Skip to main content

Compact operators on sequence spaces associated with the Copson matrix of order α

Abstract

In this work, we study characterizations of some matrix classes \((\mathcal{C}^{(\alpha )}(\ell ^{p}),\ell ^{\infty })\), \((\mathcal{C}^{(\alpha )}(\ell ^{p}),c)\), and \((\mathcal{C}^{(\alpha )}(\ell ^{p}),c^{0})\), where \(\mathcal{C}^{(\alpha )}(\ell ^{p})\) is the domain of Copson matrix of order α in the space \(\ell ^{p}\) (\(0< p<1\)). Further, we apply the Hausdorff measures of noncompactness to characterize compact operators associated with these matrices.

1 Introduction

By \(l^{\diamond }= \{ \zeta =(\zeta _{k}):\text{each }\xi _{k} \text{ is real} \} \). The sequence space \(\ell ^{p}\) is defined by

$$ \ell ^{p}:= \Biggl\{ \zeta =(\zeta _{k})\in l^{\diamond }:\sum_{k=0}^{ \infty } \vert \zeta _{k} \vert ^{p}< \infty , p>0 \Biggr\} . $$

This is a Banach space with the norm

$$ \Vert \zeta \Vert _{\ell ^{p}}= \Biggl( \sum _{k=0}^{\infty } \vert \zeta _{k} \vert ^{p} \Biggr) ^{1/p}< \infty \quad (1\leq p< \infty ) $$

and complete p-normed space with the p-norm

$$ \Vert \zeta \Vert _{\ell ^{p}}=\sum_{k=0}^{\infty } \vert \zeta _{k} \vert ^{p}< \infty\quad (0< p< 1). $$

Further,

$$\begin{aligned}& c^{0}:= \bigl\{ \zeta =(\zeta _{k})\in l^{\diamond }: \zeta _{k} \rightarrow 0 (k\rightarrow \infty ) \bigr\} , \\& c:= \Bigl\{ \zeta =(\zeta _{k})\in l^{\diamond }:\lim _{k\rightarrow \infty }\zeta _{k} \text{ exists} \Bigr\} , \\& \ell ^{\infty }:= \Bigl\{ \zeta =(\zeta _{k})\in l^{\diamond }: \sup_{k} \vert \zeta _{k} \vert < \infty \Bigr\} \end{aligned}$$

are Banach spaces with \(\Vert \zeta \Vert _{\ell ^{\infty }}=\sup_{k}| \zeta _{k}| \).

The Copson matrix \(\mathcal{C}^{(1)}=(c_{j,k})_{j,k\in \mathbb{N}_{0}}\) of order 1 is defined by

$$ c_{j,k}=\textstyle\begin{cases} \frac{1}{k+1} & 0\leq j\leq k, \\ 0 & \text{otherwise.}\end{cases} $$

Note that \(\Vert \mathcal{C}^{(1)}\Vert _{\ell ^{p}}=p\). The Copson matrix is the transpose of the Cesàro matrix

$$ c_{j,k}^{t}=\textstyle\begin{cases} \frac{1}{k+1} & 0\leq k\leq j, \\ 0 & \text{otherwise.}\end{cases} $$

The Copson matrix of order \(\alpha >0\), \(\mathcal{C}^{(\alpha )}=(c_{j,k}^{(\alpha )})\) is defined by

$$ c_{j,k}^{(\alpha )}=\textstyle\begin{cases} \frac{{\binom{n+k-j-1}{k-j}}}{{\binom{n+k}{k}}} & 0\leq j\leq k \\ 0 & \text{otherwise},\end{cases} $$

which is the transpose of Cesàro matrix of order α, and the \(\ell ^{p}\)-norm of \(\mathcal{C}^{(\alpha )}\) is (see [18, 19])

$$ \bigl\Vert \mathcal{C}^{(\alpha )} \bigr\Vert _{\ell ^{p}}= \frac{\Gamma (\alpha +1)\Gamma (1/p)}{\Gamma (\alpha +1/p)}. $$

For \(\alpha =0\), \(\mathcal{C}^{(0)}=I\), where I is the identity matrix, and for \(\alpha =1\), it is \(\mathcal{C}^{(1)}\).

Recently, these types of sequence spaces have been studied in [1822]. Most recently, Roopaei [19] studied the following spaces:

$$\begin{aligned}& \mathcal{C}^{(\alpha )}\bigl(c^{0}\bigr)= \Biggl\{ \zeta =(\zeta _{j})\in l^{ \diamond }:\lim_{j\rightarrow \infty }\sum _{k=j}^{\infty } \frac{{\binom{\alpha +k-j-1}{k-j}}}{{\binom{\alpha +k}{k}}}\zeta _{k}=0 \Biggr\} , \\& \mathcal{C}^{(\alpha )}(c)= \Biggl\{ \zeta =(\zeta _{j})\in l^{ \diamond }:\lim_{j\rightarrow \infty }\sum_{k=j}^{\infty } \frac{{\binom{\alpha +k-j-1}{k-j}}}{{\binom{\alpha +k}{k}}}\zeta _{k} \text{ exists} \Biggr\} , \end{aligned}$$

and

$$ \mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr)= \Biggl\{ \zeta =(\zeta _{j})\in l^{ \diamond }:\sum_{j=0}^{\infty } \Biggl\vert \sum_{k=j}^{\infty } \frac{{\binom{\alpha +k-j-1}{k-j}}}{{\binom{\alpha +k}{k}}}\zeta _{k} \Biggr\vert ^{p}< \infty \Biggr\} \quad (0< p< 1). $$

In terms of matrix domains, these spaces are defined as follows:

$$ \mathcal{C}^{(\alpha )}\bigl(c^{0}\bigr)=\bigl(c^{0} \bigr)_{\mathcal{C}^{(\alpha )}},\qquad \mathcal{C}^{(\alpha )}(c)=(c)_{\mathcal{C}^{(\alpha )}}, \quad \text{and}\quad \mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr)= \bigl(\ell ^{p}\bigr)_{\mathcal{C}^{( \alpha )}}. $$

Throughout the study, \(\eta =(\eta _{j})\) will be the \(\mathcal{C}^{(\alpha )}\)-transform of a sequence \(\zeta =(\zeta _{j})\); that is,

$$ \eta _{j}=\bigl(\mathcal{C}^{(\alpha )}\zeta \bigr)_{j}= \sum_{k=j}^{\infty } \frac{{\binom{n+k-j-1}{k-j}}}{{\binom{n+k}{k}}}\zeta _{k} $$
(1.1)

for all \(j\in \mathbb{N}_{0}\). Also, the relation

ζ k = i = k ( 1 ) i k ( n + k k ) ( n i k ) η i
(1.2)

holds for all \(k\in \mathbb{N}_{0}\).

The spaces \(\mathcal{C}^{(\alpha )}(c^{0})\) and \(\mathcal{C}^{(\alpha )}(c)\) are Banach spaces with the norm \(\Vert \zeta \Vert _{\mathcal{C}^{(\alpha )}(c^{0})}=\Vert \zeta \Vert _{\mathcal{C}^{(\alpha )}(c)}=\Vert \mathcal{C}^{(\alpha )}\zeta \Vert _{\ell ^{\infty }}\), and \(\mathcal{C}^{(\alpha )}(\ell ^{p})\) (\(0< p<1\)) is a complete p-normed space with the p-norm \(\Vert \zeta \Vert _{\mathcal{C}^{(\alpha )}(\ell ^{p})}=\Vert \mathcal{C}^{(\alpha )}\zeta \Vert _{\ell ^{p}}\). Furthermore, \(\mathcal{C}^{(\alpha )}(c^{0})\simeq c^{0}\) and \(\mathcal{C}^{(\alpha )}(c)\simeq c\), while \(\mathcal{C}^{(\alpha )}(\ell ^{p})\simeq \ell ^{p}\).

The main theme of this article is to characterize some matrix classes \((\mathcal{C}^{(\alpha )}(\ell ^{p}),E)\), where \(E=\ell ^{\infty },c,c^{0}\). Furthermore, we apply the techniques of measures of noncompactness to characterize compact operators associated with these matrix classes.

2 Matrix classes

Let \(c_{00}:= \{ \zeta =(\zeta _{j})\in l^{\diamond }:\zeta _{j} \neq 0\text{ for finite }j;\text{and }0\text{ elsewhere} \} \). For a BK-space \(\mathfrak{U}\supset c_{00}\) and \(\gamma =(\gamma _{k})\in l^{\diamond }\), we define

$$ \mathcal{ \Vert \gamma \Vert }_{\mathfrak{U}}^{\ast }=\sup _{ \zeta \in S_{\mathfrak{X}}} \Biggl\vert \sum_{k=0}^{\infty } \gamma _{k} \zeta _{k} \Biggr\vert $$
(2.1)

provided \(\gamma \in \mathfrak{U}^{\beta }= \{ \gamma =(\gamma _{k})\in l^{ \diamond }:\sum_{k=0}^{\infty }\gamma _{k}\zeta _{k} \text{ converges for all }\zeta =(\zeta _{k})\in \mathfrak{U} \} \).

For FK-, BK-, AK-spaces and the relevant literature, we refer to [1, 2, 11], and [12].

We need the following lemmas.

Lemma 2.1

([23])

We have the following:

  1. (i)

    \(D=(d_{jk})\in (c_{0},c_{0})\Leftrightarrow \)

    $$\begin{aligned}& \sup_{j\in \mathbb{N}_{0}}\sum_{k=0}^{\infty } \vert d_{jk} \vert < \infty \end{aligned}$$
    (2.2)
    $$\begin{aligned}& \lim_{j\rightarrow \infty }d_{jk}=0\quad \textit{for each } k\in \mathbb{N}_{0}. \end{aligned}$$
    (2.3)
  2. (ii)

    \(D=(d_{jk})\in (c_{0},c) \Leftrightarrow \) (2.2) holds, and

    $$ \exists \alpha _{k}\in \mathbb{R}\ni \lim_{j\rightarrow \infty }d_{jk}= \alpha _{k} \quad \textit{for each } k\in \mathbb{N}_{0}. $$
    (2.4)
  3. (iii)

    \(D=(d_{jk})\in (c:c_{0})\Leftrightarrow \) (2.2), (2.3) hold, and

    $$ \lim_{j\rightarrow \infty }\sum_{k=0}^{\infty }d_{jk}=0. $$
    (2.5)
  4. (iv)

    \(D=(d_{jk})\in (c,c)\Leftrightarrow \) (2.2) and (2.4) hold, and

    $$ \lim_{j\rightarrow \infty }\sum_{k=0}^{\infty }d_{jk} \quad \textit{exists.} $$
    (2.6)
  5. (v)

    \(D=(d_{jk})\in (c_{0},\ell _{\infty })=(c,\ell _{\infty }) \Leftrightarrow \) (2.2) holds.

Lemma 2.2

We have the following:

  1. (i)

    [8, Theorem 1(i) with \(p_{k}=p\) for all k] \(D=(d_{jk})\in (\ell _{p},\ell _{\infty })\Leftrightarrow \)

    $$ \sup_{j,k\in \mathbb{N}_{0}} \vert d_{jk} \vert ^{p}< \infty . $$
    (2.7)
  2. (ii)

    [8, Corollary for Theorem 1 with \(p_{k}=p\) for all k] \(D=(d_{jk})\in (\ell _{p},c)\Leftrightarrow \) (2.4) and (2.7) hold.

The following results give the relation between \((\mathfrak{U,V})\) and \(\mathcal{B}(\mathfrak{U,V})\) [1].

Lemma 2.3

Let \(\mathfrak{U}\supset c^{00}\) and \(\mathfrak{V}\) be BK-spaces. Then,

  1. (a)

    \((\mathfrak{U,V})\subset \mathcal{B}(\mathfrak{U,V})\), i.e., every matrix \(\mathfrak{A}\in (\mathfrak{U,V})\) is associated with an operator \(L_{\mathfrak{A}}\in \mathcal{B}(\mathfrak{U,V})\) by \(L_{\mathfrak{A}}(\zeta )=\mathfrak{A}\xi \) for all \(\zeta \in \mathfrak{U}\).

  2. (b)

    If \(\mathfrak{U}\) has AK, then the reverse inclusion also holds.

Lemma 2.4

Let \(\mathfrak{U}\supset c^{00}\) be a BK-space and \(\mathfrak{V\in }\{c^{0},c,\ell ^{\infty }\}\). Then

$$ \Vert L_{\mathfrak{A}} \Vert = \mathcal{ \Vert \mathfrak{A} \Vert }_{(\mathfrak{U},\ell ^{\infty })}= \sup_{n}\Vert \mathfrak{A}_{n}\Vert _{\mathfrak{U}}^{\ast }< \infty\quad \textit{for } \mathfrak{A}\in (\mathfrak{U,V}). $$

Next, we characterize the matrix classes \((\mathcal{C}^{(\alpha )}(\ell ^{p}),\ell ^{\infty })\), \((\mathcal{C}^{(\alpha )}(\ell ^{p}),c)\), and \((\mathcal{C}^{(\alpha )}(\ell ^{p}),c^{0})\). Hereafter, we write \(\mathfrak{A}=(a_{jk})_{j,k\in \mathbb{N}_{0}}\) for an infinite matrix.

The β-dual of a sequence space \(\mathfrak{U}\), i.e., \(\mathfrak{U}^{\beta }= \{ a=(a_{k})\in l^{\diamond }:\sum_{k=0}^{ \infty }a_{k}\zeta _{k}\text{ converges for}\text{ }\text{all }\zeta =(\zeta _{k}) \in \mathfrak{U} \} \) plays an important role in matrix transformations. The β-dual of \(\mathcal{C}^{(\alpha )}(\ell ^{p})\) (\(0< p<1\)) is

$$ \bigl( \mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr) \bigr) ^{\beta }:= \Biggl\{ b=(b_{k})\in l^{\diamond }: \sup _{j} \Biggl\vert \sum_{i=0}^{j}(-1)^{j-i}{\binom{n+i}{i}} {\binom{n}{j-i}}b_{i} \Biggr\vert ^{p}< \infty \Biggr\} . $$

Theorem 2.5

\(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),\ell ^{\infty }) \Leftrightarrow \)

$$ \sup_{j,k\in \mathbb{N}_{0}} \Biggl\vert \sum_{i=0}^{k}(-1)^{k-i}{ \binom{\alpha +i}{i}} {\binom{\alpha }{k-i}}a_{ji} \Biggr\vert ^{p}< \infty . $$
(2.8)

Proof

Necessity. Suppose \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),\ell _{\infty })\) and \(\xi =(\xi _{k})\in \mathcal{C}^{(\alpha )}(\ell ^{p})\). Then \(\mathfrak{A}\xi \) exists and \(\mathfrak{A}\xi \in \ell ^{\infty }\). Then \(\mathfrak{A}_{j}=(a_{jk})_{k\in \mathbb{N}_{0}}\in (\mathcal{C}^{( \alpha )}(\ell ^{p}))^{\beta }\) for each \(j\in \mathbb{N}_{0}\), and hence (2.8) holds.

Sufficiency. Let (2.8) hold and that \(\zeta =(\zeta _{k})\in \mathcal{C}^{(\alpha )}(\ell ^{p})\). Then \(\mathfrak{A}_{j}=(a_{jk})_{k\in \mathbb{N}_{0}}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}))^{ \beta }\) for each \(j\in \mathbb{N}_{0}\), which guarantees the existence of \(\mathfrak{A}\zeta \). Fix \(j\in \mathbb{N}\), then by (1.2), for \(r\in \mathbb{N}_{0}\),

$$\begin{aligned} \sum_{k=0}^{r}a_{jk}\zeta _{k} =&\sum_{k=0}^{r}\sum _{i=k}^{ \infty }(-1)^{i-k}{ \binom{\alpha +k}{k}} {\binom{\alpha }{i-k}}a_{jk}y_{i} \\ =&\sum_{k=0}^{r} \Biggl( \sum _{i=0}^{k}(-1)^{k-i}{ \binom{\alpha +i}{i}} {\binom{\alpha }{k-i}}a_{ji} \Biggr) y_{k} \\ &{}+\sum_{k=r+1}^{\infty } \Biggl( \sum _{i=0}^{r}(-1)^{r-i}{ \binom{\alpha +i}{i}} {\binom{\alpha }{r-i}}a_{ji} \Biggr) y_{k} \end{aligned}$$

for all \(j,r\in \mathbb{N}_{0}\). Now, by letting \(r\rightarrow \infty \), we have

$$ (A\zeta )_{j}=\sum_{k=0}^{\infty }a_{jk} \zeta _{k}=\sum_{k=0}^{ \infty }b_{jk}y_{k}=(By)_{j} $$
(2.9)

for all \(j\in \mathbb{N}_{0}\), where

$$ b_{jk}=\sum_{i=0}^{k}(-1)^{k-i}{ \binom{\alpha +i}{i}} { \binom{\alpha }{k-i}}a_{ji} $$
(2.10)

for all \(j,r\in \mathbb{N}_{0}\). Therefore, condition (2.7) of Lemma 2.2 is satisfied by the matrix \(B=(b_{jk})\). Hence \(By=\mathfrak{A}\zeta \in \ell ^{\infty }\), i.e., \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),\ell _{\infty })\). □

Theorem 2.6

\(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c)\) (2.8) holds and there exists \(\beta _{k}\in \mathbb{R} \) such that

$$ \lim_{j\rightarrow \infty }\sum_{i=0}^{k}(-1)^{k-i}{ \binom{\alpha +i}{i}} {\binom{\alpha }{k-i}}a_{ji}=\beta _{k} $$
(2.11)

for each \(k\in \mathbb{N}_{0}\).

Proof

Necessity. Let \(\mathfrak{A}=(a_{nk})\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c)\). Then \(\mathfrak{A\zeta }\) exists and \(\mathfrak{A\zeta }\in c\) for all \(\mathfrak{\zeta }=(\zeta _{k})\in \mathcal{C}^{(\alpha )}(\ell ^{p})\). Since \(c\subset \ell ^{\infty }\), condition (2.8) follows from Theorem 2.5. Condition (2.11) immediate follows by taking the sequence \(\zeta ^{(i)}= \{ \zeta _{k}^{(i)} \} \in \mathcal{C}^{( \alpha )}(\ell ^{p})\) defined by

$$ \zeta _{k}^{(i)}:=\textstyle\begin{cases} (-1)^{k-i}{\binom{\alpha +i}{i}}{\binom{\alpha }{k-i}} , & k\geq i, \\ 0 , & 0\leq k\leq i-1,\end{cases} $$

for all \(i,k\in \mathbb{N}_{0}\) that \(\mathfrak{A}\zeta ^{(k)}= \{ \sum_{i=0}^{k}(-1)^{k-i}{ \binom{\alpha +i}{i}}{\binom{\alpha }{k-i}}a_{ji} \} \in c\) for each \(k\in \mathbb{N}_{0}\).

Sufficiency. Suppose that conditions (2.8) and (2.11) hold, and that \(\zeta =(\zeta _{k})\in \mathcal{C}^{(\alpha )}(\ell ^{p})\). Existence of \(\mathfrak{A}\zeta \) follows from the fact that \(\mathfrak{A}_{j}=(a_{jk})_{k\in \mathbb{N}_{0}}\in (\mathcal{C}^{( \alpha )}(\ell ^{p}))^{\beta }\) for each \(j\in \mathbb{N}_{0}\). Therefore, it follows from (2.9) that conditions (2.8) and (2.11) correspond to (2.7) and (2.4) with \(b_{jk}\) instead of \(d_{jk}\), respectively, where \(b_{jk}\) is given by (2.10). Thus, \(By\in c\), and we get by (2.9) that \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c)\). □

Corollary 2.7

\(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c^{0}) \Leftrightarrow \) (2.8) holds and (2.11) also holds with \(\beta _{k}=0\) for all \(k\in \mathbb{N}_{0}\).

Corollary 2.8

For \(\mathfrak{A}=(a_{nk})\), write \(c(j,k)=\sum_{i=0}^{j}a_{ik} \) for all \(k,n\in \mathbb{N}_{0}\). Then, from Theorem 2.5, Theorem 2.6, and Corollary 2.7, we get:

  1. (i)

    \(\mathfrak{A}=(a_{nk})\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),bs) \Leftrightarrow \) (2.8) holds with \(a_{jk}\) is replaced by \(c(j,k)\).

  2. (ii)

    \(\mathfrak{A}=(a_{nk})\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),cs) \Leftrightarrow \) (2.8) and (2.11) hold with \(a_{jk}\) is replaced by \(c(j,k)\).

  3. (iii)

    \(\mathfrak{A}=(a_{nk})\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),cs_{0})\Leftrightarrow \) (2.8) and (2.11) hold with \(a_{jk}\) is replaced by \(c(j,k)\), with \(\beta _{k}=0\) for all \(k\in \mathbb{N}_{0}\), where bs, cs, and \(s_{0}\) are the space of bounded, convergent, and null series, respectively.

3 Compactness of matrix operators

We apply the techniques of [37, 9, 10], and [1317].

Let \(\mathcal{M}_{\mathfrak{U}}:=\{\mathfrak{B\subset U}:\mathfrak{B}\text{ is bounded} \}\). The Hausdorff measure of noncompactness (HMNC) of \(\mathfrak{B\in }\mathcal{M}_{\mathfrak{U}}\) is defined by

$$ \chi (\mathfrak{B})=\inf \{ \varepsilon >0:\mathfrak{B} \text{ has finite } \varepsilon \text{-net} \} . $$

Let \(\mathfrak{U}\) and \(\mathfrak{V}\) be Banach spaces and \(\mathfrak{D}\in \mathcal{B}(\mathfrak{U},\mathfrak{V})\). Then the HMNC of \(\mathfrak{D}\) is defined by

$$ {\mathcal{ \Vert \mathfrak{D} \Vert }}_{\chi }=\chi \bigl( \mathfrak{D}({S}_{\mathfrak{U}})\bigr)=\chi \bigl(\mathfrak{D}( \bar{B}_{\mathfrak{U}})\bigr), $$
(3.1)

and we have

$$ \mathfrak{D} \quad \text{is compact if and only if}\quad { \mathcal{ \Vert \mathfrak{D} \Vert }}_{\chi }=0. $$
(3.2)

In what follows, we denote the set of all compact operators from \(\mathfrak{U} \) into \(\mathfrak{V}\) by \(\mathfrak{C}(\mathfrak{U,V})\).

Theorem 3.1

Let \(\mathfrak{U}\) be a Banach space with a Schauder basis \((b_{k})_{k=0}^{\infty }\), \({\mathcal{\mathfrak{D}}}\in \mathcal{M}_{\mathfrak{U}}\) and \(\mathfrak{P}_{n}:\mathfrak{U}\rightarrow \mathfrak{U}\) (\(n\in \mathbb{N}\)) be the projector onto the linear span of \(\{b_{0},b_{1},\ldots ,b_{n}\}\). Then we have

$$\begin{aligned}& \frac{1}{\limsup_{n\rightarrow \infty } \Vert I-\mathfrak{P}_{n} \Vert } \cdot \limsup_{n\rightarrow \infty }{ \Bigl(}\sup _{\zeta \in { \mathcal{\mathfrak{D}}}} \bigl\Vert (I-\mathfrak{P}_{n}) (\zeta ) \bigr\Vert { \Bigr)} \\& \quad \leq \chi ({ \mathcal{\mathfrak{D}}})\leq \limsup _{n\rightarrow \infty }{ \Bigl(}\sup_{x \in {\mathcal{\mathfrak{D}}}} \bigl\Vert (I- \mathfrak{P}_{n}) (\zeta ) \bigr\Vert { \Bigr)}. \end{aligned}$$

Theorem 3.2

Let \({\mathcal{\mathfrak{D}}}\in \mathcal{M}_{\mathfrak{U}}\), where \(\mathfrak{U}=\ell _{p}\) (\(1\leq p<\infty \)) or \(c^{0}\). If \(\mathfrak{P}_{n}:\mathfrak{U}\rightarrow \mathfrak{U}\) (\(n\in \mathbb{N}\)) is the operator defined by \(\mathfrak{P}_{n}(\zeta )=\zeta ^{{}[ n]}=(\zeta _{0},\zeta _{1}, \ldots ,\zeta _{n},0 ,0,\ldots )\) for all \(\zeta =(\zeta _{k})_{k=0}^{\infty }\in \mathfrak{U}\), then

$$ \chi ({\mathcal{\mathfrak{D}}})=\lim_{n\rightarrow \infty }{ \Bigl(}\sup_{\zeta \in {\mathcal{\mathfrak{D}}}} \bigl\Vert (I-\mathfrak{P}_{n}) ( \zeta ) \bigr\Vert { \Bigr)}. $$

Lemma 3.3

([13])

Let \(\mathfrak{U}\supset c^{00}\) be a BK-space with AK or \(\mathfrak{U}=\ell _{\infty }\). If \(\mathfrak{A}\in (\mathfrak{U},c)\), then

$$\begin{aligned}& \alpha _{k}=\lim_{j\rightarrow \infty }a_{jk} \quad \textit{exists for every } k\in \mathbb{N}, \end{aligned}$$
(3.3)
$$\begin{aligned}& \alpha =(\alpha _{k})\in \mathfrak{U}^{\beta }, \end{aligned}$$
(3.4)
$$\begin{aligned}& \sup_{j}\Vert \mathfrak{A}_{j}-\alpha \Vert _{\mathfrak{U}}^{\ast }< \infty , \end{aligned}$$
(3.5)
$$\begin{aligned}& \lim_{j\rightarrow \infty }\mathfrak{A}_{j}(x)=\sum _{k=0}^{\infty } \alpha _{jk}x_{k}\quad \textit{for all } x=(x_{k})\in \mathfrak{U}. \end{aligned}$$
(3.6)

Theorem 3.4

([13])

Let \(\mathfrak{U}\supset c^{00}\) be a BK-space. Then we have

(a)

$$ \Vert L_{\mathfrak{A}}\Vert _{\chi }= \limsup _{n\rightarrow \infty }\Vert \mathfrak{A}_{n} \Vert _{\mathfrak{U}}^{\ast }\quad \textit{for }\mathfrak{A} \in \bigl( \mathfrak{U},c^{0}\bigr) $$

and

$$ L_{\mathfrak{A}}\in \mathfrak{C} \bigl(\mathfrak{U},c^{0}\bigr) \quad \Leftrightarrow \quad \lim_{n\rightarrow \infty } \Vert \mathfrak{A}_{n}\Vert _{\mathfrak{U}}^{\ast }=0. $$

(b) If \(\mathfrak{U}\) has AK or \(\mathfrak{U}=\ell ^{\infty }\), then

$$ \frac{1}{2}\cdot \limsup_{n\rightarrow \infty }\Vert \mathfrak{A}_{n}-\alpha \Vert _{\mathfrak{U}}^{\ast } \leq \Vert L_{\mathfrak{A}}\Vert _{\chi } \leq \limsup_{n \rightarrow \infty }\Vert \mathfrak{A}_{n}- \alpha \Vert _{\mathfrak{U}}^{\ast }\quad \textit{for }\mathfrak{A} \in (\mathfrak{U},c) $$

and

$$ L_{\mathfrak{A}}\in \mathfrak{C} (\mathfrak{U},c) \quad \Leftrightarrow \quad \lim_{n\rightarrow \infty }\Vert \mathfrak{A}_{n}-\alpha \Vert _{\mathfrak{U}}^{\ast }=0, $$

where \(\alpha =(\alpha _{k})=(\lim_{n\rightarrow \infty }a_{nk})\) for all \(k\in \mathbb{N}\).

(c)

$$ 0\leq \Vert L_{\mathfrak{A}}\Vert _{\chi } \leq \limsup_{n\rightarrow \infty }\Vert \mathfrak{A}_{n} \Vert _{\mathfrak{U}}^{\ast }\quad \textit{for }\mathfrak{A} \in \bigl( \mathfrak{U},\ell ^{\infty }\bigr) $$

and

$$ L_{\mathfrak{A}}\in \mathfrak{C} \bigl(\mathfrak{U},\ell ^{\infty }\bigr) \quad \textit{if } \lim_{n\rightarrow \infty }\Vert \mathfrak{A}_{n} \Vert _{\mathfrak{U}}^{\ast }=0. $$
(3.7)

We now state and prove the following.

Theorem 3.5

Let \(1\leq p<\infty \). Then we have

(a)

$$ \Vert L_{\mathfrak{A}}\Vert _{\chi }= \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \vert a_{jk} \vert ^{p} \Biggr) ^{1/p}\quad \textit{for }\mathfrak{A}\in \bigl( \mathcal{C}^{(\alpha )}\bigl( \ell ^{p}\bigr),c^{0}\bigr). $$
(3.8)

(b)

$$\begin{aligned}& \frac{1}{2}\cdot \lim_{r\rightarrow \infty }\sup_{j} \Biggl( \sum_{k=r+1}^{ \infty } \vert a_{jk}-\beta _{k} \vert ^{p} \Biggr) ^{1/p} \\& \quad \leq \Vert L_{\mathfrak{A}}\Vert _{\chi }\leq \lim_{r \rightarrow \infty }\sup_{j} \Biggl( \sum_{k=r+1}^{\infty } \vert a_{jk}- \beta _{k} \vert ^{p} \Biggr) ^{1/p}\quad \textit{for }\mathfrak{A}\in \bigl( \mathcal{C}^{(\alpha )} \bigl(\ell ^{p}\bigr),c\bigr), \end{aligned}$$
(3.9)

where \(\beta =(\beta _{k})=(\lim_{j\rightarrow \infty }b_{jk})\) for all \(k\in \mathbb{N}\).

(c)

$$ 0\leq \Vert L_{\mathfrak{A}}\Vert _{\chi } \leq \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{ \infty } \vert a_{jk} \vert ^{p} \Biggr) ^{1/p}\quad \textit{for }\mathfrak{A}\in \bigl( \mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr),\ell ^{\infty } \bigr). $$
(3.10)

Proof

(a) Note that the limits in (3.8), (3.9), and (3.10) exist by Lemmas 2.4 and 3.3. Let \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c^{0})\). Then \(\mathfrak{A}_{j}=(a_{jk})_{k\in \mathbb{N}_{0}}\in {}[ \mathcal{C}^{( \alpha )}(\ell ^{p})]^{\beta }\) for each \(j\in \mathbb{N}_{0}\), and we have

$$ \Vert \mathfrak{A}\Vert _{\mathcal{C}^{( \alpha )}(\ell ^{p})}^{\ast }= \Vert B_{j} \Vert _{\ell ^{p}}= \Biggl( \sum _{k=0}^{\infty } \vert a_{jk} \vert ^{p} \Biggr) ^{1/p}. $$
(3.11)

Write \(S=S_{\mathcal{C}^{(\alpha )}(\ell ^{p})}\) for short. Then we have \(\mathfrak{A}S\in \mathcal{M}_{c^{0}}\). From Theorem 3.2, we get

$$\begin{aligned}& \Vert L_{\mathfrak{A}}\Vert _{\chi }= \chi (\mathfrak{A}S)=\lim_{r\rightarrow \infty }\sup_{\zeta \in S} \bigl\Vert (I-\mathfrak{P}_{r}) (\mathfrak{A}\zeta ) \bigr\Vert _{\ell ^{p}}. \end{aligned}$$
(3.12)
$$\begin{aligned}& \lim_{r\rightarrow \infty }\sup_{y\in S_{\ell ^{p}}} \bigl\Vert (I- \mathfrak{P}_{r}) (By) \bigr\Vert _{\ell _{p}}{=}\lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \vert a_{jk} \vert ^{p} \Biggr) ^{1/p}. \end{aligned}$$
(3.13)

We get (3.8) by (3.13).

(b) We have \(\mathfrak{A}S\in \mathcal{M}_{c}\). Suppose that \(\mathfrak{P}_{r}:c\rightarrow c\) (\(r\in \mathbb{N}\)) are the projectors defined by (2.3).

Now, since \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c)\), we have \(B\in (\ell ^{p},c)\) and \(\mathfrak{A}\xi =By\). Thus, it follows from Lemma 3.3 that the limits \(\beta _{k}=\lim_{j\rightarrow \infty }a_{jk}\) exist for all k, \(\beta =(\beta _{k})\in {\ell }^{1}={c}^{\beta }\) and \(\lim_{j\rightarrow \infty }B_{j}(y)=\sum_{k=0}^{\infty }a_{jk}y_{k}\). Therefore, we get

$$ \begin{aligned} \Vert (I-\mathfrak{P}_{r}) ( \mathfrak{A} \zeta )\Vert _{\ell ^{p}}& =\Vert (I-\mathfrak{P}_{r}) (By)\Vert _{\ell ^{p}} \\ & =\sup_{j} \Biggl( \sum_{k=r+1}^{\infty } \vert a_{jk}-\beta _{k} \vert ^{p} \Biggr) ^{1/p} \end{aligned}$$

for all \(\zeta =(\zeta _{k})\in \mathcal{C}^{(\alpha )}(\ell ^{p})\). Now, (3.12) and (3.1) imply that

$$ \frac{1}{2}\cdot \lim \sup_{r\rightarrow \infty } \Vert B_{j}-\beta \Vert _{\ell ^{p}}\leq \mathcal{ \Vert }L_{\mathfrak{A}}\Vert _{\chi }\leq \lim \sup _{r \rightarrow \infty }\Vert B_{j}-\beta \Vert _{\ell ^{p}}. $$
(3.14)

Hence, we get (3.9) from (3.14), since the limit in (3.9) exists.

(c) Define \(\mathfrak{P}_{r}:\ell ^{\infty }\rightarrow \ell ^{\infty }\) (\(r\in \mathbb{N}\)) as in (a) for all \(\zeta =(\zeta _{k})\in \ell ^{\infty }\). Then

$$ \mathfrak{A}S\subset \mathfrak{P}_{r}(\mathfrak{A}S)+(I- \mathfrak{P}_{r}) (\mathfrak{A}S);\quad (r\in \mathbb{N}). $$

Therefore

$$ \begin{aligned} 0&\leq \chi (\mathfrak{A}S) \\ & \leq \chi \bigl( \mathfrak{P}_{r}( \mathfrak{A}S)\bigr)+\chi \bigl((I- \mathfrak{P}_{r}) (\mathfrak{A}S)\bigr) \\ & = \chi \bigl((I-\mathfrak{P}_{r}) (\mathfrak{A}S)\bigr) \\ & \leq \sup_{\xi \in S}\Vert (I-\mathfrak{P}_{r}) ( \mathfrak{A}\xi )\Vert _{\ell ^{p}} \\ & = \lim_{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{ \infty } \vert a_{jk} \vert ^{p} \Biggr) ^{1/p}. \end{aligned}$$

From this and (3.12), we get (3.10), which concludes the proof. □

Corollary 3.6

We have the following:

(a) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),c_{0})\),

$$ L_{\mathfrak{A}}\in \mathfrak{C}\bigl(\mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr),c^{0}\bigr)\quad \Leftrightarrow \quad \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{ \infty } \vert a_{jk} \vert ^{p} \Biggr) ^{1/p}=0. $$

(b) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell _{p}),c)\),

$$ L_{\mathfrak{A}}\in \mathfrak{C}\bigl(\mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr),c\bigr) \quad \Leftrightarrow\quad \lim_{r\rightarrow \infty }\sup _{j} \Biggl( \sum_{k=r+1}^{\infty } \vert a_{jk}-\beta _{k} \vert ^{p} \Biggr) ^{1/p}=0, $$

where \(\beta =(\beta _{k})=(\lim_{j\rightarrow \infty }a_{jk})\) for all \(k\in \mathbb{N}\).

(c) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),\ell ^{\infty })\), then

$$ L_{\mathfrak{A}}\in \mathfrak{C}\bigl(\mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr), \ell ^{\infty }\bigr)\quad \textit{if } \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \vert b_{jk} \vert ^{p} \Biggr) ^{1/p}=0. $$
(3.15)

Corollary 3.7

From Theorem 3.4and Corollary 2.11, we have the following:

(a) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),cs^{0})\),

$$ \Vert L_{\mathfrak{A}}\Vert _{\chi }= \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \bigl\vert c(j,k) \bigr\vert ^{p} \Biggr) ^{1/p}. $$
(3.16)

(b) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),cs)\),

$$\begin{aligned}& \frac{1}{2}\cdot \lim_{r\rightarrow \infty }\sup_{j} \Biggl( \sum_{k=r+1}^{ \infty } \bigl\vert c(j,k)- \beta _{k} \bigr\vert ^{p} \Biggr) ^{1/p} \\& \quad \leq \Vert L_{\mathfrak{A}}\Vert _{\chi }\leq \lim_{r \rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \bigl\vert c(j,k)- \beta _{k} \bigr\vert ^{p} \Biggr) ^{1/p}, \end{aligned}$$
(3.17)

where \(\beta =(\beta _{k})=(\lim_{j\rightarrow \infty }b_{jk})\) for all \(k\in \mathbb{N}\).

(c) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),bs)\),

$$ 0\leq \Vert L_{\mathfrak{A}}\Vert _{\chi } \leq \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{ \infty } \bigl\vert c(j,k) \bigr\vert ^{p} \Biggr) ^{1/p}. $$
(3.18)

Corollary 3.8

From Corollary 3.5and Corollary 2.11, we have the following:

(a) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),cs^{0})\),

$$ L_{\mathfrak{A}}\in \mathfrak{C}\bigl(\mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr),cs^{0}\bigr) \quad\Leftrightarrow \quad \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \bigl\vert c(j,k) \bigr\vert ^{p} \Biggr) ^{1/p}=0. $$

(b) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),cs)\),

$$ L_{\mathfrak{A}}\in \mathfrak{C}\bigl(\mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr),cs\bigr) \quad\Leftrightarrow \quad \lim _{r\rightarrow \infty }\sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \bigl\vert c(j,k)-\beta _{k} \bigr\vert ^{p} \Biggr) ^{1/p}=0, $$

where \(\beta =(\beta _{k})=(\lim_{j\rightarrow \infty }c(j,k))\) for all \(k\in \mathbb{N}\).

(c) For \(\mathfrak{A}\in (\mathcal{C}^{(\alpha )}(\ell ^{p}),bs)\),

$$ L_{\mathfrak{A}}\in \mathfrak{C}\bigl(\mathcal{C}^{(\alpha )}\bigl(\ell ^{p}\bigr),bs\bigr) \quad\Leftrightarrow \quad \mathit{ if} \lim_{r\rightarrow \infty } \sup_{j} \Biggl( \sum _{k=r+1}^{\infty } \bigl\vert c(j,k) \bigr\vert ^{p} \Biggr) ^{1/p}=0. $$

Availability of data and materials

Not applicable.

References

  1. Banaś, J., Mursaleen, M.: Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Başar, F.: Summability Theory and Its Applications. Bentham Sci., İstanbul (2012)

    Book  Google Scholar 

  3. Başarir, M., Kara, E.E.: On compact operators on the Riesz \(B^{m}\)-difference sequence spaces. Iran. J. Sci. Technol. Trans. A, Sci. 35(4), 279–285 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Başarir, M., Kara, E.E.: On the B-difference sequence space derived by generalized weighted mean and compact operators. J. Math. Anal. Appl. 391(1), 67–81 (2012)

    Article  MathSciNet  Google Scholar 

  5. Djolović, I., Malkowsky, E.: A note on compact operators on matrix domains. J. Math. Anal. Appl. 340(1), 291–303 (2008)

    Article  MathSciNet  Google Scholar 

  6. Djolović, I., Malkowsky, E.: Matrix transformations and compact operators on some new mth-order difference sequences. Appl. Math. Comput. 198(2), 700–714 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Kara, E.E., Başarir, M.: On compact operators and some Euler \(B(m)\)-difference sequence spaces. J. Math. Anal. Appl. 379(2), 499–511 (2011)

    Article  MathSciNet  Google Scholar 

  8. Lascarides, C.G., Maddox, I.J.: Matrix transformations between some classes of sequences. Proc. Camb. Philol. Soc. 68, 99–104 (1970)

    Article  MathSciNet  Google Scholar 

  9. Malkowsky, E., Rakočević, V.: An introduction into the theory of sequence spaces and measures of noncompactness. Zb. Rad. (Beogr.) 9(17), 143–234 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Malkowsky, E., Rakočević, V.: On matrix domains of triangles. Appl. Math. Comput. 189(2), 1146–1163 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Malkowsky, E., Rakočević, V.: Advances Functional Analysis. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  12. Mursaleen, M., Basar, F.: Sequence Spaces: Topics in Modern Summability Theory. Mathematics and Its Applications. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  13. Mursaleen, M., Noman, A.K.: Compactness by the Hausdorff measure of noncompactness. Nonlinear Anal. 73, 2541–2557 (2010)

    Article  MathSciNet  Google Scholar 

  14. Mursaleen, M., Noman, A.K.: The Hausdorff measure of noncompactness of matrix operators on some BK spaces. Oper. Matrices 5(3), 473–486 (2011)

    Article  MathSciNet  Google Scholar 

  15. Mursaleen, M., Noman, A.K.: Compactness of matrix operators on some new difference sequence spaces. Linear Algebra Appl. 436(1), 41–52 (2012)

    Article  MathSciNet  Google Scholar 

  16. Mursaleen, M., Noman, A.K.: Applications of Hausdorff measure of noncompactness in the spaces of generalized means. Math. Inequal. Appl. 16, 207–220 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Mursaleen, M., Noman, A.K.: Hausdorff measure of noncompactness of certain matrix operators on the sequence spaces of generalized means. J. Math. Anal. Appl. 417, 96–111 (2014)

    Article  MathSciNet  Google Scholar 

  18. Roopaei, H.: A study on Copson operator and its associated sequence spaces. J. Inequal. Appl. 2020, 120 (2020)

    Article  MathSciNet  Google Scholar 

  19. Roopaei, H.: A study on Copson operator and its associated sequence spaces II. J. Inequal. Appl. 2020, 239 (2020)

    Article  MathSciNet  Google Scholar 

  20. Roopaei, H.: Factorization of the Hilbert matrix based on Cesàro and gamma matrices. Results Math. 75(1), 3 (2020)

    Article  MathSciNet  Google Scholar 

  21. Roopaei, H., Başar, F.: On the spaces of Cesàro absolutely p-summable, null, and convergent sequences. Math. Methods Appl. Sci. 44(5), 3670–3685 (2020). https://doi.org/10.1002/mma.6973

    Article  MATH  Google Scholar 

  22. Roopaei, H., Foroutannia, D., İlkhan, M., Kara, E.E.: Cesàro spaces and norm of operators on these matrix domains. Mediterr. J. Math. 17, 121 (2020)

    Article  Google Scholar 

  23. Stieglitz, M., Tietz, H.: Matrix transformationen von folgenraumen eineergebnisübersicht. Math. Z. 154, 1–16 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful to the learned reviewers whose suggestions led to the improvement of the presentation.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Mursaleen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mursaleen, M., Edely, O.H.H. Compact operators on sequence spaces associated with the Copson matrix of order α. J Inequal Appl 2021, 178 (2021). https://doi.org/10.1186/s13660-021-02713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-021-02713-9

MSC

Keywords