021/6641342

    MathSciNet  Article  MATH  Google Scholar 

  5. Aydi, H., Bota, M., Karapinar, E., Moradi, S.: A common fixed point for weak ø contractions on b-metric spaces. Fixed Point Theory 13, Article ID 2 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Aydi, H., Bota, M.F., Karapınar, E., Mitrović, S.: A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, Article ID 88 (2012). https://doi.org/10.1186/1687-1812-2012-88

    MathSciNet  Article  MATH  Google Scholar 

  7. Azam, A.: Fuzzy fixed points of fuzzy mappings via a rational inequality. Hacet. J. Math. Stat. 40, 421–431 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bakhtin, I.: The contraction mapping principle in quasimetric spaces. Func. Anal., Gos. Ped. Inst. Unianowsk. 30, 26–37 (1989)

    Google Scholar 

  9. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3(1), 133–181 (1922)

    Article  Google Scholar 

  10. Chatterjea, S.K.: Fixed-point theorems. Dokl. B”lg. Akad. Nauk. 25(6), 727–730 (1972)

    MATH  Google Scholar 

  11. Ciric, L.B.: Generalized contractions and fixed point theorems. Publ. Inst. Math. 12, 19–26 (1971)

    MathSciNet  MATH  Google Scholar 

  12. Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1(1), 5–11 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83(4), 261–263 (1976)

    MathSciNet  Article  Google Scholar 

  14. Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)

    MathSciNet  MATH  Google Scholar 

  15. Kanwal, S., Azam, A., Shami, F.A.: On coincidence theorem in intuitionistic fuzzy b-metric spaces with application. J. Funct. Spaces 2022, Article ID 5616824 (2022). https://doi.org/10.1155/2022/5616824

    MathSciNet  Article  MATH  Google Scholar 

  16. Kanwal, S., Hanif, U., Noorwali, M.E., Alam, M.A.: On fixed-point results of generalized contractions. J. Funct. Spaces 2022, Article ID 167716 (2022). https://doi.org/10.1155/2022/167716

    MathSciNet  Article  MATH  Google Scholar 

  17. Kanwal, S., Hanif, U., Noorwali, M.E., Alam, M.A.: Existence of αL-fuzzy fixed points of L-fuzzy mappings. Math. Probl. Eng. 2022, Article ID 6878428 (2022). https://doi.org/10.1155/2022/6878428

    Article  Google Scholar 

  18. Karapinar, E., Czerwik, S., Aydi, H.: α-ψ-Meir–Keeler contraction mapping in generalized b-metric spaces. J. Funct. Spaces 2018, Article ID 3264620 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Karapinar, E., Fulga, A.: Fixed point on convex b-metric space via admissible mappings. J. Pure Appl. Math. 12(2), 254–264 (2021)

    Google Scholar 

  20. Karapınar, E., Fulga, A., Petruşel, A.: On Istrăţescu type contractions in b-metric spaces. Mathematics 8(3), 388 (2020). https://doi.org/10.3390/math8030388

    Article  Google Scholar 

  21. Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)

    Book  Google Scholar 

  22. Li, D., Shahid, A.A., Tassaddiq, A., Khan, A., Guo, X., Ahmad, M.: CR iteration in generation of antifractals with s-convexity. IEEE Access 8, 61621–61630 (2020). https://doi.org/10.1109/ACCESS.2020.2983474.

    Article  Google Scholar 

  23. Nadler, S.B.: Multi-valued contraction mappings. Pac. J. Math. 30(2), 475–488 (1969)

    MathSciNet  Article  Google Scholar 

  24. Ozyurt, S.G.: On some α-admissible contraction on Branciari b-metric spaces. Adv. Theory Nonlinear Appl. 1(1), 1–13 (2017)

    MATH  Google Scholar 

  25. Panda, S.K., Tassaddiq, A., Agarwal, R.P.: A new approach to the solution of non-linear integral equations via various FBe-contractions. Symmetry 11, 206 (2019)

    Article  Google Scholar 

  26. Patle, P., Patel, D., Aydi, H., Radenović, S.: ON H+type multivalued contractions and applications in symmetric and probabilistic spaces. Mathematics 7(2), 144 (2019). https://doi.org/10.3390/math7020144

    Article  Google Scholar 

  27. Qawaqneh, H., Md Noorani, M.S., Shatanawi, W., Aydi, H., Alsamir, H.: Fixed point results for multi-valued contractions in b-metric spaces and an application. Mathematics 7(2), 132 (2019). https://doi.org/10.3390/math7020132

    Article  Google Scholar 

  28. Shabbir, M.S., Din, Q., Ahmad, K., et al.: Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism. Adv. Differ. Equ. 2020, Article ID 379 (2020). https://doi.org/10.1186/s13662-020-02838-z

    MathSciNet  Article  MATH  Google Scholar 

  29. Shabbir, M.S., Din, Q., Alabdan, R., Tassaddiq, A., Ahmad, K.: Dynamical complexity in a class of novel discrete-time predator-prey interaction with cannibalism. IEEE Access 8, 100226–100240 (2020). https://doi.org/10.1109/ACCESS.2020.2995679

    Article  Google Scholar 

  30. Shoaib, A., Kazi, S., Tassaddiq, A., Alshoraify, S.S., Rasham, T.: Double controlled quasi-metric type spaces and some results. Complexity 2020), Article ID 3460938 (2020)

    Article  Google Scholar 

  31. Tassaddiq, A.: General escape criteria for the generation of fractals in extended Jungck–Noor orbit. Math. Comput. Simul. 196, 1–14 (2022)

    MathSciNet  Article  Google Scholar 

  32. Tassaddiq, A., Shabbir, M.S., Din, Q., Ahmad, K., Kazi, S.: A ratio-dependent nonlinear predator-prey model with certain dynamical results. IEEE Access 8, 195074–195088 (2020). https://doi.org/10.1109/ACCESS.2020.3030778

    Article  Google Scholar 

  33. Tassaddiq, A., Shabbir, M.S., Din, Q., Naaz, H.: Discretization, bifurcation, and control for a class of predator-prey interactions. Fractal Fract. 6, 31 (2022). https://doi.org/10.3390/fractalfract6010031

    Article  Google Scholar 

  34. Zou, C., Shahid, A.A., Tassaddiq, A., Khan, A., Ahmad, M.: Mandelbrot sets and Julia sets in Picard–Mann orbit. IEEE Access 8, 64411–64421 (2020). https://doi.org/10.1109/ACCESS.2020.2984689

    Article  Google Scholar 

Download references

Acknowledgements

Asifa Tassaddiq would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project No. R-2022-170. The authors are also thankful to the worthy reviewers and editors for their useful and valuable suggestions for the improvement of this paper which led to a better presentation.

Funding

No specific external funding is received for this article.

Author information

Authors and Affiliations

Authors

Contributions

The main idea of this paper was proposed by AT and SK. SP prepared the manuscript initially and performed all the steps of the proofs in this research. RS has supervised the entire work and guided. AT and SK also carried out a theoretical analysis of the proposed idea. Each author equally contributed towards writing and finalizing the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Asifa Tassaddiq or Shazia Kanwal.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tassaddiq, A., Kanwal, S., Perveen, S. et al. Fixed points of single-valued and multi-valued mappings in sb-metric spaces. J Inequal Appl 2022, 85 (2022). https://doi.org/10.1186/s13660-022-02814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-022-02814-z

Keywords

  • Strong b-metric space
  • Fixed point
  • Common fixed points
  • Hausdorff metric spaces
  • Single-valued and multivalued mappings