- Research
- Open Access
- Published:
Lyapunov-type inequalities for fractional Langevin-type equations involving Caputo-Hadamard fractional derivative
Journal of Inequalities and Applications volume 2022, Article number: 48 (2022)
Abstract
In this study, some new Lyapunov-type inequalities are presented for Caputo-Hadamard fractional Langevin-type equations of the forms
and
subject to mixed boundary conditions, respectively, where \(p(t)\), \(q(t)\), \(u(t)\), \(v(t)\) are real-valued functions and \(0 < \beta < 1 < \alpha < 2\), \(1 < \gamma \), \(\eta < 2\), \({\phi _{p}}(s) = |s{|^{p - 2}}s\), \(p > 1\). The boundary value problems of fractional Langevin-type equations were firstly converted into the equivalent integral equations with corresponding kernel functions, and then the Lyapunov-type inequalities were derived by the analytical method. Noteworthy, the Langevin-type equations are multi-term differential equations, creating significant challenges and difficulties in investigating the problems. Consequently, this study provides new results that can enrich the existing literature on the topic.
1 Introduction
The study of the Lyapunov inequality can be traced back to 1892 when Lyapunov proved the following result:
Theorem 1.1
Let \(q(t)\in C([a, b],\mathbb{R})\). If the Hill differential equation
subject to the Dirichlet boundary conditions
has a nontrivial solution, then \(q(t)\) satisfies the following inequality
This striking inequality is known as a Lyapunov inequality [1]. The inequality (1.1) and its generalizations have been applied in various mathematical problems, involving stability problems, oscillation theory, and eigenvalue bounds for ordinary differential equations [2–4]. For some improved and generalized forms, such as Lyapunov-type inequalities for higher-order differential equations, p-Laplacian differential equations, partial differential equations, difference equations, impulsive differential equations, dynamic equations on time scales, fractional differential equations, some literature studies [5–10] and the monographs [11, 12] should be referred to for better comprehensive understanding. Noteworthy, a result of fractional Lyapunov-type inequality was first presented by Ferreira. In 2013, Ferreira [9] extended inequality (1.1) to the fractional case in the sense of the Riemann-Liouville fractional derivative and obtained the following classical result:
Theorem 1.2
Let \(q(t) \in C([a,b],\mathbb{R})\). If the fractional boundary value problem (BVP)
has a nontrivial solution, where \({}_{a}{D^{\alpha }}\) is the Riemann-Liouville fractional derivative of order α, \(1 < \alpha \le 2\), then \(q(t)\) satisfies the following inequality
One year later, the same author obtained the analogous Lyapunov-type inequality for the fractional BVP, involving Caputo fractional derivative (see [10]).
Theorem 1.3
Let \(q(t) \in C([a,b],\mathbb{R})\). If the fractional BVP
has a nontrivial solution, where \({}_{a}^{C}{D^{\alpha }}\) is the Caputo fractional derivative of order α, \(1 < \alpha \le 2\), then \(q(t)\) satisfies the following inequality
Inequalities (1.2) and (1.3) are the generalizations of inequality (1.1) in the sense of fractional derivative.
Based on the above-mentioned two studies, the subject of fractional Lyapunov-type inequalities has received significant research attention, and a variety of interesting results have been established. For some recent works on the topic, we refer the reader to the works [13–26], the survey paper [27] and the references cited therein. For example, according to the literature report [13], the authors generalized Lyapunov-type inequality (1.2) to the p-Laplacian problem:
where \({D_{a + }^{k}}\) is the Riemann-Liouville fractional derivative of order k (\(k=\alpha ,\beta \)), \(2 < \alpha \leq 3\), \(1<\beta \le 2\); \({\phi _{p}}(s) = |s{|^{p - 2}}s\), \(p > 1\) is the p-Laplacian operator. The Lyapunov-type inequality for the BVP (1.4) is stated in the following result.
Theorem 1.4
Let \(q(t) \in C([a,b],\mathbb{R})\). If there exists a nontrivial continuous solution of the fractional BVP (1.4), then
Recently, Laadjal et al. [15] established Lyapunov-type inequalities for the following Hadamard fractional differential equation with Dirichlet boundary conditions:
where \({}^{H}D_{a + }^{\alpha }\) is the Hadamard fractional derivative of order α, and \(q:[a,b] \to \mathbb{R}\) is a continuous function. The Lyapunov-type inequality for the BVP (1.5) is described in the following theorem.
Theorem 1.5
If a nontrivial continuous solution to the Hadamard fractional BVP (1.5) exists, then
Recently, Wang et al. [16] have derived new Lyapunov-type inequality for the fractional BVP involving Caputo-Hadamard fractional derivative subject to m-point boundary conditions:
where \({}_{H}^{C}D_{a + }^{\alpha }\) denotes the Caputo-Hadamard fractional derivative of order α; \({\beta _{i}} \ge 0\), \(a < {\xi _{i}} < b\), \((i = 1,2, \ldots ,m - 2)\), with \(a < {\xi _{1}} < {\xi _{2}} < \cdots < {\xi _{m - 2}} < b\), \(0 \le \sum \nolimits _{i = 1}^{m - 2} {{\beta _{i}}} < 1\). The Lyapunov-type inequality for the BVP (1.6) is expressed in the following theorem.
Theorem 1.6
Let \(q(t) \in C([a,b],\mathbb{R})\). If there exists a nontrivial continuous solution of the Caputo-Hadamard fractional BVP (1.6), then
Although the fractional Lyapunov-type inequalities have been studied by many authors, the fractional multi-term differential equations have rarely been studied to date [17, 18]. Pourhadi and Mursaleen [17] analyzed a Lyapunov-type inequality for a multi-term differential equation involving Caputo fractional derivative subject to mixed boundary conditions:
where \({}_{a}^{C}{D^{\alpha }}\) denotes the Caputo fractional derivative of order α, \(2 < \alpha \le 3\). The Lyapunov-type inequality for the BVP (1.7) is given as follows.
Theorem 1.7
Let \(p(t) \in {C^{1}}([a,b])\) and \(q(t) \in C([a,b])\). If there exists a nontrivial continuous solution of the fractional BVP (1.7), then
if \(\alpha \leq b-a+1\) and
if \(\alpha \geq b-a+1\), where
On the other hand, in 1908, Langevin proposed the following differential equation in the study of particle Brownian motion:
where \(- \zeta \dot{x}(t)\) represents dynamical friction experienced by the particle, x is the displacement and ζ denotes the coefficient of friction, m is the mass of particle, and \(F(t)\) is the fluctuating force. The Eq. (1.8) is called the Langevin equation, which is found to be an essential tool to describe the evolution of physical phenomena in fluctuating environments [28]. However, for systems with complex phenomena, it has been realized that the conventional integer Langevin equation does not provide an accurate description of the dynamical systems. Therefore, one way to overcome this disadvantage is to replace the integer derivative by the fractional derivative [29]. This gives rise to fractional Langevin-type equations. In recent years, fractional Langevin-type equations have been studied extensively, and further systematic explorations are still carried out [30–32]. For example, Ahmad et al. [31] proposed the investigation of Langevin-type equation involving two fractional orders:
where \({}^{C}D_{0 + }^{\rho }\) is the Caputo fractional derivative of order ρ (\(\rho =\alpha ,\beta \)), \(0 < \alpha \le 1\), \(1 < \beta \le 2\), \(\lambda \in \mathbb{R}\).
In the past decades, in order to meet the research needs, the p-Laplacian equation was introduced into some BVPs [32, 33]. In particular, Zhou et al. [32] discussed the following fractional Langevin-type equation with the p-Laplacian operator of the form:
where \({}^{C}D_{0 + }^{\varrho }\) is the Caputo fractional derivative of order ϱ (\(\varrho =\alpha ,\beta \)), \(0 < \alpha ,\beta \le 1\), \(\lambda \geq 0\).
The above-mentioned studies indicate that the Langevin-type equations are multi-term differential equations. Since there is no result available in the literature that is concerned with the Lyapunov-type inequalities for fractional Langevin-type equations, the main objective of this study is to bridge the gap and establish Lyapunov-type inequalities for the fractional Langevin-type equations involving Caputo-Hadamard fractional derivative subject to mixed boundary conditions. Precisely, the Lyapunov-type inequalities for the following problems are investigated herein:
and
where \({}_{H}^{C}D_{a + }^{\kappa }\) denotes the Caputo-Hadamard fractional derivative of order κ (\(\kappa =\alpha ,\beta , \gamma , \eta \)), \(0 < \beta < 1 < \alpha < 2\), \(1 < \gamma \), \(\eta < 2\), \(p(t),q(t),u(t),v(t) {\in } C([a,b],\mathbb{R})\). Clearly, there are two special cases of Eqs. (1.9) and (1.10), respectively; one is the \(p(t) \equiv 0\) in Eq. (1.9) and \(p = 2\), \(u(t) {\equiv } 0\) in Eq. (1.10), and then Eqs. (1.9) and (1.10) degenerate to the sequential fractional BVPs [24–26]; the other is the \(p(t) = u(t) = \lambda {\in } \mathbb{R}\), and then Eqs. (1.9) and (1.10) degenerate to the classical fractional Langevin-type equations (see [30–32]).
The remaining part of the paper is organized as follows: In Sect. 2, we recall some definitions on the fractional integral and derivative, and related basic properties which are needed later. In Sect. 3, we transform the problems (1.9) and (1.10) into equivalent integral equations with kernel functions, respectively, and give the properties of kernel functions. In Sect. 4, we present the Lyapunov-type inequalities for problem (1.9) and (1.10), respectively. Finally, we summarize our results and specify new directions for the future works in Sect. 5.
2 Preliminaries
In this section, we recall some definitions and lemmas about fractional integral and fractional derivative that will be used in the rest of this paper. Let \(x(t)\) be a function defined on \((a,b)\), where \(0< a< b<\infty \). Define the space \(AC_{\delta }^{n}[a,b]\) as follows
and \(AC[a,b]\) denote the space of all absolutely continuous real valued function on \([a,b]\).
Definition 2.1
([34])
The left-sided Hadamard fractional integral of order \(\alpha >0\) for a function \(x : [a,b]\rightarrow \mathbb{R}\), \((0< a < b <\infty )\) is defined by
provided that the integral exists.
Definition 2.2
([34])
Let \(\alpha >0\), \(n=[\alpha ]+1\). The left-side Hadamard fractional derivative of order α for a function \(x : [a,b]\rightarrow \mathbb{R}\), \((0< a < b <\infty )\) is defined by
Definition 2.3
([35])
Let \(\alpha >0\), \(n=[\alpha ]+1\). The left-side Caputo-Hadamard fractional derivative of order α for a function \(x(t) \in AC_{\delta }^{n}[a,b]\) is defined by
Lemma 2.1
([34])
Let \(\alpha ,\beta > 0\), for Hadamard fractional integrals, the semigroup property holds:
Lemma 2.2
([35])
Let \(\alpha >0\), \(n=[\alpha ]+1\), \(x(t) \in AC_{\delta }^{n}[a,b]\). Then
3 Green’s functions of BVPs (1.9) and (1.10)
In this subsection, we discuss Green’s functions of problems (1.9) and (1.10) and present some of their properties.
Lemma 3.1
\(x(t){\in } C[a,b]\) is a solution of the BVP (1.9) if and only if \(x(t)\) satisfies the integral equation
where kernel functions \({{G_{1}}} (t,s)\) and \({{G_{2}}} (t,s)\) are given by
and
Proof
Applying the operator \({}^{H}I_{a + }^{\beta }\) to both sides of Eq. (1.9) and using Lemma 2.2, we get
for some \({c_{0}} \in \mathbb{R}\). From the boundary conditions \(x(a) = {}_{H}^{C}D_{a + }^{\alpha }x(a) = 0\), we obtain \(c_{0}=0\), then
In view of Lemma 2.1 and Lemma 2.2, a general solution of the fractional Eq. (3.2) is given by
for some \({c_{1}},{c_{2}} \in \mathbb{R}\). Now using the conditions \(x(a) = 0\) and \(x(b) = 0\), we obtain
Substituting the values \(c_{1}\) and \(c_{2}\) in (3.3), we have
By direct computation, one can obtain the converse of the lemma. The proof is completed. □
Lemma 3.2
Let \({ {\frac{1 }{p}}} + { {\frac{1 }{q}}} = 1\), then \(x(t){\in } C[a,b]\) is a solution of the BVP (1.10) if and only if \(x(t)\) satisfies the integral equation
where kernel function \({{G}} (t,s)\) and \({{H}} (s,\tau )\) are defined by
and
Proof
Let \(y(t) = {\phi _{p}}[({}_{H}^{C}D_{a + }^{\gamma }+ u(t))x(t)]\). Then BVP (1.10) can be turned into the following coupled BVPs:
and
As in the proof of Lemma 3.1, we see that BVP (3.5) has a unique solution, which is given by
and BVP (3.6) has a unique solution, which is given by
Substitute (3.7) into (3.8), we see that BVP (1.10) has a unique solution that is given by (3.4). Conversely, by direct computation, it can be established that (3.4) satisfies the problem (1.10). This completes the proof. □
Lemma 3.3
([16])
Let \(1<\rho <2\), \(t,s\in [a,b]\) then the function
satisfies the following property:
Lemma 3.4
The function \({{G_{1}}} (t,s)\) given by Lemma 3.1satisfies the following properties:
-
(i)
\({{G_{1}}} (t,s)\) is a nonnegative continuous function in \([a,b] {\times } [a,b]\);
-
(ii)
\({G_{1}}(t,s) {\le } \frac{{{{(\ln ({b / a}))}^{\alpha + \beta - 1}}}}{{a\Gamma (\alpha + \beta )}}\) for any \((t,s) {\in } [a,b] {\times } [a,b]\).
Proof
(i) Continuity is obvious. We now prove nonnegativity. To this end, we define
Clearly, we have
for any \(t,s \in [a,b]\). On the other hand, for \(a \le s \le t \le b\), it is easy to see that \(\ln ({t / a}) \cdot \ln ({b / s}) \ge \ln ({b/ a}) \cdot \ln ({t / s})\). Hence,
As a consequence, we get \({G_{1}}(t,s) \ge 0\). Now we show that property (ii) holds. Let \(v = \alpha + \beta \), then \(2 < v < 3\). In this way, the function \({g_{11}}(t,s)\) can be rewritten as follows:
Differentiating \({g_{11}}(t,s)\) with respect to t for every fixed \(s \in [a,b]\), we obtain
It follows that
Easily, we can check that
This implies
Denote
Differentiating \(g(s)\) on \((a,b)\), we get
From which we can derive that
This means, \(g(s)\) is a monotone increasing function on \([a,b]\), that is,
From Eqs. (3.9) and (3.10), we get that
Hence, for any \(t,s \in [a,b]\),
The lemma is proved. □
4 Lyapunov-type inequalities for BVP (1.9) and (1.10)
In this section, we present the Lyapunov-type inequalities for problems (1.9) and (1.10), respectively. To show this, we define \(X= C[a,b]\) as the Banach space endowed with norm \(\Vert x \Vert _{\infty }= {\max_{t \in [a,b]}}|x(t)|\).
Theorem 4.1
If the BVP (1.9) has a nontrivial continuous solution \(x(t){\in } X\), where \(q(t)\) is a real and continuous function in \([a,b]\), then
Proof
According to Lemma 3.1 and Eq. (3.1), if \(x(t){\in } X\) is a nontrivial solution of the BVP (1.9), then
Hence, we derive immediately,
This in combination with the Lemma 3.3 and Lemma 3.4 shows that
from which the inequality (4.1) follows. Thus, Theorem 4.1 is proved. □
Theorem 4.2
If the BVP (1.10) has a nontrivial continuous solution \(x(t){\in } X\), where \(q(t)\) is a real and continuous function in \([a,b]\), then either
-
(I)
\(\int _{a}^{b} { |u(s) |\,ds} \ge \frac{{a{\gamma ^{\gamma }}\Gamma (\gamma )}}{{{{[(\gamma - 1)\ln ({b / a})]}^{\gamma - 1}}}}\), or
-
(II)
\(\int _{a}^{b} { |v(s) |\,ds} \ge {\phi _{p}} \{ { \frac{{a{\gamma ^{\gamma }}\Gamma (\gamma ) - {{[(\gamma - 1)\ln ({b / a})]}^{\gamma - 1}} \int _{a}^{b} { |u(s) |\,ds} }}{{(b - a){{[(\alpha - 1)\ln ({b / a})]}^{\gamma - 1}}}}} \} \frac{{a{\eta ^{\eta }}\Gamma (\eta )}}{{{{[(\eta - 1)\ln ({b / a})]}^{\eta - 1}}}}\).
Proof
From Lemma 3.2 and Eq. (3.4), we know that if \(x(t){\in } X\) is a nontrivial solution of the BVP (1.10), then
from which we deduce that
Combining this with Lemma 3.3 gives
In order to prove the inequality (4.2), now we divide the proof into two cases.
Case 1. If the following inequality holds
then inequality (4.2) holds for any \(v(t) {\in } C[a,b]\), which implies (I).
Case 2. If the inequality (4.3) is untenable, that is,
then from Eq. (4.2), we get (II) immediately. Therefore, we finish the proof of Theorem 4.2. □
As special cases of Theorem 4.1 and Theorem 4.2, we have the following corollaries:
Corollary 4.1
Consider the following fractional Langevin equation:
where \({}_{H}^{C}D_{a + }^{\kappa }\) denotes the Caputo-Hadamard fractional derivative of order κ (\(\kappa =\alpha ,\beta \)), \(\lambda ,\mu \in \mathbb{R}\). If (4.4) has a nontrivial continuous solution, then
Corollary 4.2
Consider the following p-Laplacian fractional Langevin equation:
where \({}_{H}^{C}D_{a + }^{\kappa }\) denotes the Caputo-Hadamard fractional derivative of order κ (\(\kappa =\gamma ,\eta \)), \(\lambda ,\mu \in \mathbb{R}\). If (4.5) has a nontrivial continuous solution, then either
-
(III)
\(|\lambda | \ge \frac{{a{\gamma ^{\gamma }}\Gamma (\gamma )}}{{(b - a){{[(\gamma - 1)\ln ({b / a})]}^{\gamma - 1}}}}\), or
-
(IV)
\(|\mu | \ge {\phi _{p}} \{ { \frac{{a{\gamma ^{\gamma }}\Gamma (\gamma ) - (b - a){{[(\gamma - 1)\ln ({b / a})]}^{\gamma - 1}}|\lambda |}}{{(b - a){{[(\gamma - 1)\ln ({b / a})]}^{\gamma - 1}}}}} \} \frac{{a{\eta ^{\eta }}\Gamma (\eta )}}{{(b - a){{[(\eta - 1)\ln ({b / a})]}^{\eta - 1}}}}\).
Especially for \(\lambda = 0\), if (4.5) has a nontrivial continuous solution, then
5 Conclusion
In this study, Lyapunov-type inequalities were obtained for the two types of fractional Langevin-type equations in the frame of Caputo-Hadamard fractional derivative. In recent years, the fractional Langevin-type equations and Lyapunov-type inequalities are one of the research hot spots on fractional calculus theory. Therefore, this research is valuable and meaningful. Noteworthy, this is the first article to consider Lyapunov-type inequalities for fractional Langevin-type equations. However, a lot more explorations are still required in the future, such as discussing the Lyapunov-type inequalities for nonlinear fractional Langevin-type equations associated with the anti-periodic boundary conditions or other general boundary conditions.
Availability of data and materials
Not applicable.
References
Lyapunov, A.: Problème général de la stabilité du mouvement. In: Ann. of Math. Stud., vol. 17, pp. 203–474. Princeton Univ. Press, Princeton (1949) reprinted from Ann. Fac. Sci. Toulouse, 9 (1907), translation of the original paper published in Comm. Soc. Math. Kharkow (1892)
Eliason, S.B.: A Lyapunov inequality for a certain nonlinear differential equation. J. Lond. Math. Soc. 2(2), 461–466 (1970)
Pinasco, J.P.: Lyapunov-Type Inequalities. With Applications to Eigenvalue Problems. SpringerBriefs in Mathematics. Springer, New York (2013)
Dhar, S., Kong, Q.K.: Liapunov-type inequalities for third-order half-linear equations and applications to boundary value problems. Nonlinear Anal. 110, 170–181 (2014)
de Nápoli, P.L., Pinasco, J.P.: Lyapunov-type inequalities for partial differential equations. J. Funct. Anal. 270, 1995–2018 (2016)
Dhar, S., Kelly, J.S., Kong, Q.K.: Lyapunov-type inequalities for third-order linear and half-linear difference equations and extensions. J. Differ. Equ. Appl. 27(1), 61–80 (2021)
Agarwal, R.P., Özbekler, A.: Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations. Appl. Math. Comput. 282, 216–225 (2016)
Ferreira, R.A.C.: A de La Vallée Poussin type inequality on time scales. Results Math. 73(3), 88 (2018)
Ferreira, R.A.C.: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16(4), 978–984 (2013)
Ferreira, R.A.C.: On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 412, 1058–1063 (2014)
Cañada, A., Villegas, S.: A Variational Approach to Lyapunov Type Inequalities. From ODEs to PDEs. SpringerBriefs in Mathematics. Springer, Cham (2015)
Agarwal, R.P., Bohner, M., Özbekler, A.: Lyapunov Inequalities and Applications. Springer, Cham (2021)
Al Arifi, N., Altun, I., Jleli, M., Lashin, A., Samet, B.: Lyapunov-type inequalities for a fractional p-Laplacian equation. J. Inequal. Appl. 2016, 189 (2016)
Yang, L., Xie, D.P., Yang, D.D., Bai, C.Z.: Two generalized Lyapunov-type inequalities for a fractional p-Laplacian equation with fractional boundary conditions. J. Inequal. Appl. 2017, 98 (2017)
Laadjal, Z., Adjeroud, N., Ma, Q.: Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval \([a,b]\). J. Math. Inequal. 13(3), 789–799 (2019)
Wang, Y.Y., Wu, Y.H., Cao, Z.: Lyapunov-type inequalities for differential equation with Caputo-Hadamard fractional derivative under multipoint boundary conditions. J. Inequal. Appl. 2021, 77 (2021)
Pourhadi, E., Mursaleen, M.: A new fractional boundary value problem and Lyapunov-type inequality. J. Math. Inequal. 15(1), 81–93 (2021)
Ferreira, R.A.C.: Fractional de La Vallée Poussin inequalities. Math. Inequal. Appl. 22(3), 917–930 (2019)
Jarad, F., Adjabi, Y., Abdeljawad, T., Mallak, S.F., Alrabaiah, H.: Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete Contin. Dyn. Syst., Ser. S 14(7), 2335–2355 (2021)
Ferreira, R.A.C.: Lyapunov-type inequality for an anti-periodic fractional boundary value problem. Fract. Calc. Appl. Anal. 20(1), 284–291 (2017)
Jleli, M., Samet, B., Zhou, Y.: Lyapunov-type inequalities for nonlinear fractional differential equations and systems involving Caputo-type fractional derivatives. J. Inequal. Appl. 2019, 19 (2019)
Cabrera, I., Lopez, B., Sadarangani, K.: Lyapunov type inequalities for a fractional two-point boundary value problem. Math. Methods Appl. Sci. 40(10), 3409–3414 (2017)
López, B., Rocha, J., Sadarangani, K.: Lyapunov type inequality for a nonlinear fractional hybrid boundary value problem. Z. Anal. Anwend. 38(1), 97–106 (2019)
Ferreira, R.A.C.: Novel Lyapunov-type inequalities for sequential fractional boundary value problems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 171–179 (2019)
Zhang, W., Liu, W.B.: Lyapunov-type inequalities for sequential fractional boundary value problems using Hilfer’s fractional derivative. J. Inequal. Appl. 2019, 98 (2019)
Peng, Y.H., Wang, X.H.: Lyapunov-type inequalities for a class of linear sequential fractional differential equations. Dyn. Syst. Appl. 28(4), 859–867 (2019)
Ntouyas, S.K., Ahmad, B.: Lyapunov-type inequalities for fractional differential equations: a survey. Surv. Math. Appl. 16, 43–93 (2021)
Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin Equation. With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, 2nd edn. World Scientific, Singapore (2004)
Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64(5), 051106 (2001)
Salem, A., Alzahrani, F., Alghamdi, B.: Langevin equation involving two fractional orders with three-point boundary conditions. Differ. Integral Equ. 33(3–4), 163–180 (2020)
Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13, 599–606 (2012)
Zhou, H., Alzabut, J., Yang, L.: On fractional Langevin differential equations with anti-periodic boundary conditions. Eur. Phys. J. Spec. Top. 226, 3577–3590 (2017)
Zhou, H., Yang, L., Agarwal, P.: Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval. J. Appl. Math. Comput. 53(1–2), 51–76 (2017)
Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham (2017)
Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)
Acknowledgements
The authors would like to express their sincere thanks to the editor and anonymous reviewers for their valuable suggestions and comments.
Funding
This research is supported by the Key Program of University Natural Science Research Fund of Anhui Province (KJ2020A0291).
Author information
Authors and Affiliations
Contributions
WZ was a major contributor to writing the manuscript and funding acquisition. JZ and JN made the formal analysis, writing–review, and editing. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhang, W., Zhang, J. & Ni, J. Lyapunov-type inequalities for fractional Langevin-type equations involving Caputo-Hadamard fractional derivative. J Inequal Appl 2022, 48 (2022). https://doi.org/10.1186/s13660-022-02783-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-022-02783-3
MSC
- 34B05
- 34A08
- 26A33
Keywords
- Lyapunov-type inequality
- Langevin-type equation
- Caputo-Hadamard fractional derivative
- Mixed boundary condition