# Applications of new contraction mappings on existence and uniqueness results for implicit ϕ-Hilfer fractional pantograph differential equations

## Abstract

In this paper, we consider initial value problems for two different classes of implicit ϕ-Hilfer fractional pantograph differential equations. We use different approach that is based on $$\alpha -\psi$$-contraction mappings to demonstrate the existence and uniqueness of solutions for the proposed problems. The mappings are defined in appropriate cones of positive functions. The presented examples demonstrate the efficiency of the used method and the consistency of the proposed results.

## 1 Introduction

Calculus of arbitrary order integration and differentiation has achieved a remarkable growth over the last few decades due to its applications in a wide range of fields such as engineering, physics, neural networks, control theory, population dynamics, and epidemiology; see for instance [14].

In this context, there have appeared many definitions of fractional derivatives including the well-known types of Caputo, Riemann–Liouville, Hadamard, Katugampola derivatives and many others. Consequently, this has led to several problems defined by different fractional operators. However, it has been realized that the most efficient way to deal with such a variety of fractional operators is to accommodate generalized forms of fractional operators that include other operators. In [5], the Hilfer fractional derivative $$D^{\upsilon , \iota }_{a^{+}}$$ of order α and type ι was introduced. This definition provides a concatenation betwixt the Riemann–Liouville and Caputo fractional derivatives. The type-parameter ι allows some freedom of action in the initial conditions, which produces more kinds of stationary states. Some models based on this definition can be seen in the papers [68]. Meanwhile, for the sake of generalizing the definitions of fractional derivative, the fractional derivatives of a function relative to the other function defined as

$$D^{\upsilon ; \phi }_{a^{+}}f(\varsigma )= \biggl( \frac{1}{\phi ^{\prime }(\varsigma )} \frac{d}{d\varsigma } \biggr)^{n}I^{n- \alpha ;\phi }_{a^{+}}f(\varsigma ) \quad \text{and}\quad {}^{C}D^{\upsilon ; \phi }_{a^{+}}f(\varsigma )=I^{n-\alpha ;\phi }_{a^{+}} \biggl( \frac{1}{\phi ^{\prime }(\varsigma )}\frac{d}{d\varsigma } \biggr)^{n}f( \varsigma )$$

in terms of the Riemann–Liouville and Caputo fractional derivatives were introduced, respectively [9, 10]. In this perspective, the ϕ-Hilfer derivative was defined in [11]. For more relevant applications concerning ϕ-Hilfer derivative, we refer the reader to [1227].

On the one hand, the contraction mappings are widely utilized to examine of the existence and uniqueness of fixed points. For this purpose, many contraction mappings have been developed and used by interested researchers who applied these mappings in various disciplines. In [28], the authors presented $$\alpha -\psi$$-contraction mappings. This mapping and its extensions as well as some useful fixed point results can be seen in several papers [2939].

On the other hand, the pantograph is a mechanical connection set in a manner based on parallelograms so that the movement of one pen, in tracing an image, produces identical movements in a second pen. In the study of the motion of the pantograph head on an electric locomotive, the authors of [40] came across the following delay differential equation:

$$y'(\varsigma )=a y(\varsigma )+b y(\varepsilon \varsigma ),\quad 0< \varepsilon < 1, \varepsilon ,a,b \in \mathrm{R},$$

which was referred to in the literature as pantograph differential equation. During the last decades, it has been realized that pantograph differential equation has many applications in various disciplines, see the paper [41] and the references cited therein.

Knowing the significant of fractional operators in modeling processes, the consideration of pantograph differential equation in fractional settings has come true. We review some relevant results for the sake of completeness. Nonlinear fractional pantograph differential equation was studied in [42, 43] where the existence of solutions is investigated using fractional calculus and fixed point theorems.

In the recent paper [44], the authors discussed the following:

\begin{aligned} \textstyle\begin{cases} D_{a^{+}}^{\upsilon ,\iota ;\phi }x(\varsigma ) =f(\varsigma ,x( \varsigma ),x(\varepsilon (\varsigma ))),\quad 0< \varepsilon < 1, \varsigma \in J= ( a,b ] ,a>0, \\ I_{a^{+}}^{1-\mu ;\phi }x(\varsigma )|_{\varsigma =a}=\sum_{i=1}^{m}c_{i}x( \vartheta _{i}),\quad \vartheta _{i}\in (a,b], \end{cases}\displaystyle \end{aligned}
(1)

where $$D_{a^{+}}^{\upsilon ,\iota ;\phi }$$ is ϕ-Hilfer fractional derivative of order υ ($$0 < \upsilon < 1$$) and type ι ($$0 \le \iota \le 1$$), $$I_{a^{+}}^{1-\mu ;\phi }$$ is ϕ-Riemann–Liouville fractional integral of order $$1 - \mu$$ with respect to the continuous function ϕ such that $$\phi ^{\prime }(\cdot )\ne 0$$ and $$\mu =\upsilon +\iota -\upsilon \iota$$. The nonlinearity $$f : J\times \mathrm{R} \times \mathrm{R} \to \mathrm{R}$$ is a given continuous function, $$\vartheta _{i}$$, $$i = 0, 1, \dots , m$$, are prefixed points satisfying $$a < \vartheta _{1} \le \cdots \le \vartheta _{m} < b$$, and $$c_{i}$$ is real numbers.

The objective of this paper is to provide different approach to investigate the existence and uniqueness of solutions for Eq. (1). To do this, we use a new technique that is based on the application of $$\alpha -\psi$$-contraction mappings which are defined in appropriate cones of positive functions. Furthermore, we extend the proposed results to cover the following modified implicit ϕ-Hilfer pantograph fractional differential equation:

\begin{aligned} \textstyle\begin{cases} D_{0^{+}}^{\upsilon ,\iota ;\phi }x(\varsigma ) =g(\varsigma ,x( \varsigma ),x(\varepsilon \varsigma ),D_{0^{+}}^{\upsilon ,\iota ; \phi }x(\varepsilon \varsigma )), \quad 0< \varepsilon < 1, \varsigma \in J= ( 0,T ], \\ I_{0^{+}}^{1-\mu ;\phi }x(0^{+})=\sum_{i=1}^{m}c_{i} I_{0^{+}}^{ \iota ;\phi }x(\vartheta _{i}), \end{cases}\displaystyle \end{aligned}
(2)

which satisfies the same assumptions with $$I_{0^{+}}^{\iota ;\phi }$$ is ϕ-Riemann–Liouville fractional integral of order $$\iota > 0$$ relative to the other function ϕ with $$\phi ^{\prime }(\cdot )\neq 0$$, $$g:J\times \mathrm{R}^{3}\rightarrow \mathrm{R}$$ is continuous, $$T > 0$$ and $$\vartheta _{i}\in J$$ satisfying $$0<\vartheta _{1}\leq \vartheta _{2}\leq \cdots \leq \vartheta _{m} < T$$ for $$i=1,2,\ldots ,m$$. It is to be noted that the structure of the boundary conditions in Eq. (1) and Eq. (2) is visible and allows better interpretations to many physical problems [45]. Reported results in this paper yield new sufficient existence and uniqueness conditions via different approach comparing to the existing results in the literature [43, 44, 46, 47]. These conditions are easily attainable with the feature that they are less restrictive.

The rest of the paper adheres to the following plan: In Sect. 2, we define the norms, notations, and some spaces of functions. Properties of ϕ- Hilfer fractional derivative along with some necessary results on $$\alpha -\psi$$-contraction mappings are stated for completeness. In Sect. 3, the main results are stated and proved. The examples presented in Sect. 4 demonstrate the visibility and capability of the proposed results. We end the paper with a conclusion in Sect. 5.

## 2 Requisite preliminaries

Here we state some explanations which are needed throughout this paper. Further, some essential lemmas and theorems are stated as preparations for the main objectives.

Let $$0< a< T<\infty$$, and $$C [ a,T ]$$ be a Banach space of continuous functions $$y: [ a,T ] \rightarrow \mathrm{R}$$ with the norm $$\Vert y \Vert =\max \{ \vert y(\varsigma ) \vert :a\leq \varsigma \leq T\}$$. The weighted space $$C_{1-\mu ;\phi } [ a,T ]$$ of continuous functions y is defined in [11] as follows:

$$C_{1-\mu ;\phi } [ a,T ] = \bigl\{ y:(a,T]\rightarrow \mathrm{R} ; \bigl[ \phi ( \varsigma )-\phi (a) \bigr] ^{1-\mu }y( \varsigma )\in C [ a,T ] \bigr\} , \quad 0\leq \mu < 1.$$

Obviously, $$C_{1-\mu ;\phi } [ a,T ]$$ is a Banach space with the norm

$$\Vert y \Vert _{c_{1-\mu ;\phi }}= \underset{\varsigma \in [ a,T ] }{\max } \bigl\vert \bigl[ \phi (\varsigma )-\phi (a) \bigr] ^{1-\mu }y( \varsigma ) \bigr\vert .$$

### Definition 2.1

([11])

Let $$\upsilon >0$$, $$y\in L_{1} [ a,b ]$$, and $$\phi \in C^{1} [ a,b ]$$ be an increasing function with $$\phi ^{\prime }(\varsigma )\neq 0$$, $$\varsigma \in [ a,b ]$$. Then the left-sided ϕ-Riemann–Liouville integral is stated by

$$I_{a^{+}}^{\upsilon ,\phi }y(\varsigma )=\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl(\phi ( \varsigma )-\phi (s)\bigr)^{ \upsilon -1}y(s)\,ds,$$

with $$\Gamma (\upsilon )=\int _{0}^{\infty }s^{\upsilon -1}e^{-s}\,ds$$.

### Definition 2.2

([9])

Let $$\upsilon \in (n-1,n)$$, $$(n= [ \upsilon ] +1)$$, and $$y,\phi \in C^{n}[a,b]$$ (ϕ is increasing), and $$\phi ^{\prime }(\varsigma )\neq 0$$, $$\varsigma \in {}[ a,b]$$. Then ϕ-Caputo derivative of a function y is defined by

$$D_{a^{+}}^{\upsilon ,\phi }y(\varsigma )= \biggl( \frac{1}{\phi ^{\prime }(\varsigma )} \frac{d}{dt} \biggr) ^{n}I_{a^{+}}^{n-\upsilon ,\phi }y( \varsigma )$$

and

$${}^{C}D_{a^{+}}^{\upsilon ,\phi }y(\varsigma )=I_{a^{+}}^{n-\upsilon , \phi } \biggl( \frac{1}{\phi ^{\prime }(\varsigma )}\frac{d}{dt} \biggr) ^{n}y(\varsigma ),$$

respectively.

### Definition 2.3

([11])

Let $$\upsilon \in (n-1,n)$$, $$(n\in \mathrm{N} )$$, and $$y,\phi \in C^{n}[a,T]$$ be two functions (ϕ is increasing), and $$\phi ^{\prime }(\varsigma )\neq 0$$, $$\varsigma \in {}[ a,T]$$. Then the left-sided ϕ-Hilfer derivative of y defined by

\begin{aligned} D_{a^{+}}^{\upsilon ,\iota ,\phi }y(\varsigma ) =&I_{a^{+}}^{\iota (n- \upsilon );\phi } \biggl( \frac{1}{\phi ^{\prime }(\varsigma )} \frac{d}{dt} \biggr) ^{n}I_{a^{+}}^{(1-\iota )(n-\upsilon );\phi }y( \varsigma ),\quad 0\leq \iota \leq 1 \\ =&I_{a^{+}}^{\iota (n-\upsilon );\phi }D_{a^{+}}^{\mu ;\phi }y( \varsigma ), \quad ( \mu =\upsilon +n\iota -\upsilon \iota ) . \end{aligned}
(3)

### Lemma 2.4

([2])

For $$\upsilon >0$$ and $$0\leq \mu <1$$, $$I_{a^{+}}^{\upsilon ,\phi }$$ is bounded from $$C_{1-\mu ;\phi }[a,b]$$ into $$C_{1-\mu ;\phi }[a,b]$$.

Now, we introduce the following spaces:

$$C_{1-\mu ;\phi }^{\upsilon ,\iota }[a,T]= \bigl\{ y\in C_{1-\mu ;\phi }[a,T],D_{a^{+}}^{ \upsilon ,\iota ;\phi }y \in C_{1-\mu ;\phi }[a,T] \bigr\} , \quad 0 \leq \mu < 1,$$

and

$$C_{1-\mu ;\phi }^{\mu }[a,T]= \bigl\{ y\in C_{1-\mu ;\phi }[a,T],D_{a^{+}}^{ \mu ;\phi }y \in C_{1-\mu ;\phi }[a,T] \bigr\} , \quad 0\leq \mu < 1.$$
(4)

### Lemma 2.5

([11])

If $$\mu =\upsilon +\iota -\upsilon \iota$$, where $$\upsilon \in ( 0,1 )$$, $$\iota \in [ 0,1 ]$$, and $$y\in C_{1-\mu ;\phi }^{\mu }[a,T]$$, then the following identities hold:

$$I_{a^{+}}^{\mu ;\phi }D_{a^{+}}^{\mu ;\phi }y=I_{a^{+}}^{\upsilon ; \phi } D_{a^{+}}^{\upsilon ,\iota ;\phi }y$$

and

$$D_{a^{+}}^{\mu ;\phi }I_{a^{+}}^{\upsilon ;\phi }y=D_{a^{+}}^{\iota (1- \upsilon );\phi }y.$$

### Lemma 2.6

([11])

Let $$\upsilon >0$$, $$0\leq \mu <1$$, and $$y\in C_{1-\mu }[a,T]$$, $$\iota \in [ 0,1 ]$$. Then we get

$$D_{a^{+}}^{\upsilon ,\iota ,\phi }I_{a^{+}}^{\upsilon ,\phi }y( \varsigma )=y( \varsigma ).$$

### Lemma 2.7

([2])

Let $$\varsigma >a$$. Then, for $$\upsilon \geq 0$$ and $$\mu >0$$, we have

$$I_{a^{+}}^{\upsilon ,\phi } \bigl[ \phi (\varsigma )-\phi (a) \bigr] ^{ \mu -1}=\frac{\Gamma (\mu )}{\Gamma (\upsilon +\mu )}\bigl(\phi (\varsigma )-\phi (a) \bigr)^{ \upsilon +\mu -1}, \quad \varsigma >a$$

and

$$D_{a^{+}}^{\upsilon ,\phi } \bigl[ \phi (\varsigma )-\phi (a) \bigr] ^{ \upsilon -1}=0\quad \text{for }\upsilon \in ( 0,1 ) .$$

### Lemma 2.8

([11])

Let $$\mu =\upsilon +\iota -\upsilon \iota$$, where $$\upsilon \in ( 0,1 )$$, $$\iota \in [ 0,1 ]$$, $$y\in C_{1-\mu ;\phi }^{\mu }[a,T]$$, and $$I_{a^{+}}^{1-\mu ;\phi }y\in C_{1-\mu ,\phi }^{1}[a,T]$$. Then we have

$$I_{a^{+}}^{\mu ;\phi }D_{a^{+}}^{\mu ,\phi }y(\varsigma )=y( \varsigma )-\frac{I_{a^{+}}^{1-\mu ;\phi }y(a)}{\Gamma (\mu )}\bigl(\phi (\varsigma )-\phi (a) \bigr)^{ \mu -1}.$$

### Lemma 2.9

([11])

Let $$\upsilon >0$$, $$0\leq \mu <\upsilon$$, and $$y\in C_{1-\mu ,\phi }[a,T]$$ $$(0< a< T<\infty )$$. If $$\mu <\upsilon$$, then $$I_{a^{+}}^{\upsilon ;\phi }:C_{1-\mu ,\phi }[a,T]\rightarrow C_{1- \mu ,\phi }[a,T]$$ is continuous, and the following holds:

$$I_{a^{+}}^{\upsilon ;\phi } y(a)= \underset{\varsigma \rightarrow a^{+}}{\lim }I_{a^{+}}^{\upsilon ;\phi }y(\varsigma )=0.$$

### Definition 2.10

([28])

Let Ψ be all functions $$\psi :[0,\infty ) \rightarrow [0,\infty )$$ with:

$$P_{1}$$::

ψ is nondecreasing;

$$P_{2}$$::

let $$\psi ^{k}$$ be the kth iterate of ψ, then $$\sum_{k=0}^{\infty }\psi ^{k}(\varrho )<\infty$$ for all $$\varrho >0$$.

A function $$\psi \in \Psi$$ is called a $$(c)$$-comparison function.

### Definition 2.11

([28])

Let $$T:\mathrm{M}\rightarrow \mathrm{M}$$, T is called an $$\alpha -\psi$$-contraction if there exist a $$(c)$$-comparison $$\psi \in \Psi$$ and $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{R}$$ with

\begin{aligned} \alpha (\nu ,\omega )d(T\nu ,T{\omega })\leq \psi \bigl(d(\nu , \omega )\bigr), \quad \forall \nu ,\omega \in \mathrm{M}. \end{aligned}
(5)

### Definition 2.12

([28])

Let $$\mathrm{M} \neq \varnothing$$, $$T:\mathrm{M}\rightarrow \mathrm{M}$$, and $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{R}$$. T is α-admissible if

$$\nu ,\omega \in \mathrm{M},\quad \alpha (\nu ,\omega )\geq 1\quad \Rightarrow \quad \alpha (T\nu ,T{\omega })\geq 1.$$

In the context, we use the following lemma.

### Lemma 2.13

([28])

For any $$\psi \in \Psi$$,

1. i)

$$\psi (\varrho )<\varrho$$ for $$\varrho >0$$;

2. ii)

$$\psi (0)=0$$;

3. iii)

at $$\varrho =0$$, ψ is continuous.

We define the following set $$\Sigma _{\psi }$$ for any $$\psi \in \Psi$$:

$$\Sigma _{\psi }=\bigl\{ {\delta \in (0,\infty ):\delta \psi \in \Psi } \bigr\} .$$

### Proposition 2.14

([28])

Let $$(\mathrm{M},d)$$ be a metric space and $$T:\mathrm{M}\rightarrow \mathrm{M}$$ be an $$\alpha -\psi$$ contraction mapping where $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{ R}$$ and $$\psi \in \Psi$$. Suppose $$\delta \in \sum_{\psi }$$ with $$\{\xi _{i}\}_{i=0}^{p}\subset \mathrm{M}$$ such that

\begin{aligned}& \xi _{0}=\nu _{0},\qquad \xi _{p}=T\nu _{0},\qquad \alpha \bigl(T^{n}\xi _{i},T^{n} \xi _{i+1}\bigr)\geq \delta ^{-1}, \\& i=1,2,\ldots ,p-1. \end{aligned}
(6)

Then $$\{T^{n}\nu _{0}\}$$ is Cauchy in $$(\mathrm{M},d)$$.

### Theorem 2.15

([28])

Let $$T:\mathrm{M}\rightarrow \mathrm{M}$$ ($$(\mathrm{M},d)$$ is a complete space), T is an $$\alpha -\psi$$–contraction for $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{R}$$, and $$\psi \in \Psi$$. Moreover (6) is satisfied. Then $$\{T^{n}\nu _{0}\}$$ converges to some $$\nu ^{*}\in \mathrm{M}$$. In addition, if there exists a subsequence $$\{T^{\theta (n)}\nu _{0}\}$$ of $$\{T^{n}\nu _{0}\}$$ with

$$\lim_{n\to \infty } \alpha \bigl(T^{\theta (n)}\nu _{0}, \nu ^{*}\bigr)=l\in (0, \infty ),$$

then $$\nu ^{*}$$ is a fixed point of T.

### Theorem 2.16

([28])

Let $$\phi :\mathrm{M}\rightarrow \mathrm{M}$$ and ϕ be an $$\alpha -\psi$$ contraction mapping for $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{R}$$ and $$\psi \in \Psi$$. Moreover, we have the following:

1. i)

$$Fix(T)\neq \emptyset$$;

2. ii)

Let $$(\nu ,\omega )\in Fix(T)\times Fix(T)$$ be an arbitrary pair with $$\nu \neq \omega$$ and $$\alpha (\nu ,\omega )<1$$, then there exists $$\eta \in \Sigma _{\psi }$$, and for some positive integer q, there exists $$\{\zeta _{i}(\nu ,\omega )\}_{i=0}^{q}\subset \mathrm{M}$$ such that

\begin{aligned}& \zeta _{0}(\nu ,\omega )=\nu ,\qquad \zeta _{q}(\nu ,\omega )= \omega ,\qquad \alpha \bigl(\phi ^{n} \zeta _{i}(\nu ,\omega ),\phi ^{n} \zeta _{i+1}(\nu ,\omega )\bigr)\geq \eta ^{-1}, \quad n\in \mathrm{N} \\& \textit{and} \quad i=1,2,\ldots ,q-1. \end{aligned}
(7)

Then ϕ has a unique fixed point.

## 3 Main results

Let $$E=C(J,\mathrm{R})$$. We define the cone $$K\subset E$$ by

$$K= \bigl\{ x\in E|x(\varsigma )\geq 0, \varsigma \in (a,b] \bigr\} .$$
(8)

Let $$\mathrm{M }=\{f:J\to \mathrm{R}; f \text{ is continuous}\}$$. We endow M with a metric defined by

$$d(x,y)= \Vert x-y \Vert _{\infty }=\sup_{\varsigma \in (a,b]}\bigl\{ \bigl\vert x(\varsigma )-y( \varsigma ) \bigr\vert \bigr\} .$$

### Theorem 3.1

([21])

Let $$\mu =\upsilon +\iota -\upsilon \iota$$, where $$\upsilon \in ( 0,1 )$$ and $$\iota \in [ 0,1 ]$$. A function x is the solution of Eq. (1) if and only if it holds in the following:

\begin{aligned} T_{1}x(\varsigma ) :=&x(\varsigma )\\ =&\frac{T ( \phi (\varsigma )-\phi (a) ) ^{\mu -1}}{\Gamma (\upsilon )} \\ &{}\times \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon -1}f\bigl(s,x(s),x( \varepsilon s)\bigr)\,ds \\ &{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}f\bigl(s,x(s),x( \varepsilon s) \bigr)\,ds, \end{aligned}
(9)

where

$$T= \frac{1}{\Gamma (\mu )-\sum_{i=1}^{m}c_{i} ( \phi (\vartheta _{i})-\phi (a) ) ^{\mu -1}}.$$

### Theorem 3.2

Suppose that the following conditions hold:

$$(i)$$:

$$\sum_{i=1}^{m}c_{i} ( \phi (\vartheta _{i})-\phi (a) ) ^{ \mu -1}\leq 1$$;

$$(ii)$$:

The function $$f:J\times \mathrm{R}\times \mathrm{R}\rightarrow \mathrm{R}^{+}$$ satisfies the following condition:

\begin{aligned} \bigl\vert f\bigl(s,x(s),x(\varepsilon s)\bigr)-f\bigl(s,y(s),y(\varepsilon s) \bigr) \bigr\vert \leq \frac{ \Vert x-y \Vert _{\infty }\upsilon \Gamma (\upsilon )}{2( \vert T \vert N^{\mu -1}\sum_{i=1}^{m}c_{i}(\phi (\vartheta _{i})-\phi (a))^{\upsilon }+N^{\upsilon })}, \end{aligned}

where $$N=\sup \{\phi (\varsigma )-\phi (a)\}_{\varsigma \in (a,b]}$$.

$$(iii)$$:

For $$s\in J$$, we have

$$x,y\in K,\quad x\leq y\quad \Rightarrow\quad f\bigl(s,x(s),x(\varepsilon s)\bigr)\leq f \bigl(s,y(s),y( \varepsilon s)\bigr).$$
$$(iv)$$:

$$x_{0}\in M$$ such that $$x_{0}(s)\leq T_{1}x_{0}(s)$$, $$s\in J$$.

Then Eq. (1) has a unique solution.

### Proof

The results are stated in several steps.

Step 1. First we show $$T : K\rightarrow K$$. By condition $$(i)$$, we have

$$\Gamma (\mu )-\sum_{i=1}^{m}c_{i} \bigl( \phi (\vartheta _{i})- \phi (a) \bigr) ^{\mu -1}\geq 0.$$

Thus, it is easy to see that $$T: K\rightarrow K$$.

Step 2. We demonstrate that T is an $$\alpha -\psi$$-contraction.

For this purpose, we can write

\begin{aligned} & \bigl\vert T_{1}x(\varsigma )-T_{1}y(\varsigma ) \bigr\vert \\ &\quad = \Biggl\vert \frac{T ( \phi (\varsigma )-\phi (a) ) ^{\mu -1}}{\Gamma (\upsilon )} \\ &\quad\quad{}\times \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon -1}f\bigl(s,x(s),x( \varepsilon s)\bigr)\,ds \\ &\quad\quad{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}f\bigl(s,x(s),x( \varepsilon s)\bigr)\,ds \\ &\quad\quad{}- \frac{T ( \phi (\varsigma )-\phi (a) ) ^{\mu -1}}{\Gamma (\upsilon )} \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon -1}f\bigl(s,y(s),y( \varepsilon s)\bigr)\,ds \\ &\quad\quad{}-\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}f\bigl(s,y(s),y( \varepsilon s)\bigr)\,ds \Biggr\vert \\ &\quad\leq \frac{ \vert T \vert ( \phi (\varsigma )-\phi (a) ) ^{\mu -1}}{\Gamma (\upsilon )} \\ &\quad\quad{}\times \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon -1} \bigl\vert f \bigl(s,x(s),x( \varepsilon s)\bigr)-f\bigl(s,y(s),y(\varepsilon s)\bigr) \bigr\vert \,ds \\ &\quad\quad{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1} \bigl\vert f\bigl(s,x(s),x( \varepsilon s)\bigr)-f\bigl(s,y(s),y(\varepsilon s)\bigr) \bigr\vert \,ds \\ &\quad\leq \biggl\{ \frac{ \Vert x-y \Vert _{\infty }\upsilon \Gamma (\upsilon )}{2( \vert T \vert N^{\mu -1}\sum_{i=1}^{m}c_{i}(\phi (\vartheta _{i})-\phi (a))^{\upsilon }+N^{\upsilon })} \biggr\} \Biggl[ \frac{ \vert T \vert ( \phi (\varsigma )-\phi (a) ) ^{\mu -1}}{\Gamma (\upsilon )} \\ &\quad\quad {}\times\sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon -1}\,ds \\ &\quad\quad{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}\,ds\Biggr] \\ &\quad=\frac{ \Vert x-y \Vert _{\infty }}{2}. \end{aligned}

Define $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{ R}$$ by

$$\alpha (x,y)= \textstyle\begin{cases} 1 & \text{if } x(\varsigma )\leq y(\varsigma ), \varsigma \in J, \\ 0 & \text{otherwise} . \end{cases}$$
(10)

Then

$$\Vert T_{1}x-T_{1}y \Vert _{\infty }\leq \frac{ \Vert x-y \Vert _{\infty }}{2}\leq \alpha (x,y) \frac{ \Vert x-y \Vert _{\infty }}{2}.$$

Setting $$\psi (\varsigma )=\frac{\varsigma }{2}$$, we obtain

$$d(T_{1}x,T_{1}y)\leq \alpha (x,y)\psi \bigl(d(x,y)\bigr),$$

hence $$T_{1}$$ is an $$\alpha -\psi$$-contraction.

Step 3. From (iv), we have $$\alpha (x_{0},T_{1}x_{0})=1$$, hence $$T_{1}$$ is increasing. By induction, we easily obtain that $$\alpha (T_{1}^{n}x_{0},T_{1}^{n+1}x_{0})=1$$, $$n\in \mathrm{ N}$$.

Step 4. Using Theorem 2.14 and from Step (3), there exists a subsequence $$\{T_{1}^{\theta (n)}x_{0}\}$$ of $$\{T_{1}^{n}x_{0}\}$$ such that

$$\lim_{n\to \infty } \alpha \bigl(T_{1}^{\theta (n)}x_{0},x^{*} \bigr)=l\in (0, \infty ).$$

Step 5. By Theorem 2.15, $$x^{*}$$ is a fixed point of $$T_{1}$$ and hence $$x^{*} \in \mathrm{M}$$ is a solution for (1).

Step 6. In order to show the uniqueness of the solution, we let $$(u,v)\in Fix(T_{1})\times Fix(T_{1})$$ be an arbitrary pair with $$u\neq v$$. Without loss generality, we set $$u\leq v$$, then the conclusion is obvious. Therefore, by Theorem 2.16 the proof is complete. □

Next, we investigate the existence and uniqueness of the solutions for Eq. (2).

### Theorem 3.3

([43])

Let $$0<\upsilon <1$$, $$0\leq \iota \leq 1$$, and $$q=\upsilon +\iota -\upsilon \iota$$. Suppose $$g\in C_{1-\mu ;\phi }[J,\mathrm{R}]$$ for any $$z\in C_{1-\mu ;\phi }[J,\mathrm{R}]$$. If $$z\in C_{1-\mu ;\phi }^{\mu }[J,\mathrm{R}]$$, then x satisfies problem (2) if and only if x satisfies the mixed-type integral equation

\begin{aligned} T_{1}x(\varsigma ) :=&x(\varsigma )\\ =& \biggl( \frac{T\Gamma (\rho +\mu ) ( \phi (\varsigma )-\phi (0) ) ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )} \biggr) \\ &{}\times \Biggl(\sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon +\rho -1}g\bigl( \varsigma ,x( \varsigma ),x(\varepsilon \varsigma ),^{H}D_{0^{+}}^{ \upsilon ,\iota ;\phi }x( \varepsilon \varsigma )\bigr)\,ds \Biggr) \\ &{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}g\bigl(\varsigma ,x( \varsigma ),x( \varepsilon \varsigma ),^{H}D_{0^{+}}^{\upsilon ,\iota ; \phi }x( \varepsilon \varsigma )\bigr)\,ds, \end{aligned}
(11)

where

$$T= \frac{1}{\Gamma (\mu +\rho )-\sum_{i=1}^{m}c_{i} ( \phi (\vartheta _{i})-\phi (a) ) ^{\rho +\mu -1}}$$

such that $$\Gamma (\mu +\rho )\neq \sum_{i=1}^{m}c_{i} ( \phi ( \vartheta _{i})-\phi (a) ) ^{\rho +\mu -1}$$.

### Theorem 3.4

Suppose that the following conditions hold:

$$(i)$$:

$$\sum_{i=1}^{m}c_{i} ( \phi (\vartheta _{i})-\phi (a) ) ^{ \rho +\mu -1}<\Gamma (\rho +\mu )$$;

$$(ii)$$:

The function $$g:J\times {\mathrm{R}}^{3}\rightarrow \mathrm{R}^{+}$$ satisfies the following condition:

\begin{aligned} & \bigl\vert g\bigl(s,x(s),x(\varepsilon s),^{H}D_{0^{+}}^{\upsilon ,\iota ;\phi }x( \varepsilon \varsigma )\bigr)-g\bigl(s,y(s),y(\varepsilon s),^{H}D_{0^{+}}^{ \upsilon ,\iota ;\phi }y( \varepsilon \varsigma )\bigr) \bigr\vert \\ &\quad \leq \biggl\{ \frac{2 \Vert x-y \Vert _{\infty }}{3(\frac{T\Gamma (\rho +\mu )N ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )}\sum_{i=1}^{m}\frac{c_{i}}{\upsilon +\rho } ( \phi (\vartheta _{i})-\phi (a) ) ^{\upsilon +\rho } +\frac{1}{\upsilon \Gamma (\upsilon )}N^{\upsilon })} \biggr\} , \end{aligned}

where $$N=\sup \{\phi (\varsigma )-\phi (a)\}_{\varsigma \in (a,b]}$$.

$$(iii)$$:

For $$s\in J$$, we have

$$\begin{gathered} x,y\in K,\quad x\leq y\\ \quad \Rightarrow\quad g\bigl(s,x(s),x(\varepsilon s),^{H}D_{0^{+}}^{ \upsilon ,\iota ;\phi }x( \varepsilon \varsigma )\bigr)\leq g\bigl(s,y(s),y( \varepsilon s),^{H}D_{0^{+}}^{\upsilon ,\iota ;\phi }y(\varepsilon \varsigma )\bigr). \end{gathered}$$
$$(iv)$$:

$$x_{0}\in M$$ such that $$x_{0}(s)\leq T_{1}x_{0}(s)$$, $$s\in J$$.

Then problem (2) has a unique solution.

### Proof

The results are stated in several steps.

Step 1. First we show $$T_{1} : K\rightarrow K$$. By condition $$(i)$$, we have

$$\Gamma (\mu +\rho )-\sum_{i=1}^{m}c_{i} \bigl( \phi (\vartheta _{i})- \phi (a) \bigr) ^{\mu +\rho -1}> 0.$$

Thus, $$T_{1}: K\rightarrow K$$.

Step 2. We demonstrate that $$T_{1}$$ is an $$\alpha -\psi$$-contraction.

For this purpose, we can write

\begin{aligned} & \bigl\vert T_{1}z(\varsigma )-T_{1}y(\varsigma ) \bigr\vert \\ &\quad= \Biggl\vert \frac{T\Gamma (\rho +\mu ) ( \phi (\varsigma )-\phi (0) ) ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )} \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon +\rho -1}{T_{1}}_{z}(s)\,ds \\ &\quad\quad{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}{T_{1}}_{z}(s)\,ds \\ &\quad\quad{}- \frac{T\Gamma (\rho +\mu ) ( \phi (\varsigma )-\phi (0) ) ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )} \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon +\rho -1}{T_{1}}_{y}(s)\,ds \\ &\quad\quad{}-\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}{T_{1}}_{y}(s)\,ds \Biggr\vert \\ &\quad\leq \frac{T\Gamma (\rho +\mu ) ( \phi (\varsigma )-\phi (0) ) ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )} \sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon +\rho -1} \bigl\vert {T_{1}}_{z}(s)-{T_{1}}_{y}(s) \bigr\vert \,ds \\ &\quad\quad{}+\frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1} \bigl\vert {T_{1}}_{z}(s)-{T_{1}}_{y}(s) \bigr\vert \,ds \\ &\quad\leq \biggl\{ \frac{2 \Vert x-y \Vert _{\infty }}{3(\frac{T\Gamma (\rho +\mu )N ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )}\sum_{i=1}^{m}\frac{c_{i}}{\upsilon +\rho } ( \phi (\vartheta _{i})-\phi (a) ) ^{\upsilon +\rho } +\frac{1}{\upsilon \Gamma (\upsilon )}N^{\upsilon })}\biggr\} \\ &\qquad {}\times\Biggl[ \frac{T\Gamma (\rho +\mu ) ( \phi (\varsigma )-\phi (0) ) ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )} \\ &\quad\quad {}\times\sum_{i=1}^{m}c_{i} \int _{a}^{\vartheta _{i}}\phi ^{\prime }(s) \bigl( \phi ( \vartheta _{i})-\phi (s) \bigr) ^{\upsilon +\rho -1}\,ds + \frac{1}{\Gamma (\upsilon )} \int _{a}^{\varsigma }\phi ^{\prime }(s) \bigl( \phi ( \varsigma )-\phi (s) \bigr) ^{\upsilon -1}\,ds\Biggr] \\ &\quad\leq \biggl\{ \frac{2 \Vert x-y \Vert _{\infty }}{3(\frac{T\Gamma (\rho +\mu )N ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )}\sum_{i=1}^{m}\frac{c_{i}}{\upsilon +\rho } ( \phi (\vartheta _{i})-\phi (a) ) ^{\upsilon +\rho } +\frac{1}{\upsilon \Gamma (\upsilon )}N^{\upsilon })}\biggr\} \Biggl[ \frac{T\Gamma (\rho +\mu )N ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )} \\ &\quad\quad {}\times\sum_{i=1}^{m}\frac{c_{i}}{\upsilon +\rho } \bigl( \phi (\vartheta _{i})- \phi (a) \bigr) ^{\upsilon +\rho } + \frac{1}{\upsilon \Gamma (\upsilon )}N^{\upsilon }\Biggr]\\ &\quad = \frac{2 \Vert x-y \Vert _{\infty }}{3}. \end{aligned}

Define $$\alpha :\mathrm{M}\times \mathrm{M}\rightarrow \mathrm{ R}$$ by the following:

$$\alpha (x,y)= \textstyle\begin{cases} 1 & \text{if } x(\varsigma )\leq y(\varsigma ), \varsigma \in J, \\ 0 & \text{otherwise} . \end{cases}$$
(12)

Then

$$\Vert T_{1}x-T_{1}y \Vert _{\infty }\leq \frac{2 \Vert x-y \Vert _{\infty }}{3}\leq \alpha (x,y)\frac{2 \Vert x-y \Vert _{\infty }}{3}.$$

Setting $$\psi (\varsigma )=\frac{2\varsigma }{3}$$, we obtain

$$d(T_{1}x,T_{1}y)\leq \alpha (x,y)\psi \bigl(d(x,y)\bigr).$$

Hence $$T_{1}$$ is an $$\alpha -\psi$$-contraction.

Step 3. By (iv), $$\alpha (x_{0},T_{1}x_{0})=1$$. Further, as $$T_{1}$$ is increasing, we can easily get $$\alpha (T_{1}^{n}x_{0}, T_{1}^{n+1}x_{0})=1$$, $$n\in \mathrm{ N}$$.

Step 4. From step (3), there exists a subsequence $$\{T_{1}^{\theta (n)}x_{0}\}$$ of $$\{T_{1}^{n}x_{0}\}$$ with

$$\lim_{n\to \infty } \alpha \bigl(T_{1}^{\theta (n)}x_{0},x^{*} \bigr)=l\in (0, \infty ).$$

Step 5. By applying Theorem 2.15, we conclude that $$x^{*}$$ is a fixed point of $$T_{1}$$, that is, $$x^{*} \in \mathrm{M}$$ is a solution to equation (2).

Step 6. To prove the uniqueness, we let $$(u,v)\in Fix(T_{1})\times Fix(T_{1})$$ be an arbitrary pair with $$u\neq v$$. Without loss generality, we set $$u\leq v$$, then the result is concluded. By Theorem 2.16 the proof is perfect. □

## 4 Application

Here, we present two examples concerning Theorem 3.2 and Theorem 3.4. The validity of the examples demonstrates the applicability of the proposed results. For our purpose, we translate the pantograph fractional differential equations to an integral equation. Due to the complexity of the obtained integral equation, however, it is difficult to use other fixed point theorems in the study of the existence and uniqueness. Hence, our technique proves to be helpful to overcome this limitation.

### Example 4.1

Consider the following terminal value problem:

$$\textstyle\begin{cases} D_{1^{+}}^{\frac{1}{2},0;e^{\varsigma }}y(\varsigma )= \frac{8\sqrt{\pi }}{29e^{-\varsigma +2}} ( 1+ \vert y( \varsigma ) \vert + \vert y(\varepsilon \varsigma ) \vert ) , \quad0< \varepsilon < 1, \varsigma \in ( 1,2 ] , \\ I_{1^{+}}^{\frac{1}{2};e^{\varsigma }}|_{\varsigma =1}=\sum_{i=1}^{m}c_{i}x( \vartheta _{i}),\quad \vartheta _{i}\in (1,2]. \end{cases}$$
(13)

Setting $$f(\varsigma ,u,v)=\frac{8\sqrt{\pi }}{29e^{-\varsigma +2}} ( 1+|u|+|v| )$$ for each $$u,v\in \mathrm{R}$$, $$\varsigma \in ( 1,2 ]$$, and

$$C_{1-\mu ;\psi }^{\iota (1-\upsilon )} [ 1,2 ] =C_{ \frac{1}{2};e^{\varsigma }}^{0} [ 1,2 ] = \bigl\{ f: ( 1,2 ] \times \mathrm{R} ^{2}\rightarrow \mathrm{R} ; \bigl( e^{\varsigma }-e \bigr) ^{\frac{1}{2}}f\in C [ 1,2 ] \bigr\} .$$

Letting $$\vartheta _{1}=\frac{5}{4}$$, $$\vartheta _{2}=\frac{3}{2}$$, $$\vartheta _{3}= \frac{7}{4}$$, $$\vartheta _{4}=2$$ and

$$c_{1}=\frac{\sqrt{e^{\frac{5}{4}}-e}}{4},\qquad c_{2}= \frac{\sqrt{e^{\frac{3}{2}}-e}}{4},\qquad c_{3}= \frac{\sqrt{e^{\frac{7}{4}}-e}}{4},\qquad c_{4}=\frac{\sqrt{e^{2}-e}}{4},$$

we can obtain $$\sum_{i=1}^{4}c_{i} ( \phi (\vartheta _{i})-\phi (1) ) ^{\frac{-1}{2}}\leq 1$$. Hence condition $$(i)$$ from Theorem 3.2 is satisfied. On the other hand,

\begin{aligned} \bigl\vert f\bigl(s,x(s),x(\varepsilon s)\bigr)-f\bigl(s,y(s),y(\varepsilon s) \bigr) \bigr\vert &= \frac{8\sqrt{\pi }}{29e^{-s+2}}| \bigl( \bigl\vert x(s) \bigr\vert - \bigl\vert y(s) \bigr\vert + \bigl\vert x(\varepsilon s) \bigr\vert - \bigl\vert y(\varepsilon s) \bigr\vert \bigr) \\ &\leq \frac{\sqrt{\pi } \Vert x-y \Vert _{\infty }}{2( \vert T \vert (e^{2}-e)^{\frac{-1}{2}}\sum_{i=1}^{4}c_{i}\sqrt{e^{\vartheta _{i}}-e}+\sqrt{e^{2}-e})} \\ &\leq \frac{ \Vert x-y \Vert _{\infty }\upsilon \Gamma (\upsilon )}{2( \vert T \vert N^{\mu -1}\sum_{i=1}^{m}c_{i}(\phi (\vartheta _{i})-\phi (a))^{\upsilon }+N^{\upsilon })}, \end{aligned}

where $$N=\sup \{\phi (\varsigma )-\phi (1)\}_{\varsigma \in (1,2]}=\sup \{e^{\varsigma }-e\}_{\varsigma \in (1,2]}=e^{2}-e$$ and $$\|x-y\|_{\infty }=\sup \{|x(\varsigma )-y(\varsigma )|\}_{\varsigma \in (0,2]}$$. Therefore condition $$(ii)$$ of Theorem 3.2 holds. Further, it is easy to show that item $$(iii)$$ in Theorem 3.2 is true. Now, since $$T_{1}(0)\geq 0$$, so by choosing $$x_{0}=0$$, we can establish condition $$(iv)$$ from Theorem 3.2. Therefore, all requirements of Theorem 3.2 hold which guarantee the existence and uniqueness of solution for (13).

### Example 4.2

Consider the following terminal value problem:

$$\textstyle\begin{cases} D_{1^{+}}^{\frac{1}{2},0;e^{\varsigma }}y(\varsigma )= \frac{2\sqrt{\pi (e^{2}-e)}}{9(e^{\frac{5}{7}}+e^{\frac{1}{3}}+e^{\frac{4}{7}}+2e^{2}-5e)} ( 1+ \vert y(\varsigma ) \vert + \vert y( \varepsilon \varsigma ) \vert + \vert D_{1^{+}}^{ \frac{1}{2},0;e^{\varsigma }} y(\varepsilon \varsigma ) \vert ), \\ I_{1^{+}}^{\frac{1}{2};e^{\varsigma }}|_{\varsigma =1}=\sum_{i=1}^{m}c_{i}x( \vartheta _{i}),\quad \vartheta _{i}\in (1,2], \end{cases}$$
(14)

where $$0<\varepsilon <1$$ and $$\varsigma \in ( 1,2 ]$$.

Let us find solution of the problem from the following cone:

$$K= \bigl\{ x,y\in C(J,\mathrm{R}): \bigl\Vert D_{1^{+}}^{\frac{1}{2},0;e^{ \varsigma }}x-D_{1^{+}}^{\frac{1}{2},0;e^{\varsigma }}y \bigr\Vert _{\infty } \leq \Vert x-y \Vert _{\infty },x\leq y \Rightarrow D_{1^{+}}^{\frac{1}{2},0;e^{ \varsigma }}x\leq D_{1^{+}}^{\frac{1}{2},0; e^{\varsigma }}y \bigr\} .$$

Setting $$g(\varsigma ,u,v,w)= \frac{2\sqrt{\pi (e^{2}-e)} ( 1+|u|+|v|+|w| )}{9(e^{\frac{5}{7}}+e^{\frac{1}{3}}+e^{\frac{4}{7}}+2e^{2}-5e)}$$ for each $$u,v,w\in \mathrm{R}$$, $$\varsigma \in ( 1,2 ]$$, and

$$C_{1-\mu ;\psi }^{\iota (1-\upsilon )} [ 1,2 ] =C_{ \frac{1}{2};e^{\varsigma }}^{0} [ 1,2 ] = \bigl\{ g: ( 1,2 ] \times \mathrm{R} ^{3}\rightarrow \mathrm{R} ; \bigl( e^{\varsigma }-e \bigr) ^{\frac{1}{2}}g\in C [ 1,2 ] \bigr\} .$$

Letting $$\rho =\frac{1}{2}$$, $$\vartheta _{1}=\frac{5}{4}$$, $$\vartheta _{2}= \frac{3}{2}$$, $$\vartheta _{3}=\frac{7}{4}$$, $$\vartheta _{4}=2$$, and $$c_{1}=c_{2}=c_{3}=c_{4}=\frac{1}{5}$$, we can obtain

$$\sum_{i=1}^{m}c_{i} \bigl( \phi (\vartheta _{i})-\phi (a) \bigr) ^{ \rho +\mu -1}< \Gamma (\rho +\mu ).$$

Hence condition $$(i)$$ from Theorem 3.4 is satisfied. On the other hand,

\begin{aligned} & \bigl\vert g\bigl(s,x(s),x(\varepsilon s),D_{1^{+}}^{\frac{1}{2},0;e^{ \varsigma }}x( \varepsilon s)\bigr)-g\bigl(s,y(s),y(\varepsilon s),D_{1^{+}}^{ \frac{1}{2},0;e^{\varsigma }}y( \varepsilon s)\bigr) \bigr\vert \\ &\quad = \bigl\vert \bigl\vert x(s) \bigl\vert -\bigl\vert y(s) \bigr\vert + \bigl\vert x( \varepsilon s)\bigr\vert - \bigl\vert y(\varepsilon s) \bigr\vert +\bigl\vert D_{1^{+}}^{\frac{1}{2},0;e^{\varsigma }} x( \varepsilon \varsigma )\bigr\vert -\bigl\vert D_{1^{+}}^{ \frac{1}{2},0;e^{\varsigma }} y( \varepsilon \varsigma ) \bigr\vert \bigr\vert \\ &\quad \leq \frac{(2 \Vert x-y \Vert _{\infty }+ \Vert D_{1^{+}}^{\frac{1}{2},0;e^{\varsigma }}x-D_{1^{+}}^{\frac{1}{2},0;e^{\varsigma }}y \Vert _{\infty })2\sqrt{\pi (e^{2}-e)}}{9(e^{\frac{5}{7}}+e^{\frac{1}{3}}+e^{\frac{4}{7}}+2e^{2}-5e)} \\ &\quad \leq \frac{2 \Vert x-y \Vert _{\infty }\sqrt{\pi (e^{2}-e)}}{3(e^{\frac{5}{7}}+e^{\frac{1}{3}}+e^{\frac{4}{7}}+2e^{2}-5e)} \\ &\quad = \frac{2 \Vert x-y \Vert _{\infty }}{3(\frac{T\Gamma (\rho +\mu )N ^{\mu -1}}{\Gamma (\mu )\Gamma (\rho +\upsilon )}\sum_{i=1}^{m}\frac{c_{i}}{\upsilon +\rho } ( \phi (\vartheta _{i})-\phi (a) ) ^{\upsilon +\rho } +\frac{1}{\upsilon \Gamma (\upsilon )}N^{\upsilon })}. \end{aligned}

where $$N=\sup \{\phi (\varsigma )-\phi (1)\}_{\varsigma \in (1,2]}=\sup \{e^{\varsigma }-e\}_{\varsigma \in (1,2]}=e^{2}-e$$ and $$\|x-y\|_{\infty }=\sup \{|x(\varsigma )-y(\varsigma )|\}_{\varsigma \in (0,2]}$$. Therefore condition $$(ii)$$ of Theorem 3.4 holds. Further, it is easy to show that item $$(iii)$$ in Theorem 3.4 is true. Now since $$T_{1}(0)\geq 0$$, so by choosing $$x_{0}=0$$, we can establish condition $$(iv)$$ from 3.4. Therefore, all requirements of 3.4 hold which guarantee the existence and uniqueness of solution for (14).

## 5 Conclusion

The fractional derivatives involving ϕ- Hilfer of a function relative to the other function have widely been used due to their tremendous applications in modeling of various phenomena.

Here, we investigated two initial value problems of implicit ϕ-Hilfer fractional pantograph differential equations. Unlike the methods used in the literature which were based on classical fixed point theorems, we utilized the $$\alpha -\psi$$-contractions to demonstrate the existence and uniqueness of solutions for the proposed problems. The mappings are defined in appropriate cones of positive functions. In spite of the complex structure of ϕ-Hilfer fractional derivative, which causes some limitations, we proposed different techniques that produced sufficient existence and conditions which are more appropriate than the existing conditions. For the sake of confirmation, we constructed particular examples corresponding to the main theorems that illustrate the applicability of the mentioned assumptions.

Results of this paper provide a new technique that associates the study of theory of contraction mappings with the theory fractional differential equations. We believe that the contents of this paper will be of great significance for enthusiasts in these two theories. In this context, many promising topics could be discussed in the future such as inclusion boundary value problems involving ϕ-Hilfer fractional pantograph differential equations and system of fractional pantograph differential equations by using common fixed point theorems of some contractions.

## Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

## References

1. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413–3442 (2003)

2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

3. Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., Rajchakit, R.: Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses. Neural Process. Lett. 51, 1485–1526 (2020). https://doi.org/10.1007/s11063-019-10154-1

4. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

5. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

6. Hilfer, R., Anton, L.: Fractional master equations and fractal time random walks. Phys. Rev. E 51, R848–R851 (1995)

7. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12, 299–318 (2009)

8. Gerolymatou, E., Vardoulakis, I., Hilfer, R.: Modelling infiltration by means of a nonlinear fractional diffusion model. J. Phys. D, Appl. Phys. 39, 4104–4110 (2006)

9. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

10. Almeida, R., Malinowska, A.B., Monteiro, M.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41(1), 336–352 (2018)

11. Sousa, J.V.C., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018). https://doi.org/10.1016/j.cnsns.2018.01.005

12. Afshari, H., Abdo, M.S., Alzabut, J.: Further results on existence of positive solutions of generalized fractional boundary value problems. Adv. Differ. Equ. 2020, 600 (2020). https://doi.org/10.1186/s13662-020-03065-2

13. Abdo, M.S., Panchal, S.K., Hussien, S.H.: Fractional integro-differential equations with nonlocal conditions and ψ-Hilfer fractional derivative. Math. Model. Anal. 24(4), 564–584 (2019)

14. Abdo, M.S., Panchal, S.K., Saeed, A.M.: Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Math. Sci. 129(5), 65 (2019). https://doi.org/10.1007/s12044-019-0514-8

15. Abdo, M.S., Shah, K., Panchal, S.K., Wahash, H.A.: Existence and Ulam stability results of a coupled system for terminal value problems involving ψ-Hilfer fractional operator. Adv. Differ. Equ. 2020, 316 (2020)

16. Sousa, J.V.C., Capelas de Oliveira, E.: Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77, 305–311 (2019)

17. Sousa, J.V.C., de Oliveira, E.C.: A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differ. Equ. Appl. 11(1), 87–106 (2019)

18. Wahash, H.A., Abdo, M.S., Saeed, A.M., Panchal, S.K.: Singular fractional differential equations with ψ–Caputo operator and modi.ed Picard.s iterative method. Appl. Math. E-Notes 20, 215–229 (2020)

19. Wahash, H.A., Abdo, M.S., Panchal, S.K.: Existence and Ulam-Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative. J. Appl. Math. Comput. Mech. 19(1), 89–101 (2020). https://doi.org/10.17512/jamcm.2020.1.08

20. Seemab, A., Rehman, M.U., Alzabut, J., Hamdi, A.: On the existence of positive solutions for generalized fractional boundary value problems. Bound. Value Probl. 2019, 186 (2019). https://doi.org/10.1186/s13661-019-01300-8

21. Almalahi, M.A., Abdo, M.S., Panchal, S.K.: On the theory of fractional terminal value problem with ϕ-Hilfer fractional derivative. AIMS Math. 5(5), 4889–4908 (2020). https://doi.org/10.3934/math.2020312

22. Kucche, K.D., Mali, A.D., Sousa, J.V.C.: Theory of nonlinear ψ-Hilfer FDE (2018). arXiv:1808.01608. arXiv preprint

23. Liu, K., Wang, J., O’Regan, D.: Ulam-Hyers-Mittag-Leffler stability for ϕ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019(1), 50 (2019). https://doi.org/10.1186/s13662-019-1997-4

24. Vivek, D., Elsayed, E., Kanagarajan, K.: Theory and analysis of ϕ-fractional differential equations with boundary conditions. Commun. Appl. Anal. 22, 401–414 (2018)

25. Khaminsou, B., Thaiprayoon, C., Alzabut, A., Sudsutad, W.: Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative. Bound. Value Probl. 2020, 176 (2020). https://doi.org/10.1186/s13661-020-01473-7

26. Hammachukiattikul, P., Mohanapriya, A., Ganesh, A., Rajchakit, G., Govindan, V., Gunasekaran, N. Lim, C.: A study on fractional differential equations using the fractional Fourier transform. Adv. Differ. Equ. 2020, 691 (2020). https://doi.org/10.1186/s13662-020-03148-0

27. Unyong, B., Mohanapriya, A., Ganesh, A., Rajchakit, G., Govindan, V., Vadivel, R., Gunasekaran, N., Lim, C.: Fractional Fourier transform and stability of fractional differential equation on Lizorkin space. Adv. Differ. Equ. 2020, 578 (2020). https://doi.org/10.1186/s13662-020-03046-5

28. Samet, B.: Fixed points for α-ψ contractive mappings with an application to quadratic integral equations. Electron. J. Differ. Equ. 2014, 152 (2014)

29. Afshari, H.: Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces. Adv. Differ. Equ. 2018, 285 (2018). https://doi.org/10.1186/s13662-019-2227-9

30. Afshari, H., Baleanu, D.: Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 140 (2020). https://doi.org/10.1186/s13662-020-02592-2

31. Afshari, H., Kalantari, S., Baleanu, D.: Solution of fractional differential equations via $$\alpha -\psi$$-Geraghty type mappings. Adv. Differ. Equ. 2018, 347 (2018). https://doi.org/10.1186/s13662-018-1807-4

32. Afshari, H., Hosseinpour, H., Marasi, H.R.: Application of some new contractions for existence and uniqueness of differential equations involving Caputo-Fabrizio derivative. Adv. Differ. Equ. 2021, 321 (2021). https://doi.org/10.1186/s13662-021-03476-9

33. Karapınar, E.: Fixed point theorems on α-ψ-Geraghty contraction type mappings. Filomat 28, 761–766 (2014)

34. Karapinar, E., Samet, B.: Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012)

35. Marasi, H.R., Afshari, H., Daneshbastam, M., Zhai, C.B.: Fixed points of mixed monotone operators for existence and uniqueness of nonlinear fractional differential equations. J. Contemp. Math. Anal. 52, 8–13 (2017)

36. Marasi, H.R., Afshari, H., Zhai, C.B.: Some existence and uniqueness results for nonlinear fractional partial differential equations. Rocky Mt. J. Math. 47, 571–585 (2017). https://doi.org/10.1216/RMJ-2017-47-2-1

37. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 75(4), 2154–2165 (2012). https://doi.org/10.1016/j.na.2011.10.014

38. Aydi, H., Marasi, H.R., Piri, H., Talebi, M.: A solution to the new Caputo-Fabrizio fractional KDV equation via stability. J. Math. Anal. 8(4), 147–155 (2017)

39. Zhai, C., Zhao, L., Li, S., Marasi, H.R.: On some properties of positive solutions for a third-order three-point boundary value problem with a parameter. Adv. Differ. Equ. 2017, 187, 1–11 (2017)

40. Ockendon, J., Tayle, A.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc., Math. Phys. Eng. Sci. 322, 447–468 (1971)

41. Derfel, G.A., Iserles, A.: The pantograph equation in the complex plane. J. Math. Anal. Appl. 213, 117–132 (1997)

42. Balachandran, K., Kiruthika, S., Trujillo, J.J.: Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 33B(3), 712–720 (2013)

43. Ahmed, I., Kumam, P., Shah, K., Borisut, P., Sitthithakerngkiet, K., Demba, M.A.: Stability results for implicit fractional pantograph differential equations via φ-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition. Mathematics 8, 94 (2020)

44. Harikrishnan, S., Elsayed, E.M., Kanagarajan, K.: Existence and uniqueness results for fractional pantograph equations involving ϕ-Hilfer fractional derivative. Dyn. Contin. Discrete Impuls. Syst. 25, 319–328 (2018)

45. Bashir, A., Sivasundaram, S.: Some existence results for fractional integro-differential equations with nonlocal conditions. Commun. Appl. Anal. 12, 107–112 (2008)

46. Ahmed, I., Kumam, P., Abubakar, J., Sitthithakerngkiet, K.: Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition. Adv. Differ. Equ. 2020, 477 (2020)

47. Vivek, D., Shah, K., Kanagarajan, K.: Dynamical analysis of Hilfer-Hadamard type fractional pantograph equations via successive approximation. J. Taibah Univ. Sci. 13(1), 225–230 (2019)

## Acknowledgements

The authors are thankful to potential referees for reviewing this paper. J. Alzabut is thankful for Prince Sultan University and OSTİM Technical University for their endless support.

Not applicable.

## Author information

Authors

### Contributions

All authors have taken equal part in this research and they read and approved the final manuscript.

### Corresponding authors

Correspondence to Hojjat Afshari or Jehad Alzabut.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Rights and permissions

Reprints and permissions

Afshari, H., Marasi, H.R. & Alzabut, J. Applications of new contraction mappings on existence and uniqueness results for implicit ϕ-Hilfer fractional pantograph differential equations. J Inequal Appl 2021, 185 (2021). https://doi.org/10.1186/s13660-021-02711-x