Skip to main content

On a fractional cantilever beam model in the q-difference inclusion settings via special multi-valued operators

Abstract

The fundamental goal of the study under consideration is to establish some of the existence criteria needed for a particular fractional inclusion model of cantilever beam in the setting of quantum calculus using new arguments of existence theory. In this way, we investigate a fractional integral equation that corresponds to the aforementioned boundary value problem. In a more concrete sense, we design new multi-valued operators based on this integral equation, which belong to the certain subclasses of functions, called α-admissible and α-ψ-contractive multi-functions, in combination with the AEP-property. Also, we use some inequalities such as Ω-inequality and set-valued version inequalities. Moreover, we add a simulative example for a numerical analysis of our results obtained in this study.

1 Introduction

Fractional calculus and its corresponding differential equations and BvPs have been widely utilized in the vast fields of science, including biology, chemistry, economy, physics, engineering, etc. [13]. Fractional derivatives do not merely represent a generalization of ordinary derivatives but also precisely and accurately describe the complex behavior, in contrast to integer order derivatives, of diverse physical structures. Several investigators have examined differential equation of arbitrary order starting from the existence and uniqueness of solutions to the analytical and computational approaches in search of solutions. A number of monographs and articles are available concerning the developments of theory of fractional differential equations and inclusions [431].

On the other hand, the quantum calculus is a field without the concept of limit that corresponds to the traditional infinitesimal one. Regardless of their vast background, both theories are in the domain of mathematical analysis, working on their properties did not emerge two ages later. Quantum difference operators (q-DiffOper) were first exhibited and introduced by Jackson [32] and have been widely analyzed in order to explain complex physical structures with a number of non-differentiable functions. In early nineties, numerous academician [33, 34] came forward with the studies on q-difference equations which lately received great interest and attention [32, 35, 36]. There are some intriguing insights into IVPs and BVPs coupled with q-difference equations in [3748].

The q-analogue of a second order q-difference inclusion BvP was studied by Ahmad and Ntouyas [49] in 2011, and they explored the existence criteria by utilizing fixed point theory:

$$\begin{aligned} \textstyle\begin{cases} {}^{C}\mathfrak{D}_{q}^{2}\mathfrak{u}(\varsigma )\in \uppsi ( \varsigma, \mathfrak{u}(\varsigma )), \\ \mathfrak{u}(0)=\alpha \mathfrak{u}(M),\qquad \mathfrak{D}_{q}\mathfrak{u}(0)= \alpha \mathfrak{D}_{q}\mathfrak{u}(M), \end{cases}\displaystyle \end{aligned}$$

where \(\varsigma \in [0, M]\), \(\uppsi: [0, 1]\times \mathbb{R}\to \mathbb{P}(\mathbb{R})\) is a compact-valued map and \(\alpha \in \mathbb{R}\setminus \{1\}\).

Ahmad et al. [50] reviewed later the existence criteria of the following q-difference inclusion involving q-antiperiodic boundary conditions:

$$\begin{aligned} \textstyle\begin{cases} {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}(\varsigma )\in \uppsi ( \varsigma, \mathfrak{u}(\varsigma ), \mathfrak{D}_{q}\mathfrak{u}( \varsigma ), \mathfrak{D}^{2}_{q}(\varsigma )), \\ \mathfrak{u}(0)+\mathfrak{u}(1)=0,\qquad \mathfrak{D}_{q}\mathfrak{u}(0)+ \mathfrak{D}_{q}\mathfrak{u}(1)=0,\qquad \mathfrak{D}_{q}^{2}\mathfrak{u}(0)+ \mathfrak{D}_{q}^{2}\mathfrak{u}(1)=0, \end{cases}\displaystyle \end{aligned}$$

where \(\varsigma \in [0, 1]\), \(q\in (0, 1)\), \(2< \omega \leq 3\), \({^{C}\mathfrak{D}}_{q}^{\beta }\) denotes the q-fractional derivatives in Caputo sense of order ω and \(\uppsi: [0, 1]\times \mathbb{R}^{3}\to \mathbb{P}(\mathbb{R})\).

The malformations of an elastically balanced beam with fixed and released end points can be represented by means of a mathematical model as the fourth-order BvP

$$\begin{aligned} \textstyle\begin{cases} \mathfrak{u}^{(4)}(\varsigma )=\uppsi (\varsigma, \mathfrak{u}( \varsigma ), \mathfrak{u}'(\varsigma ), \mathfrak{u}''(\varsigma ), \mathfrak{u}'''(\varsigma )), \\ \mathfrak{u}(\varsigma )\vert _{\varsigma =0}=\mathfrak{u}'( \varsigma )\vert _{\varsigma =0}=\mathfrak{u}''(\varsigma )\vert _{ \varsigma =1}=\mathfrak{u}'''(\varsigma )\vert _{\varsigma =1}=0, \end{cases}\displaystyle \end{aligned}$$
(1)

where \(\uppsi: [0, 1]\times \mathcal{Y} \to \mathbb{R}\) is a continuous function with \(\mathcal{Y}=\mathbb{R}^{4}\). In fact, Li and Gao [51] studied the existence results for lower and upper solution of above fully fourth-order BvP (1) which is named cantilever beam equation in mechanics. In 2019, Li and Chen [52] presented their existence findings to problem (1) by utilizing an approach based on the fixed point theorem due to Leray–Schauder. In 2020, Zhang and Cui [53] utilized the concepts of fixed point index theory and investigated the positivity of solutions of BvP (1) over a cone, considering \(\uppsi: [0, 1]\times \mathcal{B}\to [0, +\infty ]\), \(\mathcal{B}=[0, +\infty ]\times (-\infty, +\infty )\times (-\infty, 0)\times (-\infty, +\infty )\).

The following nonlinear Caputo fractional quantum BvP is designed by the above research works and is equipped with the fractional quantum differential conditions:

$$\begin{aligned} \textstyle\begin{cases} {}^{C}\mathfrak{D}_{q}^{\kappa }({}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u})(\varsigma )\in \Phi (\varsigma, \mathfrak{u}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1}\mathfrak{u}(\varsigma ),{}^{C} \mathfrak{D}_{q}^{\omega +2}\mathfrak{u}(\varsigma )), \\ \mathfrak{u } (\varsigma )|_{\varsigma =0} = {}^{C}\mathfrak{D}_{q}^{ \omega }\mathfrak{u }(\varsigma )|_{\varsigma =0} = {}^{C} \mathfrak{D}_{q}^{\omega +1 }\mathfrak{u }(\varsigma )|_{ \varsigma =1} = {}^{C}\mathfrak{D}_{q}^{\omega +2 } \mathfrak{u }( \varsigma )|_{\varsigma =1} = 0, \end{cases}\displaystyle \end{aligned}$$
(2)

where \(q\in (0, 1)\), \(\varsigma \in \mathbb{S}:=[0, 1]\), \(\kappa \in (2, 3]\), \(\omega \in (0, 1]\), \(\omega +1\in (1, 2]\), \(\omega +2\in (2, 3]\) and \(\Phi: \mathbb{S}\times \mathbb{R}^{4}\to \mathbb{P}(\mathbb{R})\) is a multi-function with specified properties. Also \({}^{C}\mathfrak{D}_{q}^{H}\) displays q-Caputo derivative of order \(H\in \{\kappa, \omega, \omega +1, \omega +2\}\).

Note that the above inclusion q-FBvP (2) is an extension of the standard practical model of the cantilever beam to the fractional q-analogue structure. By assuming \(\kappa =3\), \(\omega =1\), and \(q\to 1\) and \(\Phi (\cdot ) = \{ \uppsi (\cdot ) \}\), we obtain the above fourth-order differential inclusion arising in the cantilever beam model (1). One can state some physical interpretations for the q-FBvP model (2) by assuming such assumptions over κ and ω as follows: \(u(\varsigma )\) stands for the deformation function, \({}^{C}\mathfrak{D}_{q\to 1}^{3}({}^{C}\mathfrak{D}_{q \to 1}^{1} \mathfrak{u})\) is the load density stiffness, \({}^{C}\mathfrak{D}_{q\to 1}^{3 } \mathfrak{u }\) denotes the stiffness of the function \(\mathfrak{u}\) under the shear force, \({}^{C}\mathfrak{D}_{q\to 1}^{2} \mathfrak{u }\) denotes the stiffness of the function \(\mathfrak{u}\) in the bending moment, and \({}^{C}\mathfrak{D}_{q\to 1}^{1} \mathfrak{u }\) represents the slope [54, 55].

About the novelty of this work, one can state that such a fractional model of cantilever beam based on q-difference operators has not been studied in any research paper so far, and on this new structure, we derive our mathematical and analytical results ensuring the solution’s existence by means of some special subclasses of multi-functions. For our applied technique, we here use α-ψ-contractive multi-functions for the confirmation of the existence of a fixed point and also the confirmation of the existence of an end point by making use of another family of multi-functions having the AEP-property.

The rest of the manuscript is structured as follows: Sect. 2 is dedicated to the fundamental ideas of q-analogue of fractional calculus. In the beginning of Sect. 3, we provide a lemma which presents the solution of the cantilever beam q-FBvP (2) in the form of an integral equation, and then, by making use of the α-admissible multi-valued mappings with control function and approximate end point theory, we guarantee the solutions’ existence for the cantilever beam q-FBvP (2). Section 4 is assigned to the illustration of the results presented in Sect. 3 with the aid of an example. Finally, Sect. 5 describes the concluded remarks.

2 Preliminaries

We compile and study, in the light of our approaches used in this investigation, some auxiliary and primitive definitions regarding q-calculus.

We suppose that \(0< q<1\). The q-analogue of the function \((m_{1} - m_{2})^{n}\) given for \(n\in \mathbb{N}_{0}\) is defined as \((m_{1} - m_{2})^{(0)} = 1\) coupled with

$$\begin{aligned} (m_{1} - m_{2})^{(n)} = \prod _{k=0}^{ n-1}\bigl(m_{1} - m_{2} q^{k}\bigr), \end{aligned}$$

so that \(m_{1}, m_{2} \in \mathbb{R}\) and \(\mathbb{N}_{0}:= \{ 0,1,2, \dots \}\) [56]. Now, \(n = \omega \) is a constant which is supposed to belong to \(\mathbb{R}\). We represent the following q-analogue of the existing power function \((m_{1} - m_{2})^{n}\) in a q-fractional setting:

$$\begin{aligned} (m_{1}-m_{2})^{(\omega )}= m_{1}^{\omega } \prod_{n=0}^{\infty } \frac{1 - (\frac{m_{2}}{m_{1}})q^{n}}{1- (\frac{m_{2}}{m_{1}}) q^{\omega + n}} \end{aligned}$$
(3)

for \(m_{1}\neq 0\). We consider that, by taking \(m_{2}=0\), \(m_{1}^{(\omega )}=m_{1}^{\omega } \) [56]. For the same \(m_{1} \in \mathbb{R} \), a q-number \([ m_{1} ]_{q} \) is exhibited as

$$\begin{aligned}{} [ m_{1} ]_{q}= \frac{1-q^{ m_{1} } }{1-q} = q^{m_{1} -1} + \cdots + q + 1. \end{aligned}$$

The q-gamma function is illustrated using such a format

$$\begin{aligned} \Gamma _{q}( \varsigma ) = \frac{ (1-q)^{ (\varsigma -1)}}{ (1-q)^{\varsigma - 1}}, \end{aligned}$$
(4)

so that \(\varsigma \in \mathbb{R} \setminus \{ 0, -1, -2, \ldots \} \) [56, 57]. Also, \(\Gamma _{q}(\varsigma +1)=[\varsigma ]_{q} \Gamma _{q} (\varsigma )\) [57].

Definition 1

([58, 59] Riemann–Liouville q-integral)

For \(\omega \geq 0\) and for a given function \(\mathfrak{u} \in \mathcal{C}_{\mathbb{R}}([0,+ \infty ))\), the RL-q-integral of \(\mathfrak{u}\) is introduced by

$$\begin{aligned} {}^{R}\mathfrak{I}_{q}^{ \omega } \mathfrak{u}( \varsigma ) = \frac{1}{\Gamma _{q} (\omega )} \int _{0}^{\varsigma }(\varsigma -qz )^{(\omega -1 )} \mathfrak{u}(z)\, \mathrm{d}_{q} z \quad (\omega >0), \end{aligned}$$

provided that the above value is finite and \({}^{R}\mathfrak{I}_{q}^{ 0 } \mathfrak{u}(\varsigma ) = \mathfrak{u} ( \varsigma )\).

For \(\omega _{1}, \omega _{2}, \omega, \theta > 0 \), we have these properties [59]:

  1. (1)

    \({}^{R}\mathfrak{I}_{q}^{\omega _{1}} ({}^{R}\mathfrak{I}_{q}^{ \omega _{2}} \mathfrak{u})(\varsigma )= {}^{R}\mathfrak{I}_{q}^{ \omega _{1} + \omega _{2}} \mathfrak{u}(\varsigma )\),

  2. (2)

    \({}^{R}\mathfrak{I}_{q}^{\omega }\varsigma ^{\theta }= \frac{\Gamma _{q} (\theta +1)}{\Gamma _{q}(\theta + \omega +1)} \varsigma ^{\theta + \omega }\).

If \(\theta = 0\), then \({}^{R}\mathfrak{I}_{q}^{\omega }1(\varsigma )= \frac{1}{\Gamma _{q}(\omega +1)} \varsigma ^{\omega }\) for any \(\varsigma >0\).

Definition 2

([58, 59] Caputo q-derivative)

Given \(n-1 < \omega <n\), i.e., \(n = [ \omega ]+1 \) and a function \(\mathfrak{u}\in \mathcal{AC}^{(n)}_{\mathbb{R}}([0,+ \infty ))\), the ωth-Caputo q-derivative for this function is formulated by

$$\begin{aligned} {}^{C}\mathfrak{D}_{q}^{ \omega } \mathfrak{u}( \varsigma )= \frac{1}{\Gamma _{q} (n- \omega )} \int _{0}^{\varsigma }(\varsigma -qz )^{(n- \omega -1)} \mathfrak{D}_{q}^{n}\mathfrak{u}(z) \, \mathrm{d}_{q} z, \end{aligned}$$

if the integral exists.

Clearly, \({}^{C}\mathfrak{D}_{q}^{\omega }c= 0 \) for any \(c\in \mathbb{R}\) and

$$\begin{aligned} {}^{C}\mathfrak{D}_{q}^{\omega }\varsigma ^{\theta }= \frac{\Gamma _{q} (\theta +1)}{\Gamma _{q}(\theta - \omega +1)} \varsigma ^{\theta - \omega } \quad (\varsigma >0). \end{aligned}$$

Lemma 3

([60])

Assume that \(n-1 < \omega < n \) and \(\mathfrak{u}\in \mathcal{C}^{(n)}_{\mathbb{R}}([0,+ \infty ))\). Then

$$\begin{aligned} \bigl({}^{R}\mathfrak{I}_{q}^{\omega } {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}\bigr) ( \varsigma )= \mathfrak{u}(\varsigma ) - \sum_{k=0}^{n-1} \frac{(\mathfrak{D}_{q}^{k} \mathfrak{u})(0)}{\Gamma _{q} ( k + 1 ) } \varsigma ^{k}. \end{aligned}$$

In view of the above lemma, by assuming the constants \(\ell _{k}:= \frac{(\mathfrak{D}_{q}^{k} \mathfrak{u})(0)}{\Gamma _{q} ( k + 1 ) }>0\), the given fractional homogeneous q-difference equation \({}^{C}\mathfrak{D}_{q}^{ \omega }\mathfrak{u}(\varsigma )=0\) has a general solution which is given by \(\mathfrak{u}(\varsigma ) = \ell _{0} + \ell _{1} \varsigma + \ell _{2} \varsigma ^{2} + \cdots + \ell _{n-1} \varsigma ^{n-1}\) such that \(\ell _{0}, \dots, \ell _{n-1} \in \mathbb{R}\) and \(n = [ \omega ] + 1\) [60]. It should be mentioned that, for each continuous function \(\mathfrak{u}\), and by Lemma 3, we obtain

$$\begin{aligned} \bigl({}^{R}\mathfrak{I}_{q}^{\omega } {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}\bigr) ( \varsigma )= \mathfrak{u}(\varsigma ) + \ell _{0} + \ell _{1} \varsigma + \ell _{2} \varsigma ^{2} + \cdots + \ell _{n-1} \varsigma ^{n-1}, \end{aligned}$$

where \(\ell _{0}, \dots, \ell _{n-1}\) illustrate constants in \(\mathbb{R}\) [60].

Regarding \((\mathfrak{X}_{\star }, \|\cdot \|)\) as a normed space, the classes \(\mathbb{P}_{\mathbb{CL}}(\mathfrak{X}_{\star })\) (all closed sets), \(\mathbb{P}_{\mathbb{BN}} (\mathfrak{X}_{\star })\) (all bounded sets), \(\mathbb{P}_{\mathbb{CP}}(\mathfrak{X}_{\star })\) (all compact sets), and \(\mathbb{P}_{\mathbb{CV}}(\mathfrak{X}_{\star })\) (all convex sets) involve the respective form of subsets of \(\mathfrak{X}_{\star }\).

Definition 4

([61])

An element \(\mathfrak{u} \in \mathfrak{X}_{\star }\) is an end point of the multi-function \(\Phi:\mathfrak{X}_{\star }\rightarrow \mathbb{P}(\mathfrak{X}_{\star })\) if \(\Phi ( \mathfrak{u})=\{ \mathfrak{u}\}\).

The multi-function Φ admits an approximate end point property (AEP) if

$$\begin{aligned} \inf_{\mathfrak{u}_{1} \in \mathfrak{X}_{\star }} \sup_{\mathfrak{u}_{2} \in \Phi (\mathfrak{u}_{1})} d( \mathfrak{u}_{1},\mathfrak{u}_{2}) = 0. \end{aligned}$$

Mohammadi et al. [62] introduced a new notion given as the subclass Ψ of all nondecreasing functions like

$$\begin{aligned} \psi: [0, \infty ) \to [0, \infty ) \end{aligned}$$

so that \(\sum_{n=1}^{\infty } \psi ^{n}(\varsigma ) <\infty \) for any \(\varsigma > 0\). Now, by making use of such a category, we define a new family of multi-functions.

Definition 5

([62])

Let \(\Phi:\mathfrak{X}_{\star }\to \mathbb{P}_{\mathbb{CL,BN}}( \mathfrak{X}_{\star })\) and \(\alpha: \mathfrak{X}_{\star }^{2} \to [0, +\infty )\). Then

  1. (1)

    Φ is α-admissible if, for each \(\mathfrak{u}_{1} \in \mathfrak{X}_{\star }\) and \(\mathfrak{u}_{2}\in \Phi \mathfrak{u}_{1}\), inequality \(\alpha (\mathfrak{u}_{1},\mathfrak{u}_{2})\geq 1\) gives \(\alpha (\mathfrak{u}_{2},\mathfrak{u}_{3})\geq 1\) for each \(\mathfrak{u}_{3}\in \Phi \mathfrak{u}_{2}\).

  2. (2)

    Φ is an α-ψ-contractive multi-function if \(\forall \mathfrak{u}_{1}, \mathfrak{u}_{2}\in \mathfrak{X}_{\star }\),

    $$\begin{aligned} \alpha (\mathfrak{u}_{1},\mathfrak{u}_{2}) \mathbb{H}_{d} (\Phi \mathfrak{u}_{1}, \Phi \mathfrak{u}_{2})\leq \psi \bigl(d(\mathfrak{u}_{1}, \mathfrak{u}_{2})\bigr), \end{aligned}$$

    where \(\mathbb{H}_{d}\) is the Pompeiu–Hausdorff metric.

Next we recall requisite theorems concerning the investigation of the proposed q-FBvP (2).

Theorem 6

([62])

Let us assume a complete metric space \((\mathfrak{X}_{\star }, d)\), a nonnegative map \(\alpha: \mathfrak{X}_{\star }^{2} \to [0, \infty )\), and \(\psi \in \Psi \). In addition, assume \(\Phi:\mathfrak{X}_{\star }\to \mathbb{P}_{\mathbb{CL,BN}}( \mathfrak{X}_{\star })\) to be an α-ψ-contractive multi-function, and let

  1. (1)

    Φ be α-admissible;

  2. (2)

    \(\alpha (\mathfrak{u}_{0},\mathfrak{u}_{1}) \geq 1\) for some \(\mathfrak{u}_{0} \in \mathfrak{X}_{\star }\) and \(\mathfrak{u}_{1} \in \Phi \mathfrak{u}_{0}\);

  3. (3)

    for each sequence \(\{\mathfrak{u}_{n}\}\) in \(\mathfrak{X}_{\star }\) with \(\alpha (\mathfrak{u}_{n}, \mathfrak{u}_{n+1}) \geq 1\) for all \(n \in \mathbb{N}\), a subsequence \(\{ \mathfrak{u}_{n_{t}} \}\) of \(\{ \mathfrak{u}_{n} \}\) exist such that, for all \(t \in \mathbb{N}\), \(\alpha (\mathfrak{u}_{n_{t}}, \mathfrak{u}) \geq 1\).

Then Φ admits a fixed point.

Theorem 7

([61])

Let \((\mathfrak{X}_{\star }, d)\) be a metric space of complete type and consider

  1. (1)

    an upper semi-continuous map \(\psi: [0, \infty ) \to [0, \infty )\) with \(\psi (\varsigma ) < \varsigma \) and

    $$\begin{aligned} \liminf_{\varsigma \to \infty }\bigl(\varsigma - \psi (\varsigma )\bigr) >0,\quad \forall \varsigma >0; \end{aligned}$$
  2. (2)

    a multi-function \(\Phi: \mathfrak{X}_{\star }\to \mathbb{P}_{\mathbb{CL,BN}}( \mathfrak{X}_{\star })\) such that

    $$\begin{aligned} \mathbb{H}_{d}(\Phi \mathfrak{u}_{1}, \Phi \mathfrak{u}_{2}) \leq \psi \bigl(d(\mathfrak{u}_{1}, \mathfrak{u}_{2})\bigr),\quad \forall \mathfrak{u}_{1}, \mathfrak{u}_{2} \in \mathfrak{X}_{\star }. \end{aligned}$$

Then a unique end point of Φ exists iff Φ has the AEP-property.

3 Existence results

Regard \(\mathfrak{X}_{\star }= \{\mathfrak{u}(\varsigma ): \mathfrak{u}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \in \mathcal{C} ( \mathbb{S}, \mathbb{R}) \}\) as a Banach space of all real-valued continuous functions on \(\mathbb{S}\) equipped with a sup-norm

$$\begin{aligned} \Vert \mathfrak{u} \Vert = \sup_{\varsigma \in \mathbb{S}} \bigl\vert \mathfrak{u}(\varsigma ) \bigr\vert + \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ) \bigr\vert + \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ) \bigr\vert + \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C}\mathfrak{D}_{q}^{ \omega +2} \mathfrak{u}(\varsigma ) \bigr\vert . \end{aligned}$$

In the following proposition, the solution to the proposed fractional cantilever q-problem (2) is presented in the form of an integral equation, which will be helpful in establishing our main findings.

Proposition 8

Let \(\kappa \in (2,3]\), \(\omega \in (0,1]\), and \(\mathcal{G} \in C(\mathbb{S},\mathbb{R})\). Then the solution of the linear q-FBvP

$$\begin{aligned} \textstyle\begin{cases} {}^{C}\mathfrak{D}_{q}^{ \kappa } ( {}^{C}\mathfrak{D}_{q}^{ \omega } \mathfrak{u } ) (\varsigma ) = \mathcal{G}(\varsigma ), \\ \mathfrak{u } (\varsigma )|_{\varsigma =0} = {}^{C}\mathfrak{D}_{q}^{ \omega }\mathfrak{u }(\varsigma )|_{\varsigma =0} = {}^{C} \mathfrak{D}_{q}^{\omega +1 }\mathfrak{u }(\varsigma )|_{ \varsigma =1} = {}^{C}\mathfrak{D}_{q}^{\omega +2 } \mathfrak{u }( \varsigma )|_{\varsigma =1} = 0, \end{cases}\displaystyle \end{aligned}$$
(5)

is presented in the following form:

$$\begin{aligned} \mathfrak{u } (\varsigma ) ={}& \frac{1}{\Gamma _{q} (\kappa + \omega )} \int _{0}^{\varsigma } ( \varsigma - q z)^{(\kappa +\omega -1)} \mathcal{G}(z)\, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\mathcal{G}(z) \, \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \mathcal{G}(z) \, \mathrm{d}_{q} z, \end{aligned}$$
(6)

where \([\omega +2]_{q} = \frac{1-q^{\omega +2 }}{1-q}\).

Proof

Assume that \(\mathfrak{u}^{*}\) is a solution of the given q-FBvP (5). Then \({}^{C}\mathfrak{D}_{q}^{ \kappa } ( {}^{C}\mathfrak{D}_{q}^{ \omega } \mathfrak{u}^{*} ) (\varsigma ) = \mathcal{G}(\varsigma )\). By taking κth-q-integral of Riemann–Liouville type, we obtain

$$\begin{aligned} {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}^{*} (\varsigma ) = \frac{1}{\Gamma _{q} (\kappa )} \int _{0}^{\varsigma }(\varsigma -q z)^{( \kappa -1 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{0} + \ell _{1} \varsigma + \ell _{2} \varsigma ^{2}, \end{aligned}$$
(7)

where \(\ell _{m} \in \mathbb{R}, m = 0, 1,2\). The second condition \({}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}^{*}(\varsigma ) |_{ \varsigma =0} = 0\) implies \(\ell _{0} = 0\). Thus

$$\begin{aligned} {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}^{*} (\varsigma ) = \frac{1}{\Gamma _{q} (\kappa )} \int _{0}^{\varsigma }(\varsigma -q z)^{( \kappa -1 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{1} \varsigma + \ell _{2} \varsigma ^{2}. \end{aligned}$$
(8)

In the sequel, by using the Riemann–Liouville ωth-q-integral to both sides of (8), we reach

$$\begin{aligned} \mathfrak{u}^{*} (\varsigma ) = \frac{1}{\Gamma _{q} (\kappa + \omega )} \int _{0}^{\varsigma }( \varsigma -q z)^{(\kappa + \omega -1 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{0}^{*} + \ell _{1} \frac{\varsigma ^{\omega +1}}{\Gamma _{q}(\omega +2)} + \ell _{2} \frac{(1+q) \varsigma ^{\omega +2}}{\Gamma _{q}(\omega +3)}. \end{aligned}$$
(9)

From (9) and the condition \(\mathfrak{u}^{*} (\varsigma ) |_{\varsigma =0} =0\), we get \(\ell _{0}^{*} = 0\). Thus

$$\begin{aligned} \mathfrak{u}^{*} (\varsigma ) = \frac{1}{\Gamma _{q} (\kappa + \omega )} \int _{0}^{\varsigma }( \varsigma -q z)^{(\kappa + \omega -1 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{1} \frac{\varsigma ^{\omega +1}}{\Gamma _{q}(\omega +2)} + \ell _{2} \frac{(1+q) \varsigma ^{\omega +2}}{\Gamma _{q}(\omega +3)}. \end{aligned}$$
(10)

As \(\omega +1 \in (1,2]\) and \(\omega +2 \in (2,3]\), we have

$$\begin{aligned} {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}^{*} (\varsigma ) = \frac{1}{\Gamma _{q} (\kappa -1)} \int _{0}^{\varsigma }(\varsigma -q z)^{( \kappa -2 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{1} + \ell _{2} (1+q) \varsigma \end{aligned}$$
(11)

and

$$\begin{aligned} {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}^{*} (\varsigma ) = \frac{1}{\Gamma _{q} (\kappa -2)} \int _{0}^{\varsigma }(\varsigma -q z)^{( \kappa -3 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{2} (1+q). \end{aligned}$$
(12)

In view of the conditions \({}^{C}\mathfrak{D}_{q}^{\omega +1 }\mathfrak{u}^{*} (\varsigma ) |_{\varsigma =1} = {}^{C}\mathfrak{D}_{q}^{\omega +2 } \mathfrak{u}^{*} (\varsigma ) |_{\varsigma =1} = 0\) on the relations (11) and (12), we have

$$\begin{aligned} \frac{1}{\Gamma _{q} (\kappa -1)} \int _{0}^{1} (1 - q z)^{(\kappa -2 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{1} + \ell _{2} (1+q) = 0 \end{aligned}$$

and

$$\begin{aligned} \frac{1}{\Gamma _{q} (\kappa -2)} \int _{0}^{1} (1 - q z)^{(\kappa -3 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \ell _{2} (1+q) = 0. \end{aligned}$$

By solving the above system, we get

$$\begin{aligned} \ell _{1} = - \frac{1}{\Gamma _{q} (\kappa -1)} \int _{0}^{1} (1 - q z)^{( \kappa -2 )} \mathcal{G}(z)\, \mathrm{d}_{q} z + \frac{1}{\Gamma _{q} (\kappa -2)} \int _{0}^{1} (1 - q z)^{(\kappa -3 )} \mathcal{G}(z)\, \mathrm{d}_{q} z \end{aligned}$$

and

$$\begin{aligned} \ell _{2} = -\frac{1}{(1+q) \Gamma _{q} (\kappa -2)} \int _{0}^{1} (1 - q z)^{(\kappa -3 )} \mathcal{G}(z)\, \mathrm{d}_{q} z. \end{aligned}$$

By putting the values \(\ell _{m} \ (m=1,2)\) in (10), we have

$$\begin{aligned} \mathfrak{u }^{*}(\varsigma ) =& \frac{1}{\Gamma _{q} (\kappa + \omega )} \int _{0}^{\varsigma } ( \varsigma - q z)^{(\kappa +\omega -1)} \mathcal{G}(z)\, \mathrm{d}_{q} z \\ &- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\mathcal{G}(z) \, \mathrm{d}_{q} z \\ &+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \mathcal{G}(z) \, \mathrm{d}_{q} z, \end{aligned}$$

which ensures that \(\mathfrak{u}^{*}\) satisfies (6) and the proof is finished. □

We are now ready to develop our key findings about the existence of solutions for the q-difference inclusion FBvP (2) occurring in the cantilever beam model. The function \(\mathfrak{u} \in \mathcal{C}({\mathbb{S}, \mathfrak{X}_{\star }})\) is referred to as the solution of the fractional cantilever q-FBvP (2) when it settles the given boundary conditions, and a function \(\acute{\varphi } \in \mathcal{L}^{1} (\mathbb{S})\) exists such that, for almost all \(\varsigma \in \mathbb{S}\), we have

$$\begin{aligned} \acute{\varphi } (\varsigma ) \in \Phi \bigl(\varsigma, \mathfrak{u }( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u }( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1 }\mathfrak{u }(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u }(\varsigma ) \bigr) \end{aligned}$$

and

$$\begin{aligned} \mathfrak{u } (\varsigma ) ={}& \frac{1}{\Gamma _{q} (\kappa + \omega )} \int _{0}^{\varsigma } ( \varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }(z)\, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }(z) \, \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }(z) \, \mathrm{d}_{q} z \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). The selections’ set of the multi-function Φ is given by

$$\begin{aligned} (\mathbb{SEL})_{\Phi, \mathfrak{u}} ={}& \bigl\{ \acute{\varphi } \in \mathcal{L}^{1}(\mathbb{S}): \acute{\varphi }(\varsigma ) \in \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega } \mathfrak{u} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u} (\varsigma ) \bigr) \\ &\text{for all } \varsigma \in \mathbb{S} \bigr\} \end{aligned}$$

for each \(\mathfrak{u} \in \mathfrak{X}_{\star }\). In addition, an operator \(\mathfrak{U}: \mathfrak{X}_{\star }\to \mathbb{P}(\mathfrak{X}_{\star })\) is formulated by the following rule:

$$\begin{aligned} \mathfrak{U}(\mathfrak{u})= \bigl\{ \nu \in \mathfrak{X}_{\star }: \text{ there exists } \acute{\varphi } \in (\mathbb{SEL})_{\Phi, \mathfrak{u}}: \nu ( \varsigma ) = \mathfrak{r}(\varsigma ) \text{ for all } \varsigma \in \mathbb{S} \bigr\} , \end{aligned}$$
(13)

where

$$\begin{aligned} \mathfrak{r}(\varsigma ) ={}& \frac{1}{\Gamma _{q} (\kappa + \omega )} \int _{0}^{\varsigma } (\varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }(z)\, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }(z) \, \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }(z) \, \mathrm{d}_{q} z. \end{aligned}$$

For convenience, we take

$$\begin{aligned} &\check{\Upsilon }_{1}= \frac{1}{\Gamma _{q}(\kappa +\omega +1)} + \frac{1}{\Gamma _{q}(\omega +2) \Gamma _{q}(\kappa )} + \frac{[\omega +2]_{q} +1}{\Gamma _{q}(\omega +3) \Gamma _{q}(\kappa -1)}, \\ &\check{\Upsilon }_{2}= \frac{1}{\Gamma _{q}(\kappa +1)} + \frac{1}{\Gamma _{q}(\kappa )} + \frac{2 +q}{(1+q) \Gamma _{q}(\kappa -1)}, \\ &\check{\Upsilon }_{3}= \frac{2}{\Gamma _{q}(\kappa )} + \frac{2}{\Gamma _{q}(\kappa -1)}, \\ &\check{\Upsilon }_{4}= \frac{2}{\Gamma _{q}(\kappa -1)}, \end{aligned}$$
(14)

and

$$\begin{aligned} \overline{\Pi }_{1} = \Vert \mathfrak{p} \Vert \check{\Upsilon }_{1},\qquad \overline{\Pi }_{2} = \Vert \mathfrak{p} \Vert \check{\Upsilon }_{2},\qquad \overline{\Pi }_{3} = \Vert \mathfrak{p} \Vert \check{\Upsilon }_{3},\qquad \overline{\Pi }_{4} = \Vert \mathfrak{p} \Vert \check{\Upsilon }_{4}. \end{aligned}$$
(15)

Theorem 9

Consider \(\Phi:\mathbb{S} \times \mathfrak{X}_{\star }^{4} \to \mathbb{P}_{ \mathbb{CP}}(\mathfrak{X}_{\star })\) and assume the following:

\((\mathcal{T}_{1})\):

The multi-function Φ is bounded and integrable and \(\Phi (\cdot, \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}, \mathfrak{u}_{4} ): \mathbb{S} \to \mathbb{P}_{\mathbb{CP}}( \mathfrak{X}_{\star })\) is measurable for all \(\mathfrak{u}_{m} \in \mathfrak{X}_{\star }\) (m=1,2,3,4);

\((\mathcal{T}_{2})\):

There exists \(\mathfrak{p} \in \mathcal{C}(\mathbb{S}, [0, \infty ))\) and \(\psi \in \Psi \) such that the set-valued version inequality

$$\begin{aligned} & \mathbb{H}_{d} \bigl(\Phi (\varsigma, \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}, \mathfrak{u}_{4}), \Phi (\varsigma, \bar{\mathfrak{u}}_{1}, \bar{\mathfrak{u}}_{2}, \bar{\mathfrak{u}}_{3}, \bar{ \mathfrak{u}}_{4}) \bigr) \\ &\quad \leq \mathfrak{p}(\varsigma ) \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \Biggl( \sum_{m=1}^{4} \vert \mathfrak{u}_{m} - \bar{\mathfrak{u}}_{m} \vert \Biggr), \end{aligned}$$
(16)

holds for all \(\varsigma \in \mathbb{S}\) and \(\mathfrak{u}_{m}, \bar{\mathfrak{u}}_{m} \in \mathfrak{X}_{\star }\ (m= 1,2,3,4)\), where \(\sup_{\varsigma \in \mathbb{S}} \vert \mathfrak{p}(\varsigma ) \vert = \Vert \mathfrak{p} \Vert \), \(\varrho ^{\star }= \frac{1}{\check{\Upsilon }_{1} + \check{\Upsilon }_{2}+\check{\Upsilon }_{3} + \check{\Upsilon }_{4}}\), and \(\check{\Upsilon }_{m}\ (m=1,2,3,4)\) are given by (14);

\((\mathcal{T}_{3})\):

A function \(\Omega:\mathbb{R}^{4} \times \mathbb{R}^{4} \to \mathbb{R}\) exists such that, for all \(\mathfrak{u}_{m}, \bar{\mathfrak{u}}_{m} \in \mathfrak{X}_{\star }\ (m= 1,2,3,4)\), we have

$$\begin{aligned} \Omega \bigl((\mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}, \mathfrak{u}_{4}), (\bar{ \mathfrak{u}}_{1},\bar{\mathfrak{u}}_{2}, \bar{ \mathfrak{u}}_{3}, \bar{\mathfrak{u}}_{4} )\bigr) \geq 0; \end{aligned}$$
\((\mathcal{T}_{4})\):

If \(\{ \mathfrak{u}_{n} \}_{n \geq 1}\) is a sequence in \(\mathfrak{X}_{\star }\) with \(\mathfrak{u}_{n} \to \mathfrak{u}\) and

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u}_{n} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}_{n}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}_{n}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}_{n}(\varsigma ) \bigr), \\ &\quad \bigl(\mathfrak{u}_{n+1} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}_{n+1}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}_{n+1}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +2} \mathfrak{u}_{n+1}(\varsigma ) \bigr) \bigr) \geq 0, \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\) and \(n \geq 1\), then a subsequence \(\{ \mathfrak{u}_{n_{t}} \}_{t \geq 1}\) of \(\{\mathfrak{u}_{n} \}\) exists such that, for all \(\varsigma \in \mathbb{S}\) and \(t \geq 1\), we have

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u}_{n_{t}} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}_{n_{t}}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1}\mathfrak{u}_{n_{t}}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}_{n_{t}}(\varsigma ) \bigr), \\ & \quad\bigl(\mathfrak{u} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \bigr) \geq 0; \end{aligned}$$
\((\mathcal{T}_{5})\):

There exist a member \(\mathfrak{u}_{0} \in \mathfrak{X}_{\star }\) and \(\nu \in \mathfrak{U}(\mathfrak{u}_{0})\) such that, for any \(\varsigma \in \mathbb{S}\),

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u}_{0} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}_{0}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}_{0}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}_{0}(\varsigma ) \bigr), \\ & \quad\bigl(\nu (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \nu ( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1}\nu ( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2}\nu ( \varsigma ) \bigr) \bigr) \geq 0, \end{aligned}$$

where the multi-function \(\mathfrak{U}: \mathfrak{X}_{\star }\to \mathbb{P}(\mathfrak{X}_{\star })\) is specified by (13);

\((\mathcal{T}_{6})\):

For every \(\mathfrak{u} \in \mathfrak{X}_{\star }\) and \(\nu \in \mathfrak{U}(\mathfrak{u})\) with

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}( \varsigma ) \bigr), \\ &\quad\bigl(\nu (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \nu (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1}\nu ( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2}\nu ( \varsigma ) \bigr) \bigr) \geq 0, \end{aligned}$$

a member \(\mathfrak{r} \in \mathfrak{U}(\mathfrak{u})\) exists such that the Ω-inequality

$$\begin{aligned} &\Omega \bigl( \bigl(\nu (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \nu (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1}\nu ( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2}\nu ( \varsigma ) \bigr), \\ &\quad\bigl(\mathfrak{r} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}(\varsigma ) \bigr) \bigr) \geq 0, \end{aligned}$$

holds for all \(\varsigma \in \mathbb{S}\).

Then the fractional cantilever beam inclusion q-BvP (2) possesses a solution on \(\mathbb{S}\).

Proof

Evidently, the fixed point of the multi-function \(\mathfrak{U}: \mathfrak{X}_{\star }\to \mathbb{P}(\mathfrak{X}_{\star })\) given by (13) is identified as the solution for the cantilever beam inclusion q-FBvP (2), so we try to check the assumptions of Theorem 6 on this multi-valued operator. Since the compact-valued set-valued map \(\varsigma \mapsto \Phi (\varsigma, \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1}\mathfrak{u}(\varsigma ),{}^{C} \mathfrak{D}_{q}^{\omega +2}\mathfrak{u}(\varsigma ) )\) is measurable as well as closed-valued for any \(\mathfrak{u} \in \mathfrak{X}_{\star }\), so the map Φ has a measurable selection and \((\mathbb{SEL})_{\Phi, \mathfrak{u}} \neq \emptyset \). At first, we verify that the subset \(\mathfrak{U}(\mathfrak{u})\) of \(\mathfrak{X}_{\star }\) is closed \(\forall \mathfrak{u} \in \mathfrak{X}_{\star }\). For this purpose, consider a sequence \(\{ \mathfrak{u}_{n} \}_{n \geq 1}\) in \(\mathfrak{U}(\mathfrak{u})\) via \(\mathfrak{u}_{n} \to \mathfrak{u}\). Now, for each \(n \geq 1\), we have a member \(\acute{\varphi }_{n} \in (\mathbb{SEL})_{\Phi, \mathfrak{u}}\) satisfying

$$\begin{aligned} \mathfrak{u } (\varsigma ) ={}& \frac{1}{\Gamma _{q}(\kappa + \omega )} \int _{0}^{\varsigma } (\varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }_{n}(z)\, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }_{n}(z) \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }_{n}(z) \mathrm{d}_{q} z \end{aligned}$$

for almost all \(\varsigma \in \mathbb{S}\). Since Φ admits compact values, we take a subsequence of \(\{\acute{\varphi }_{n} \}_{n \geq 1}\) (following the same symbol) that tends to some \(\acute{\varphi } \in \mathcal{L}^{1} (\mathbb{S})\). Thus, \(\acute{\varphi } \in (\mathbb{SEL})_{\Phi, \mathfrak{u}}\) and

$$\begin{aligned} \mathfrak{u}_{n}(\varsigma ) \to \mathfrak{u}(\varsigma ) ={}& \frac{1}{\Gamma _{q}(\kappa + \omega )} \int _{0}^{\varsigma } ( \varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }(z)\, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }(z) \, \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }(z) \, \mathrm{d}_{q} z \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). This leads to the conclusion that \(\mathfrak{u} \in \mathfrak{U}(\mathfrak{u})\) and the multi-function \(\mathfrak{U}\) is closed-valued. Since Φ is compact-valued, it is easy to ensure the boundedness of \(\mathfrak{U}(\mathfrak{u})\) for every \(\mathfrak{u} \in \mathfrak{X}_{\star }\). Next, we prove that \(\mathfrak{U}\) is an α-ψ-contractive multi-function. In view of this intention, we take a function α on \(\mathfrak{X}_{\star }\times \mathfrak{X}_{\star }\) with nonnegative values which is defined by \(\alpha (\mathfrak{u}, \bar{\mathfrak{u}})= 1\) if

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega } \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}( \varsigma ) \bigr),\\ &\quad \bigl(\bar{\mathfrak{u}}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega }\bar{\mathfrak{u}}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1}\bar{\mathfrak{u}}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2}\bar{ \mathfrak{u}}(\varsigma ) \bigr) \bigr) \geq 0, \end{aligned}$$

and otherwise, it is defined to be zero for all \(\mathfrak{u}, \bar{\mathfrak{u}} \in \mathfrak{X}_{\star }\). Suppose \(\mathfrak{u}, \bar{\mathfrak{u}} \in \mathfrak{X}_{\star }\) and \(\nu _{1} \in \mathfrak{U}(\bar{\mathfrak{u}})\) and select \(\acute{\varphi }_{1} \in (\mathbb{SEL})_{\Phi, \bar{\mathfrak{u}}}\) such that

$$\begin{aligned} \nu _{1}(\varsigma ) ={}& \frac{1}{\Gamma _{q}(\kappa + \omega )} \int _{0}^{ \varsigma } (\varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }_{1}(z) \, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }_{1}(z) \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }_{1}(z) \mathrm{d}_{q} z \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). Utilizing (16), we get

$$\begin{aligned} &\mathbb{H}_{d} \bigl( \Phi \bigl(\varsigma, \mathfrak{u}, {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}, {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}, {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u} \bigr), \Phi \bigl(\varsigma, \bar{\mathfrak{u}}, {}^{C} \mathfrak{D}_{q}^{\omega } \bar{\mathfrak{u}}, {}^{C}\mathfrak{D}_{q}^{ \omega +1} \bar{\mathfrak{u}}, {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}} \bigr) \bigr) \\ &\quad \leq \mathfrak{p}(\varsigma ) \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \vert \mathfrak{u} - \bar{\mathfrak{u}} \vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u} - {}^{C} \mathfrak{D}_{q}^{ \omega }\bar{\mathfrak{u}} \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u} - {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}} \bigr\vert \\ &\qquad{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u} - {}^{C} \mathfrak{D}_{q}^{\omega +2}\bar{ \mathfrak{u}} \bigr\vert \bigr) \end{aligned}$$

for all \(\mathfrak{u}, \bar{\mathfrak{u}} \in \mathfrak{X}_{\star }\) with

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}( \varsigma ) \bigr), \\ &\quad\bigl(\bar{\mathfrak{u}} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}}(\varsigma ) \bigr) \bigr) \geq 0 \end{aligned}$$

for almost all \(\varsigma \in \mathbb{S}\). Thus, a member

$$\begin{aligned} \mathfrak{r} \in \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \end{aligned}$$

exists such that

$$\begin{aligned} \bigl\vert \acute{\varphi }_{1}(\varsigma ) - \mathfrak{r} \bigr\vert \leq{}& \mathfrak{p}(\varsigma ) \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \bar{\mathfrak{u}}(\varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega } \bar{\mathfrak{u}}( \varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}}( \varsigma ) \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}}( \varsigma ) \bigr\vert \bigr). \end{aligned}$$

Now, consider a map \(\aleph: \mathbb{S} \to \mathbb{P}(\mathfrak{X}_{\star })\) which is characterized by

$$\begin{aligned} \aleph (\varsigma ) = {}&\biggl\{ \mathfrak{r} \in \mathfrak{X}_{\star }: \bigl\vert \acute{\varphi }_{1}(\varsigma ) - \mathfrak{r} \bigr\vert \leq \mathfrak{p}(\varsigma ) \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \bar{\mathfrak{u}}(\varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega } \bar{\mathfrak{u}}( \varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}}( \varsigma ) \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}}( \varsigma ) \bigr\vert \bigr) \biggr\} \end{aligned}$$

for any \(\varsigma \in \mathbb{S}\). Since \(\acute{\varphi }_{1}\) and

$$\begin{aligned} \eth = \mathfrak{p} \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \vert \mathfrak{u} - \bar{\mathfrak{u}} \vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u} - {}^{C} \mathfrak{D}_{q}^{ \omega } \bar{\mathfrak{u}} \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u} - {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}} \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{ \omega +2} \mathfrak{u} - {}^{C}\mathfrak{D}_{q}^{\omega +2 } \bar{ \mathfrak{u}} \bigr\vert \bigr) \end{aligned}$$

are measurable, so the multi-map \(\aleph (\cdot )\cap \Phi (\cdot, \mathfrak{u}(\cdot ), {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}(\cdot ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}(\cdot ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\cdot ) )\) is also measurable. Now, choose

$$\begin{aligned} \acute{\varphi }_{2} \in \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \end{aligned}$$

so that, for all \(\varsigma \in \mathbb{S}\), we have

$$\begin{aligned} \bigl\vert \acute{\varphi }_{1}(\varsigma ) - \acute{\varphi }_{2}( \varsigma ) \bigr\vert \leq{}& \mathfrak{p}(\varsigma ) \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \bar{\mathfrak{u}}(\varsigma ) \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega }\bar{\mathfrak{u}}( \varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}}( \varsigma ) \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}}( \varsigma ) \bigr\vert \bigr). \end{aligned}$$

Consider \(\nu _{2} \in \mathfrak{U}(\mathfrak{u})\) given by

$$\begin{aligned} \nu _{2}(\varsigma ) ={}& \frac{1}{\Gamma _{q}(\kappa +\omega )} \int _{0}^{ \varsigma } (\varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }_{2}(z) \, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }_{2}(z) \mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }_{2}(z) \mathrm{d}_{q} z \end{aligned}$$

for any \(\varsigma \in \mathbb{S}\). Then we obtain the following inequalities:

$$\begin{aligned} \bigl\vert \nu _{1}(\varsigma ) - \nu _{2}(\varsigma ) \bigr\vert \leq{}& \frac{1}{\Gamma _{q}(\kappa + \omega )} \int _{0}^{\varsigma } ( \varsigma - q z)^{(\kappa +\omega -1)} \bigl\vert \acute{\varphi }_{1}(z) - \acute{\varphi }_{2}(z) \bigr\vert \, \mathrm{d}_{q} z \\ &{}+ \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)} \bigl\vert \acute{\varphi }_{1}(z) - \acute{\varphi }_{2}(z) \bigr\vert \, \mathrm{d}_{q} z \\ &{}+ \frac{ \vert [\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} \vert }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \bigl\vert \acute{\varphi }_{1}(z) - \acute{\varphi }_{2}(z) \bigr\vert \, \mathrm{d}_{q} z \\ \leq {}&\frac{1}{\Gamma _{q}(\kappa + \omega +1)} \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \\ &{}+ \frac{1}{\Gamma _{q}(\omega +2) \Gamma _{q}(\kappa )} \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \\ &{}+ \frac{[\omega +2]_{q} +1}{\Gamma _{q}(\omega +3) \Gamma _{q}(\kappa -1)} \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \\ ={}& \biggl[ \frac{1}{\Gamma _{q}(\kappa + \omega +1)} + \frac{1}{\Gamma _{q}(\omega +2) \Gamma _{q}(\kappa )}+ \frac{[\omega +2]_{q} +1}{\Gamma _{q}(\omega +3) \Gamma _{q}(\kappa -1)} \biggr] \\ &{}\times \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \\ ={}& \varrho ^{\star } \check{\Upsilon }_{1} \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr). \end{aligned}$$

Also, we have

$$\begin{aligned} & \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \nu _{1}(\varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega } \nu _{2}(\varsigma ) \bigr\vert \\ &\quad\leq \biggl[ \frac{1}{\Gamma _{q} (\kappa +1)} + \frac{1}{\Gamma _{q} (\kappa )} + \frac{2+q}{(1+q)\Gamma _{q} (\kappa -1)} \biggr] \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \\ &\quad= \varrho ^{\star } \check{\Upsilon }_{2} \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr), \\ & \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \nu _{1}(\varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega +1} \nu _{2}(\varsigma ) \bigr\vert \\ & \quad\leq \biggl[ \frac{2}{\Gamma _{q} (\kappa )} + \frac{2}{\Gamma _{q} (\kappa -1)} \biggr] \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) = \varrho ^{ \star } \check{ \Upsilon }_{3} \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr), \end{aligned}$$

and

$$\begin{aligned} \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +2} \nu _{1}(\varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega +2} \nu _{2}(\varsigma ) \bigr\vert \leq \biggl[ \frac{2}{\Gamma _{q} (\kappa -1)} \biggr] \Vert \mathfrak{p} \Vert \biggl( \frac{\varrho ^{\star }}{ \Vert \mathfrak{p} \Vert } \biggr) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) = \varrho ^{\star } \check{\Upsilon }_{4} \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). Hence

$$\begin{aligned} & \Vert \nu _{1} - \nu _{2} \Vert \\ &\quad= \sup_{\varsigma \in \mathbb{S}} \bigl\vert \nu _{1}(\varsigma ) - \nu _{2}( \varsigma ) \bigr\vert + \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega } \nu _{1}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{ \omega } \nu _{2} (\varsigma ) \bigr\vert \\ &\qquad{}+ \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C} \mathfrak{D}_{q}^{ \omega +1} \nu _{1}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \nu _{2} ( \varsigma ) \bigr\vert + \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +2} \nu _{1}( \varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega +2} \nu _{2} (\varsigma ) \bigr\vert \\ &\quad\leq \varrho ^{\star } (\check{\Upsilon }_{1} + \check{ \Upsilon }_{2} + \check{\Upsilon }_{3} + \check{\Upsilon }_{4}) \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) = \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr). \end{aligned}$$

Thus,

$$\begin{aligned} \alpha (\mathfrak{u}, \bar{\mathfrak{u}}) \mathbb{H}_{d} \bigl( \mathfrak{U} (\mathfrak{u}) - \mathfrak{U}(\bar{\mathfrak{u}}) \bigr) \leq \psi \bigl( \Vert \mathfrak{u} - \bar{\mathfrak{u}} \Vert \bigr) \end{aligned}$$

for any \(\mathfrak{u}, \bar{\mathfrak{u}} \in \mathfrak{X}_{\star }\) which indicates that \(\mathfrak{U}\) is an α-ψ-contractive multi-function. Now, suppose that \(\mathfrak{u} \in \mathfrak{X}_{\star }\) and \(\bar{\mathfrak{u}} \in \mathfrak{U} (\mathfrak{u})\) satisfy \(\alpha (\mathfrak{u}, \bar{\mathfrak{u}}) \geq 1\), and so

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}( \varsigma ) \bigr), \\ &\quad\bigl(\bar{\mathfrak{u}} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}}(\varsigma ) \bigr) \bigr) \geq 0. \end{aligned}$$

Then, from the hypothesis, a member \(\mathfrak{r} \in \mathfrak{U}(\bar{\mathfrak{u}})\) exists such that

$$\begin{aligned} &\Omega \bigl( \bigl(\bar{\mathfrak{u}} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\bar{\mathfrak{u}}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +2}\bar{ \mathfrak{u}}(\varsigma ) \bigr), \\ &\quad\bigl( \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}(\varsigma ) \bigr) \bigr) \geq 0. \end{aligned}$$

It implies that \(\alpha (\bar{\mathfrak{u}}, \mathfrak{r}) \geq 1\), and so we deduce that \(\mathfrak{U}\) is α-admissible. Now, take \(\mathfrak{u}_{0} \in \mathfrak{X}_{\star }\) and \(\bar{\mathfrak{u}} \in \mathfrak{U}(\mathfrak{u}_{0})\) so that

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u}_{0} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}_{0}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}_{0}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}_{0}(\varsigma ) \bigr), \\ &\quad\bigl(\bar{\mathfrak{u}} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \bar{\mathfrak{u}}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \bar{\mathfrak{u}}(\varsigma ) \bigr) \bigr) \geq 0 \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). Then it follows that \(\alpha (\mathfrak{u}_{0}, \bar{\mathfrak{u}}) \geq 1\). Let us assume that \(\{ \mathfrak{u}_{n} \}_{n \geq 1}\) is a sequence in \(\mathfrak{X}_{\star }\) such that \(\mathfrak{u}_{n} \to \mathfrak{u}\) and \(\alpha (\mathfrak{u}_{n}, \mathfrak{u}_{n+1}) \geq 1\) for all n. Then we obtain

$$\begin{aligned} &\Omega \bigl( \bigl(\mathfrak{u}_{n} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}_{n}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}_{n}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}_{n}(\varsigma ) \bigr), \\ & \quad\bigl(\mathfrak{u}_{n+1} (\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega }\mathfrak{u}_{n+1}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}_{n+1}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +2} \mathfrak{u}_{n+1}(\varsigma ) \bigr) \bigr) \geq 0. \end{aligned}$$

Utilization of the assumption \((\mathcal{T}_{4})\) leads to the existence of a subsequence \(\{ \mathfrak{u}_{n_{t}} \}_{t\geq 1}\) of \(\{ \mathfrak{u}_{n} \}\) such that

$$\begin{aligned} & \Omega \bigl( \bigl(\mathfrak{u}_{n_{t}} (\varsigma ),{}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}_{n_{t}}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1}\mathfrak{u}_{n_{t}}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}_{n_{t}}(\varsigma ) \bigr), \\ &\quad \bigl(\mathfrak{u} (\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \bigr) \geq 0 \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). This directly implies that \(\alpha (\mathfrak{u}_{n_{t}}, \mathfrak{u}) \geq 1\) for all t. Hence, Theorem 6 is settled and the multi-function \(\mathfrak{U}\) possesses a fixed point which is regarded as a solution for the fractional cantilever beam inclusion q-BvP (2). □

Now, we utilize the notion of end points for other subclass of multi-functions to achieve the desired aim.

Theorem 10

Consider \(\Phi:\mathbb{S} \times \mathfrak{X}_{\star }^{4} \to \mathbb{P}_{ \mathbb{CP}}(\mathfrak{X}_{\star })\) and assume:

\((\mathcal{T}_{7})\):

\(\exists \psi: [0, \infty ) \to [0, \infty )\) as an increasing and u.s.c. function with \(\liminf_{\varsigma \to \infty } (\varsigma - \psi (\varsigma )) \geq 0\) and \(\psi (\varsigma ) < \varsigma, \forall \varsigma >0\);

\((\mathcal{T}_{8})\):

the multi-function \(\Phi:\mathbb{S} \times \mathfrak{X}_{\star }^{4} \to \mathbb{P}_{ \mathbb{CP}}(\mathfrak{X}_{\star })\) is bounded and integrable such that the map \(\Phi ( \cdot, \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}, \mathfrak{u}_{4} ):\mathbb{S} \to \mathbb{P}_{\mathbb{CP}}( \mathfrak{X}_{\star })\) is measurable for all \(\mathfrak{u}_{m} \in \mathfrak{X}_{\star } \ (m=1,2,3,4)\);

\((\mathcal{T}_{9})\):

\(\exists \mathfrak{p} \in \mathcal{C}(\mathbb{S}, [0, \infty ))\) satisfying

$$\begin{aligned} &\mathbb{H}_{d} \bigl(\Phi (\varsigma, \mathfrak{u}_{1}, \mathfrak{u}_{2}, \mathfrak{u}_{3}, \mathfrak{u}_{4} ), \Phi (\varsigma, \bar{\mathfrak{u}}_{1}, \bar{\mathfrak{u}}_{2}, \bar{\mathfrak{u}}_{3}, \bar{ \mathfrak{u}}_{4} ) \bigr) \\ &\quad \leq \mathfrak{p}(\varsigma ) \varrho _{ \star } \psi \bigl( \vert \mathfrak{u}_{1}-\bar{ \mathfrak{u}}_{1} \vert + \vert \mathfrak{u}_{2}-\bar{ \mathfrak{u}}_{2} \vert + \vert \mathfrak{u}_{3}-\bar{ \mathfrak{u}}_{3} \vert + \vert \mathfrak{u}_{4}- \bar{ \mathfrak{u}}_{4} \vert \bigr) \end{aligned}$$
(17)

for all \(\varsigma \in \mathbb{S}\) and \(\mathfrak{u}_{m}, \bar{\mathfrak{u}}_{m} \in \mathfrak{X}_{\star }\ (m=1,2,3,4)\), where \(\varrho _{\star }= \frac{1}{\overline{\Pi }_{1} + \overline{\Pi }_{2}+ \overline{\Pi }_{3} + \overline{\Pi }_{4}}\) and \(\overline{\Pi }_{m} \ (m=1,2,3,4)\) are the constants defined by (15);

\((\mathcal{T}_{10})\):

\(\mathfrak{U}\), given by (13), has the AEP-property.

Then the fractional cantilever beam inclusion q-BvP (2) admits a solution.

Proof

To fulfill Theorem 7, we have to prove that the multi-map \(\mathfrak{U}: \mathfrak{X}_{\star }\to \mathbb{P}(\mathfrak{X}_{\star })\), given by (13) has an end point. At first, since

$$\begin{aligned} \varsigma \mapsto \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \end{aligned}$$

is a closed-valued as well as measurable map, so Φ has a measurable selection and \((\mathbb{SEL})_{\Phi, \mathfrak{u}}\neq \emptyset \) for each \(\mathfrak{u} \in \mathfrak{X}_{\star }\). Using the same method as given in Theorem 9, one can deduce that \(\mathfrak{U}(\mathfrak{u})\) has closed values. Since the multi-function Φ is compact, so \(\mathfrak{U}(\mathfrak{u})\) is bounded for any \(\mathfrak{u} \in \mathfrak{X}_{\star }\). This time, we only try to show that \(\mathbb{H}_{d} (\mathfrak{U}(\mathfrak{u}), \mathfrak{U}( \mathfrak{r}) ) \leq \psi ( \Vert \mathfrak{u} - \mathfrak{r} \Vert )\). Let us assume that \(\mathfrak{u}, \mathfrak{r} \in \mathfrak{X}_{\star }\) and \(\nu _{1} \in \mathfrak{U}(\mathfrak{r})\). Select \(\acute{\varphi }_{1} \in (\mathbb{SEL})_{\Phi, \mathfrak{r}}\) such that

$$\begin{aligned} \nu _{1}(\varsigma ) ={}& \frac{1}{\Gamma _{q}(\kappa + \omega )} \int _{0}^{ \varsigma } (\varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }_{1}(z) \, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }_{1}(z) \,\mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }_{1}(z) \,\mathrm{d}_{q} z \end{aligned}$$

for almost all \(\varsigma \in \mathbb{S}\). Since, for any \(\varsigma \in \mathbb{S}\), we have

$$\begin{aligned} & \mathbb{H}_{d} \bigl( \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr), \\ & \Phi \bigl(\varsigma, \mathfrak{r}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{ \omega } \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}( \varsigma ) \bigr) \bigr) \\ &\quad\leq \mathfrak{p}(\varsigma ) \varrho _{\star } \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \mathfrak{r}(\varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}(\varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{r}( \varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}(\varsigma ) \bigr\vert \\ &\qquad{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}( \varsigma ) \bigr\vert \bigr), \end{aligned}$$

there exists a member

$$\begin{aligned} \grave{\lambda } \in \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}( \varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \end{aligned}$$

such that

$$\begin{aligned} \bigl\vert \acute{\varphi }_{1}(\varsigma ) - \grave{\lambda } \bigr\vert \leq {}&\mathfrak{p}(\varsigma ) \varrho _{\star } \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \mathfrak{r}(\varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{r}(\varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}( \varsigma ) \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}(\varsigma ) \bigr\vert \bigr) \end{aligned}$$

for any \(\varsigma \in \mathbb{S}\). Now, the map \(\Xi: \mathbb{S} \to \mathbb{P}(\mathfrak{X}_{\star })\) is considered which is given by the following way:

$$\begin{aligned} \Xi (\varsigma ) ={}& \bigl\{ \grave{\lambda } \in \mathfrak{X}_{\star }: \bigl\vert \acute{\varphi }_{1}(\varsigma ) - \grave{\lambda } \bigr\vert \leq \mathfrak{p}(\varsigma ) \varrho _{\star } \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \mathfrak{r}(\varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}( \varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{r}(\varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}( \varsigma ) \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}(\varsigma ) \bigr\vert \bigr) \bigr\} . \end{aligned}$$

The multi-function \(\Xi (\cdot )\cap \Phi (\cdot, \mathfrak{u}(\cdot ), {}^{C} \mathfrak{D}_{q}^{\omega }\mathfrak{u}(\cdot ), {}^{C}\mathfrak{D}_{q}^{ \omega +1}\mathfrak{u}(\cdot ), {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\cdot ) )\) is measurable because \(\acute{\varphi }_{1}\) and

$$\begin{aligned} \Bbbk = \mathfrak{p} \varrho _{\star } \psi \bigl( \vert \mathfrak{u} - \mathfrak{r} \vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u} - {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{r} \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u} - {}^{C} \mathfrak{D}_{q}^{\omega +1} \mathfrak{r} \bigr\vert + \bigl\vert {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u} - {}^{C}\mathfrak{D}_{q}^{ \omega +2} \mathfrak{r} \bigr\vert \bigr) \end{aligned}$$

are measurable. Now, a member

$$\begin{aligned} \acute{\varphi }_{2} \in \Phi \bigl(\varsigma, \mathfrak{u}(\varsigma ), {}^{C}\mathfrak{D}_{q}^{\omega }\mathfrak{u}( \varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +1} \mathfrak{u}(\varsigma ), {}^{C} \mathfrak{D}_{q}^{\omega +2} \mathfrak{u}(\varsigma ) \bigr) \end{aligned}$$

is selected such that

$$\begin{aligned} \bigl\vert \acute{\varphi }_{1}(\varsigma ) - \acute{\varphi }_{2}( \varsigma ) \bigr\vert \leq{}& \mathfrak{p}(\varsigma ) \psi \bigl( \bigl\vert \mathfrak{u}(\varsigma ) - \mathfrak{r}(\varsigma ) \bigr\vert + \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \mathfrak{u}(\varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega } \mathfrak{r}(\varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \mathfrak{r}( \varsigma ) \bigr\vert \\ &{}+ \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{u}( \varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +2} \mathfrak{r}( \varsigma ) \bigr\vert \bigr) \biggl[ \frac{1}{\overline{\Pi }_{1} + \overline{\Pi }_{2} + \overline{\Pi }_{3} + \overline{\Pi }_{4}} \biggr] \end{aligned}$$

for all \(\varsigma \in \mathbb{S}\). Choose \(\nu _{2} \in \mathfrak{U}(\mathfrak{u})\) such that, for all \(\varsigma \in \mathbb{S}\),

$$\begin{aligned} \nu _{2}(\varsigma ) ={}& \frac{1}{\Gamma _{q}(\kappa + \omega )} \int _{0}^{ \varsigma } (\varsigma - q z)^{(\kappa +\omega -1)} \acute{\varphi }_{2}(z) \, \mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{\omega +1}}{\Gamma _{q} (\omega +2)\Gamma _{q} (\kappa -1 )} \int _{0}^{1} (1-q z)^{(\kappa - 2)}\acute{\varphi }_{2}(z) \,\mathrm{d}_{q} z \\ &{}+ \frac{[\omega +2]_{q} \varsigma ^{\omega + 1} - \varsigma ^{\omega +2} }{ \Gamma _{q}(\omega + 3) \Gamma _{q}(\kappa - 2)} \int _{0}^{1} (1-q z)^{(\kappa -3 )} \acute{\varphi }_{2}(z) \,\mathrm{d}_{q} z. \end{aligned}$$

By employing the same methodology used in the proof of Theorem 9, we reach

$$\begin{aligned} \Vert \nu _{1} - \nu _{2} \Vert ={}& \sup _{\varsigma \in \mathbb{S}} \bigl\vert \nu _{1}(\varsigma ) - \nu _{2}(\varsigma ) \bigr\vert + \sup_{ \varsigma \in \mathbb{S}} \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega } \nu _{1}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega } \nu _{2}( \varsigma ) \bigr\vert \\ &{}+ \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C} \mathfrak{D}_{q}^{ \omega +1}\nu _{1}(\varsigma ) - {}^{C}\mathfrak{D}_{q}^{\omega +1} \nu _{2}( \varsigma ) \bigr\vert + \sup_{\varsigma \in \mathbb{S}} \bigl\vert {}^{C}\mathfrak{D}_{q}^{\omega +2}\nu _{1}( \varsigma ) - {}^{C} \mathfrak{D}_{q}^{\omega +2}\nu _{2}(\varsigma ) \bigr\vert \\ \leq {}&\varrho _{\star } (\overline{\Pi }_{1} + \overline{\Pi }_{2}+ \overline{\Pi }_{3} + \overline{\Pi }_{4}) \psi \bigl( \Vert \mathfrak{u} - \mathfrak{r} \Vert \bigr) = \psi \bigl( \Vert \mathfrak{u} - \mathfrak{r} \Vert \bigr). \end{aligned}$$

Accordingly, we have \(\mathbb{H}_{d} ( \mathfrak{U} (\mathfrak{u}), \mathfrak{U}( \mathfrak{r}) ) \leq \psi ( \Vert \mathfrak{u} - \mathfrak{r} \Vert )\) for any \(\mathfrak{u}, \mathfrak{r} \in \mathfrak{X}_{\star }\). From assumption \((\mathcal{T}_{10})\) implying the existence of the AEP-property for the multi-function \(\mathfrak{U}\), the application of Theorem 7 leads to the existence of \(\mathfrak{u}^{*} \in \mathfrak{X}_{\star }\) satisfying \(\mathfrak{U}(\mathfrak{u}^{*})= \{ \mathfrak{u}^{*} \}\). This indicates that \(\mathfrak{u}^{*}\) is a solution for the cantilever beam inclusion q-FBvP (2). □

4 An example

Based on the fractional cantilever beam inclusion q-BvP (2), we here present some examples in this framework to confirm the validity of the results.

Example 1

Consider the cantilever beam inclusion q-FBvP

$$\begin{aligned} \textstyle\begin{cases} {}^{C}\mathfrak{D}_{0.7}^{2.8} ( {}^{C}\mathfrak{D}_{0.7}^{0.9} \mathfrak{u} ) (\varsigma ) \\ \quad\in [ 0, \frac{ \varsigma \vert \arcsin (\mathfrak{u} (\varsigma ) ) \vert + \varsigma \vert {}^{C}\mathfrak{D}_{0.7}^{0.9} \mathfrak{u}(\varsigma ) \vert + \varsigma ^{2} \vert \sin ( {}^{C}\mathfrak{D}_{0.7}^{1.9} \mathfrak{u}(\varsigma ) ) \vert + \varsigma ^{3} \vert \arctan ( {}^{C}\mathfrak{D}_{0.7}^{2.9} \mathfrak{u}(\varsigma ) ) \vert }{77 } + 12e^{\varsigma } ], \\ \mathfrak{u } (\varsigma )|_{\varsigma =0} = {}^{C}\mathfrak{D}_{q}^{0.9 }\mathfrak{u }(\varsigma )|_{\varsigma =0} = {}^{C}\mathfrak{D}_{q}^{1.9 }\mathfrak{u }(\varsigma )|_{\varsigma =1} = {}^{C}\mathfrak{D}_{q}^{2.9 } \mathfrak{u }(\varsigma )|_{\varsigma =1} = 0, \end{cases}\displaystyle \end{aligned}$$
(18)

where \(\varsigma \in \mathbb{S} = [0,1]\), and we have selected \(q=0.7, \kappa = 2.8, \omega = 0.9\). Now, consider the multi-valued map \(\Phi: \mathbb{S} \times \mathbb{R}^{4} \to \mathbb{P}(\mathbb{R})\) which is determined by

$$\begin{aligned} & \Phi \bigl( \varsigma, \mathfrak{u}_{1}(\varsigma ), \mathfrak{u}_{2}( \varsigma ), \mathfrak{u}_{3}(\varsigma ), \mathfrak{u}_{4}( \varsigma ) \bigr) \\ &\quad= \biggl[ 0, \frac{ \varsigma \vert \arcsin (\mathfrak{u}_{1} (\varsigma )) \vert + \varsigma \vert \mathfrak{u}_{2}(\varsigma ) \vert + \varsigma ^{2} \vert \sin ( \mathfrak{u}_{3}(\varsigma )) \vert + \varsigma ^{3} \vert \arctan ( \mathfrak{u}_{4}(\varsigma ) ) \vert }{77} + 12e^{\varsigma } \biggr] \end{aligned}$$

for any \(\varsigma \in \mathbb{S}\). Next, consider the function \(\mathfrak{p} \in \mathcal{C}(\mathbb{S}, [0, \infty ))\) given by \(\mathfrak{p}(\varsigma ) = \frac{\varsigma }{11}\) for all \(\varsigma \in \mathbb{S}\). Then \(\Vert \mathfrak{p} \Vert = \sup_{\varsigma \in \mathbb{S}} \vert \frac{\varsigma }{11} \vert = \frac{1}{11}\). Moreover, we choose \(\psi: [0, \infty ) \to [0, \infty )\) as an increasing u.s.c map given by \(\psi (\varsigma ) = \frac{\varsigma }{7}\) for almost all \(\varsigma >0\). It can be easily seen that \(\liminf_{\varsigma \to \infty } (\varsigma - \psi (\varsigma )) >0\) and \(\psi (\varsigma ) < \varsigma \) for all \(\varsigma >0\). In the light of preceding data, (14) and (15), we obtain

$$\begin{aligned} \check{\Upsilon }_{1} ={}& \frac{1}{\Gamma _{0.7}(2.8 +0.9+1)} + \frac{1}{\Gamma _{0.7}(0.9+2) \Gamma _{0.7}(2.8)} \\ &{}+\frac{[0.9+2]_{0.7} +1}{\Gamma _{0.7}(0.9+3) \Gamma _{0.7}(2.8 -1)} \simeq 1.54029, \\ \check{\Upsilon }_{2} ={}& \frac{1}{\Gamma _{0.7}(2.8 +1)} + \frac{1}{\Gamma _{0.7}(2.8)} + \frac{2 + 0.7}{(1+ 0.7) \Gamma _{0.7}(2.8 -1)} \simeq 2.67215, \\ \check{\Upsilon }_{3} ={}& \frac{2}{\Gamma _{0.7}(2.8)} + \frac{2}{\Gamma _{0.7}(2.8 -1)} \simeq 3.46062, \\ \check{\Upsilon }_{4} ={}& \frac{2}{\Gamma _{0.7}(2.8-1)} \simeq 2.11890, \end{aligned}$$

and

$$\begin{aligned} \overline{\Pi }_{1} \simeq 0.14003,\qquad \overline{\Pi }_{2} = 0.24292, \qquad\overline{\Pi }_{3} = 0.31460,\qquad \overline{\Pi }_{4} = 0.19263. \end{aligned}$$

For each \(\mathfrak{u}_{m}, \bar{\mathfrak{u}}_{m} \in \mathbb{R} \ (m=1,2,3,4)\), we have

$$\begin{aligned} & \mathbb{H}_{d} \bigl( \Phi \bigl(\varsigma, \mathfrak{u}_{1}( \varsigma ), \mathfrak{u}_{2}(\varsigma ), \mathfrak{u}_{3}( \varsigma ), \mathfrak{u}_{4}(\varsigma ) \bigr), \Phi \bigl(\varsigma, \bar{\mathfrak{u}}_{1}(\varsigma ), \bar{\mathfrak{u}}_{2}( \varsigma ), \bar{\mathfrak{u}}_{3}(\varsigma ), \bar{ \mathfrak{u}}_{4}(\varsigma ) \bigr) \bigr) \\ &\quad\leq \frac{\varsigma }{11}.\frac{1}{7} \bigl( \bigl\vert \arcsin \bigl( \mathfrak{u}_{1}( \varsigma ) \bigr)- \arcsin \bigl(\bar{ \mathfrak{u}}_{1} (\varsigma )\bigr) \bigr\vert + \bigl\vert \mathfrak{u}_{2}(\varsigma ) - \bar{\mathfrak{u}}_{2}( \varsigma ) \bigr\vert \\ &\qquad{}+ \bigl\vert \sin \bigl( \mathfrak{u}_{3}(\varsigma )\bigr) - \sin \bigl( \bar{\mathfrak{u}}_{3} (\varsigma )\bigr) \bigr\vert + \bigl\vert \arctan \bigl( \mathfrak{u}_{4}(\varsigma )\bigr) - \arctan \bigl(\bar{\mathfrak{u}}_{4} ( \varsigma )\bigr) \bigr\vert \bigr) \\ &\quad\leq \frac{\varsigma }{11}.\frac{1}{7} \bigl( \bigl\vert \mathfrak{u}_{1}( \varsigma ) - \bar{\mathfrak{u}}_{1} ( \varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{2}(\varsigma ) - \bar{\mathfrak{u}}_{2}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{3}(\varsigma ) - \bar{\mathfrak{u}}_{3} ( \varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{4}(\varsigma ) - \bar{\mathfrak{u}}_{4} (\varsigma ) \bigr\vert \bigr) \\ &\quad= \frac{\varsigma }{11} \psi \bigl( \bigl\vert \mathfrak{u}_{1}( \varsigma )- \bar{\mathfrak{u}}_{1}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{2}( \varsigma ) - \bar{\mathfrak{u}}_{2}( \varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{3}(\varsigma ) - \bar{\mathfrak{u}}_{3}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{4}(\varsigma ) - \bar{\mathfrak{u}}_{4}( \varsigma ) \bigr\vert \bigr) \\ &\quad\leq \mathfrak{p}(\varsigma ) \psi \bigl( \bigl\vert \mathfrak{u}_{1}( \varsigma )- \bar{\mathfrak{u}}_{1}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{2}(\varsigma ) - \bar{\mathfrak{u}}_{2}( \varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{3}(\varsigma ) - \bar{\mathfrak{u}}_{3}( \varsigma ) \bigr\vert + \bigl\vert \mathfrak{u}_{4}(\varsigma ) - \bar{\mathfrak{u}}_{4}( \varsigma ) \bigr\vert \bigr) \\ &\qquad{}\times \biggl[ \frac{1}{\overline{\Pi }_{1} + \overline{\Pi }_{2} + \overline{\Pi }_{3} + \overline{\Pi }_{4}} \biggr]. \end{aligned}$$

Now, define the multi-function \(\mathfrak{U}: \mathfrak{X}_{\star }\to \mathbb{P}(\mathfrak{X}_{\star })\) by

$$\begin{aligned} \mathfrak{U}(\mathfrak{u}) = \bigl\{ \nu \in \mathfrak{X}_{\star }: \exists \acute{\varphi } \in (\mathbb{SEL})_{\Phi, \mathfrak{u}} \text{ s.t. } \nu (\varsigma ) = \mathfrak{r}(\varsigma ), \forall \varsigma \in \mathbb{S} \bigr\} , \end{aligned}$$

where

$$\begin{aligned} \mathfrak{r}(\varsigma ) ={}& \frac{1}{\Gamma _{q}(2.8+ 0.9)} \int _{0}^{ \varsigma } (\varsigma - q z)^{(2.8+0.9-1)} \acute{\varphi }(z) \,\mathrm{d}_{q} z \\ &{}- \frac{\varsigma ^{0.9+1}}{\Gamma _{q} (0.9+2)\Gamma _{q} (2.8 -1 )} \int _{0}^{1} (1-q z)^{(2.8 - 2)}\acute{\varphi }(z) \, \mathrm{d}_{q} z \\ &{}+ \frac{[0.9+2]_{q} \varsigma ^{0.9 + 1} - \varsigma ^{0.9+2} }{ \Gamma _{q}(0.9 + 3) \Gamma _{q}(2.8 - 2)} \int _{0}^{1} (1-q z)^{(2.8 -3 )} \acute{\varphi }(z) \, \mathrm{d}_{q} z \\ ={}& \frac{1}{\Gamma _{q}(3.7)} \int _{0}^{\varsigma } (\varsigma - q z)^{2.7} \acute{\varphi }(z)\, \mathrm{d}_{q} z - \frac{\varsigma ^{1.9}}{\Gamma _{q} (2.9)\Gamma _{q} (1.8 )} \int _{0}^{1} (1-q z)^{0.8}\acute{\varphi }(z) \, \mathrm{d}_{q} z \\ &{}+ \frac{[2.9]_{q} \varsigma ^{1.9} - \varsigma ^{2.9}}{ \Gamma _{q}(3.9) \Gamma _{q}(0.8)} \int _{0}^{1} (1-q z)^{-0.2} \acute{\varphi }(z) \, \mathrm{d}_{q} z, \end{aligned}$$

and \([2.9]_{0.7} \simeq 2.14848\). As the multi-function \(\mathfrak{U}\) possesses the AEP-property, so utilizing Theorem 10, one can clearly follow that the q-FBvP (18) has a solution.

5 Conclusion

A variety of complex natural phenomena that arise from science and technology are modeled by fractional operators. In the present study, we considered a fractional inclusion model of cantilever beam in the context of quantum calculus. We therefore, specified several operators based on the special classes of α-admissible and α-ψ-contractive multi-functions, relying on the equivalent integral equation. We studied the existence of solutions and, in addition, for such operators, we explored the AEP-property. Lastly, an example was given to examine the results regarding the proposed cantilever beam inclusion q-FBvP. As a future proposal, one can consider some other fractional operators to discuss the existence of solutions and approximating them for different generalized fractional models of the cantilever beam equation.

Availability of data and materials

Not applicable.

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  4. Sabetghadam, F., Masiha, H.P., Altun, I.: Fixed-point theorems for integral-type contractions on partial metric spaces. Ukr. Math. J. 68, 940–949 (2016). https://doi.org/10.1007/s11253-016-1267-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleanu, D., Etemad, S., Mohammadi, H., Rezapour, S.: A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simul. 100, 105844 (2021). https://doi.org/10.1016/j.cnsns.2021.105844

    Article  MathSciNet  MATH  Google Scholar 

  6. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

    Article  MathSciNet  Google Scholar 

  7. Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positive solutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941

    Article  MathSciNet  MATH  Google Scholar 

  8. Boutiara, A., Guerbati, K., Benbachir, M.: Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 5(1), 259–272 (2019). https://doi.org/10.3934/math.2020017

    Article  MathSciNet  MATH  Google Scholar 

  9. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

    Article  MathSciNet  Google Scholar 

  10. Sabetghadam, F., Masiha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl. Math. Lett. 25(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046

    Article  MathSciNet  MATH  Google Scholar 

  11. Boutiara, A., Benbachir, M., Guerbati, K.: Caputo type fractional differential equation with nonlocal Erdelyi–Kober type integral boundary conditions in Banach spaces. Surv. Math. Appl. 15, 399–418 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444

    Article  Google Scholar 

  13. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668

    Article  MathSciNet  Google Scholar 

  14. Belmor, S., Jarad, F., Abdeljawad, T., Kilinc, G.: A study of boundary value problem for generalized fractional differential inclusion via endpoint theory for weak contractions. Adv. Differ. Equ. 2020, Article ID 348 (2020). https://doi.org/10.1186/s13662-020-02811-w

    Article  MathSciNet  Google Scholar 

  15. Ahmad, B., Ntouyas, S.K., Tariboon, J.: A study of mixed Hadamard and Riemann–Liouville fractional integro-differential inclusions via endpoint theory. Appl. Math. Lett. 52, 9–14 (2016). https://doi.org/10.1016/j.aml.2015.08.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Belmor, S., Jarad, F., Abdeljawad, T., Algudah, M.A.: On fractional differential inclusion problems involving fractional order derivative with respect to another function. Fractals 28(8), 2040002 (2020). https://doi.org/10.1142/S0218348X20400022

    Article  Google Scholar 

  17. Etemad, S., Ntouyas, S.K.: Application of the fixed point theorems on the existence of solutions for q-fractional boundary value problems. AIMS Math. 4(3), 997–1018 (2019). https://doi.org/10.3934/math.2019.3.997

    Article  MathSciNet  Google Scholar 

  18. Belmor, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral conditions. J. Taibah Univ. Sci. 14(1), 114–123 (2020). https://doi.org/10.1080/16583655.2019.1709265

    Article  Google Scholar 

  19. Mishra, S.K., Samei, M.E., Chakraborty, S.K., Ram, B.: On q-variant of Dai–Yuan conjugate gradient algorithm for unconstrained optimization problems. Nonlinear Dyn. 104, 2471–2496 (2021). https://doi.org/10.1007/s11071-021-06378-3

    Article  Google Scholar 

  20. Samei, M.E.: Employing Kuratowski measure of non-compactness for positive solutions of system of singular fractional q-differential equations with numerical effects. Filomat 34(9), 1–19 (2020). https://doi.org/10.1186/10.2298/FIL2009971S

    Article  MathSciNet  Google Scholar 

  21. Etemad, S., Samei, M.E., Rezapour, S.: On a fractional Caputo–Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. Math. Methods Appl. Sci. 43(17), 9719–9734 (2020). https://doi.org/10.1002/mma.6644

    Article  MathSciNet  MATH  Google Scholar 

  22. Samei, M.E., Rezapour, S.: On a fractional q-differential inclusion on a time scale via endpoints and numerical calculations. Adv. Differ. Equ. 2020, Article ID 460 (2020). https://doi.org/10.1186/s13662-020-02923-3

    Article  MathSciNet  Google Scholar 

  23. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

    Article  MathSciNet  Google Scholar 

  24. Samei, M.E., Yang, W.: Existence of solutions for k-dimensional system of multi-term fractional q-integro-differential equations under anti-periodic boundary conditions via quantum calculus. Math. Methods Appl. Sci. 43(7), 4360–4382 (2020). https://doi.org/10.1002/mma.6198

    Article  MathSciNet  MATH  Google Scholar 

  25. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053

    Article  Google Scholar 

  26. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, Article ID 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, Article ID 145 (2017). https://doi.org/10.1186/s13661-017-0867-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9

    Article  MathSciNet  Google Scholar 

  29. Baleanu, D., Mohammadi, H., Rezapour, S.: Mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the rubella disease model. Adv. Differ. Equ. 2020, Article ID 184 (2020). https://doi.org/10.1186/s13662-020-02614-z

    Article  MathSciNet  Google Scholar 

  30. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, Article ID 79 (2019). https://doi.org/10.1186/s13661-019-1194-0

    Article  MathSciNet  Google Scholar 

  31. Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Differ. Equ. 2020, Article ID 589 (2020). https://doi.org/10.1186/s13662-020-03044-7

    Article  MathSciNet  Google Scholar 

  32. Jackson, F.H.: q-difference equations. Adv. Theory Nonlinear Anal. Appl. 32(4), 305–314 (1910). https://doi.org/10.2307/2370183

    Article  MATH  Google Scholar 

  33. Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61(2), 367–373 (2011). https://doi.org/10.1016/j.camwa.2010.11.012

    Article  MathSciNet  MATH  Google Scholar 

  34. Ernst, T.: A Comprehensive Treatment of q-Calculus. Birkhäuser, Basel (2012)

    Book  Google Scholar 

  35. Adams, C.R.: On the linear ordinary q-difference equation. Adv. Theory Nonlinear Anal. Appl. 30(1–4), 195–205 (1928). https://doi.org/10.2307/1968274

    Article  MathSciNet  MATH  Google Scholar 

  36. Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34(2), 147–168 (1928)

    Article  MathSciNet  Google Scholar 

  37. Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, Article ID 140 (2012). https://doi.org/10.1186/1687-1847-2012-140

    Article  MathSciNet  MATH  Google Scholar 

  38. Abbas, S., Benchohra, M., Samet, B., Zhou, Y.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2019, Article ID 527 (2019). https://doi.org/10.1186/s13662-019-2433-5

    Article  Google Scholar 

  39. Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011). https://doi.org/10.1016/j.cnsns.2011.01.026

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y., Liu, J., O’Regan, D., Xu, J.: Nontrivial solutions for a system of fractional q-difference equations involving q-integral boundary conditions. Mathematics 8(5), 828 (2020). https://doi.org/10.3390/math8050828

    Article  Google Scholar 

  41. Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 7(8), 659 (2016). https://doi.org/10.3390/math7080659

    Article  Google Scholar 

  42. Alzabut, J., Mohammadaliee, B., Samei, M.E.: Solutions of two fractional q-integro-differential equations under sum and integral boundary value conditions on a time scale. Adv. Differ. Equ. 2020, Article ID 304 (2020). https://doi.org/10.1186/s13662-020-02766-y

    Article  MathSciNet  Google Scholar 

  43. Asawasamrit, S., Tariboon, J., Ntouyas, S.K.: Existence of solutions for fractional q-integro-difference equations with nonlocal fractional q-integral conditions. Abstr. Appl. Anal. 2014, Article ID 474138 (2014). https://doi.org/10.1155/2014/474138

    Article  MATH  Google Scholar 

  44. Etemad, S., Rezapour, S., Samei, M.E.: α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results. Adv. Differ. Equ. 2020, Article ID 218 (2020). https://doi.org/10.1186/s13662-020-02679-w

    Article  MathSciNet  Google Scholar 

  45. Sitthiwirattham, T.: On nonlocal fractional q-integral boundary value problems of fractional q-difference and fractional q-integro-difference equations involving different numbers of order and q. Bound. Value Probl. 2016, Article ID 12 (2016). https://doi.org/10.1186/s13661-016-0522-x

    Article  MATH  Google Scholar 

  46. Sitho, S., Sudprasert, C., Ntouyas, S.K., Tariboon, J.: Noninstantaneous impulsive fractional quantum Hahn integro-difference boundary value problems. Mathematics 8(5), 671 (2020). https://doi.org/10.3390/math8050671

    Article  Google Scholar 

  47. Allahviranloo, Z.N.T., Nieto, J.J.: q-fractional differential equations with uncertainty. Soft Comput. 23, 9507–9524 (2019). https://doi.org/10.1007/s00500-019-03830-w

    Article  MATH  Google Scholar 

  48. Rezapour, S., Imran, A., Hussain, A., Martínez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469

    Article  Google Scholar 

  49. Ahmad, B., Ntouyas, S.K.: Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. 2011, Article ID 292860 (2011). https://doi.org/10.1155/2011/292860

    Article  MathSciNet  MATH  Google Scholar 

  50. Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Abstr. Appl. Anal. 59(107), 119–134 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Li, Y., Gao, Y.: The method of lower and upper solutions for the cantilever beam equations with fully nonlinear terms. J. Inequal. Appl. 2019, Article ID 136 (2019). https://doi.org/10.1186/s13660-019-2088-5

    Article  MathSciNet  Google Scholar 

  52. Li, Y., Chen, X.: Solvability for fully cantilever beam equations with superlinear nonlinearities. Bound. Value Probl. 2019, Article ID 83 (2019). https://doi.org/10.1186/s13661-019-1200-6

    Article  MathSciNet  Google Scholar 

  53. Zhang, Y., Cui, Y.: Positive solutions for two-point boundary value problems for fourth-order differential equations with fully nonlinear terms. Math. Probl. Eng. 2020, Article ID 8813287 (2020). https://doi.org/10.1155/2020/8813287

    Article  MathSciNet  MATH  Google Scholar 

  54. Aftabizadeh, A.R.: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116(2), 415–426 (1986). https://doi.org/10.1016/S0022-247X(86)80006-3

    Article  MathSciNet  MATH  Google Scholar 

  55. Gupta, C.P.: Existence and uniqueness theorems for a bending of an elastic beam equation. Appl. Anal. 26(4), 289–304 (1988). https://doi.org/10.1080/00036818808839715

    Article  MathSciNet  MATH  Google Scholar 

  56. Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)

    Article  MathSciNet  Google Scholar 

  57. Jackson, F.H.: On q-difference integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  58. Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26(3), 283–312 (1924). https://doi.org/10.2307/1989141

    Article  MathSciNet  MATH  Google Scholar 

  59. Graef, J.R., Kong, L.: Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218(19), 9682–9689 (2012). https://doi.org/10.1016/j.amc.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  60. El-Shahed, M., Al-Askar, F.: Positive solutions for boundary value problem of nonlinear fractional q-difference equation. Int. Sch. Res. Not. 2011, Article ID 385459 (2011). https://doi.org/10.5402/2011/385459

    Article  MathSciNet  MATH  Google Scholar 

  61. Amini-Harandi, A.: Endpoints of set-valued contractions in metric spaces. Nonlinear Anal., Theory Methods Appl. 72(1), 132–134 (2010). https://doi.org/10.1016/j.na.2009.06.074

    Article  MathSciNet  MATH  Google Scholar 

  62. Mohammadi, B., Rezapour, S., Shahzad, N.: Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, Article ID 24 (2013). https://doi.org/10.1186/1687-1812-2013-24

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of the authors was supported by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in this manuscript, and they read and approved the final manuscript.

Corresponding authors

Correspondence to Jehad Alzabut or Shahram Rezapour.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemad, S., Hussain, A., Imran, A. et al. On a fractional cantilever beam model in the q-difference inclusion settings via special multi-valued operators. J Inequal Appl 2021, 174 (2021). https://doi.org/10.1186/s13660-021-02708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-021-02708-6

MSC

Keywords