- Research
- Open Access
- Published:
A new upper bound for the largest growth rate of linear Rayleigh–Taylor instability
Journal of Inequalities and Applications volume 2021, Article number: 78 (2021)
Abstract
We investigate the effect of (interface) surface tensor on the linear Rayleigh–Taylor (RT) instability in stratified incompressible viscous fluids. The existence of linear RT instability solutions with largest growth rate Λ is proved under the instability condition (i.e., the surface tension coefficient ϑ is less than a threshold \(\vartheta _{\mathrm{c}}\)) by the modified variational method of PDEs. Moreover, we find a new upper bound for Λ. In particular, we directly observe from the upper bound that Λ decreasingly converges to zero as ϑ goes from zero to the threshold \(\vartheta _{\mathrm{c}}\).
1 Introduction
Considering two completely plane-parallel layers of stratified (immiscible) fluids, the heavier one on top of the lighter one and both subject to the earth’s gravity, it is well known that such an equilibrium state is unstable to sustain small disturbances, and this unstable disturbance will grow and lead to a release of potential energy as the heavier fluid moves down under the gravitational force and the lighter one is displaced upwards. This phenomenon was first studied by Rayleigh [28] and then Taylor [29], and it is therefore called the Rayleigh–Taylor (RT) instability. In the last decades, this phenomenon has been extensively investigated from mathematical, physical, and numerical aspects, see [2, 10, 31] for instance. It has been also widely investigated how the RT instability evolves under the effects of other physical factors, such as elasticity [3, 13, 23, 25, 32], rotation [2, 6], (internal) surface tension [11, 16, 36], magnetic fields [18–22, 24, 33, 34], and so on. In this article, we are interested in the effect of surface tension on the linear RT instability in stratified incompressible viscous fluids. To conveniently introduce relevant mathematical progress and our main results, next we mathematically formulate our problem in detail.
1.1 Motion equations in Eulerian coordinates
Let us first recall a mathematical model, which describes the horizontally periodic motion of stratified incompressible viscous fluids in an infinity layer domain [23]:
The momentum equations in (1.1)1 describe the motion of both upper heavier and lower lighter viscous fluids driven by the gravitational field along the negative \(x_{3}\)-direction, which occupy the two time-dependent disjoint open subsets \(\Omega _{+}(t)\) and \(\Omega _{-}(t)\) at time t, respectively. Moreover, the fluids are incompressible due to (1.1)2. The two fluids interact with each other by the motion equation of a free interface (1.1)3 and the interfacial jump conditions in (1.1)4. The first jump condition in (1.1)4 represents that the velocity is continuous across the interface. The second jump in (1.1)4 represents that the jump in the normal stress is proportional to the mean curvature of the surface multiplied by the normal to the surface. The non-slip boundary condition of the velocities on both upper and lower fixed flat boundaries are described by (1.1)5. (1.1)6 and (1.1)7 represent the initial status of the two fluids. Next we further explain the notations in (1.1) in detail.
The subscripts + resp. − in the notations \(f_{+}\) resp. \(f_{-}\) mean that functions, parameters, or domains \(f_{+}\) resp. \(f_{-}\) are relevant to the upper resp. lower fluids. For each given \(t>0\), \(d:=d(x_{\mathrm{h}},t):\mathbb{T}\mapsto (-h_{-},h_{+})\) is a height function of a point at the interface of stratified fluids, where \(h_{-}, h_{+}>0\), \(\mathbb{T}:=\mathbb{T}_{1}\times \mathbb{T}_{2}\), \(\mathbb{T}_{i}=2\pi L_{i}(\mathbb{R}/\mathbb{Z})\), and \(2\pi L_{i}\) (\(i=1, 2\)) are the periodicity lengths. The domains \(\Omega _{\pm }(t)\) and the interface \(\Sigma (t)\) are defined as follows:
In addition, \(\Sigma _{+}=\mathbb{T}\times \{h_{+}\}\), \(\Sigma _{-}=\mathbb{T}\times \{-h_{-}\}\), and we call \(\Omega :=\mathbb{T}\times (-h_{-},h_{+})\) the domain of stratified fluids.
For given \(t>0\), \(v_{\pm }(x,t): \Omega _{\pm }(t)\mapsto \mathbb{R}^{3}\) are the velocities of the two fluids, and \(\mathcal{S}_{\pm }\) are the stress tensors enjoying the following expression:
In the above expression the superscript T means matrix transposition and I is the \(3\times 3\) identity matrix. \(\rho _{\pm }\) are the density constants, and the constants \(\mu _{\pm }>0\) are the shear viscosity coefficients. g and ϑ represent the gravitational constant and the surface tension coefficient, resp. In addition, \(e_{3}:=(0,0,1)^{\mathrm{T}}\).
For a function f defined on \(\Omega (t)\), we define \([\!\![f_{\pm }]\!\!]:=f_{+}|_{\Sigma (t)} -f_{-}|_{\Sigma (t)}\), where \(f_{\pm }|_{\Sigma (t)}\) are the traces of the quantities \(f_{\pm }\) on \(\Sigma (t)\). ν is the unit outer normal vector at boundary \(\Sigma (t)\) of \(\Omega _{-}(t)\), and \(\mathcal{C}\) is the twice of the mean curvature of the internal surface \(\Sigma (t)\), i.e.,
Now we further introduce the indicator function \(\chi _{\Omega _{\pm }(t)}\) and denote
then model (1.1) can be rewritten as follows:
where we have defined that \(\Omega (t):=\Omega _{+}(t)\cup \Omega _{-}(t)\), \(\Sigma _{-}^{+}:=\Sigma _{-}\cup \Sigma _{+}\) and omitted the subscript ± in \([\!\![f_{\pm }]\!\!]\) for simplicity.
1.2 Reformulation in Lagrangian coordinates
Next we adopt the transformation of Lagrangian coordinates so that the interface and the domains stay fixed in time.
We define that
and assume that there exist invertible mappings
such that
We further define \(\zeta ^{0}:=\zeta _{+}^{0}\chi _{\Omega _{+}(0)}+\zeta _{-}^{0}\chi _{ \Omega _{-}(0)}\) and the flow map ζ as the solution to
where \(\Omega _{-}^{+}:=\Omega _{+}\cup \Omega _{-}\). We denote the Eulerian coordinates by \((x,t)\) with \(x=\zeta (y,t)\), whereas the fixed \((y,t)\in \Omega _{-}^{+}\times \mathbb{R}^{+}\) stand for the Lagrangian coordinates.
In order to switch back and forth from Lagrangian to Eulerian coordinates, we assume that \(\zeta _{\pm }(\cdot ,t)\) are invertible and \(\Omega _{\pm }(t)=\zeta _{\pm }(\Omega _{\pm },t)\), and since \(v_{\pm }\) and \(\zeta _{\pm }^{0}\) are all continuous across Σ, we have \(\Sigma (t)=\zeta _{\pm }(\Sigma ,t)\). In view of the non-slip boundary condition \(v|_{\Sigma _{-}^{+}}=0\), we have
Now we set the Lagrangian unknowns
then problem (1.3) can be rewritten as an initial-boundary value problem with an interface for \((\zeta ,u)\) in Lagrangian coordinates:
where we have defined that
We shall introduce the notations involving \(\mathcal{A}\). The matrix \(\mathcal{A}:=(\mathcal{A}_{ij})_{3\times 3}\) is defined via
where \(\partial _{j}\) denotes the partial derivative with respect to the jth components of variables y. \(\tilde{\mathcal{A}}:= \mathcal{A}-I\), and I is the \(3\times 3\) identity matrix. The differential operator \(\nabla _{\mathcal{A}}\) is defined by
for a vector function \(w:=(w_{1},w_{2},w_{3})\), and the differential operator \(\operatorname{div}_{\mathcal{A}}\) is defined by
for a vector function \(f^{i}:=(f_{1}^{i},f_{2}^{i},f_{3}^{i})^{\mathrm{T}}\). It should be noted that we have used the Einstein convention of summation over repeated indices. In addition, we define \(\Delta _{\mathcal{A}}X:=\operatorname{div}_{\mathcal{A}}\nabla _{ \mathcal{A}}X\).
1.3 Linearized motion
We choose a constant \(\bar{d}\in (-h_{-},h_{+})\). Without loss of generality, we assume that \(\bar{d}=0\). Then we consider an RT equilibrium state
where ρ satisfies the RT (jump) condition
Let \(\bar{p}:=\bar{p}_{+}\chi _{\Omega _{+}} +\bar{p}_{-}\chi _{\Omega _{-}}\). Then \((v,p)=(0,\bar{p})\) with \(d=0\) is an RT equilibria solution of (1.3).
Denote the perturbation in Lagrangian coordinates
then subtracting (1.7) from (1.6) yields the perturbation RT problem in Lagrangian coordinates:
where \(\Delta _{\mathrm{h}}:=\partial _{1}^{2}+\partial _{2}^{2}\) and the nonlinear terms \(\mathcal{N}_{1}\)–\(\mathcal{N}_{3}\) are defined as follows:
Omitting the nonlinear terms in (1.9), we get a linearized RT problem:
Of course, the motion equations of stratified viscous fluids in a linear stage can be approximatively described by (1.10).
The inhibition of RT instability by surface tension was first analyzed by Bellman and Phennington [1] based on a linearized two-dimensional (2D) motion equations of stratified incompressible inviscid fluids defined on the domain \(2\pi L_{1}\mathbb{T}_{1}\times (-h_{-},h_{+})\) (i.e., \(\mu =0\) in the corresponding 2D case of (1.10)) in 1953. More precisely, they proved that the linear 2D stratified incompressible inviscid fluids are stable, resp. unstable for \(\vartheta >g[\!\![\rho ]\!\!]L_{1}^{2}\), resp. \(\vartheta < g[\!\![\rho ]\!\!]L_{1}^{2}\). The value \(g[\!\![\rho ]\!\!]L_{1}^{2}\) is a threshold of surface tension coefficient for linear stability and linear instability. Similar result was also found in the 3D viscous case; for example, Guo and Tice proved that \(\vartheta _{\mathrm{c}}:={ g[\!\![\rho ]\!\!]\max \{L_{1}^{2},L_{2}^{2} \} }\) is a threshold of surface tension coefficient for stability and instability in the linearized 3D stratified compressible viscous fluids defined on Ω [11]. Next we further review the mathematical progress for the nonlinear case.
Prüess and Simonett first proved that the RT equilibria solution of the stratified incompressible viscid fluids defined on the domain \(\mathbb{R}^{3}\) is unstable based on a Henry instability method [27]. Later Wang, Tice, and Kim verified that the RT equilibria solution of stratified incompressible viscous fluids defined on Ω is stable, resp. unstable for \(\vartheta >\vartheta _{\mathbb{T}} \), resp. \(\vartheta \in [0, \vartheta _{\mathbb{T}})\) [35, 36]. Jang, Wang, and Tice further obtained the same results of stability and instability in the corresponding compressible case [15, 16]. Recently, Wilke also proved there exists a threshold \(\vartheta _{\mathrm{c}} \) for the stability and instability of stratified viscous fluids (with heavier fluid over lighter fluid) defined on a cylindrical domain with finite height [37]. Finally, we mention that the results of nonlinear RT instability in inhomogeneous fluid (without interface) were obtained based on the classical bootstrap instability method, see [14], resp. [17] for inviscid, resp. viscous cases.
2 Main result
In this paper, we investigate the effect of surface tension on the linear RT instability by the linearized motion (1.10). Wang and Tice used a discrete Fourier transformation and the modified variational method of ODEs to prove the existence of growth solutions with a largest growth rate \(\Lambda _{\vartheta }\) for (1.10) with \(h_{+}=1\) under the condition \(\vartheta \in (0,\vartheta _{c})\) [35]. Moreover, they provided an upper bound for \(\Lambda _{\vartheta }\):
In this paper, we exploit the modified variational method of PDEs and the existence theory of stratified (steady) Stokes problem to prove the existence of growth solutions with a largest growth rate \(\Lambda _{\vartheta }\) for (1.10) under the instability condition \(\vartheta \in [0,\vartheta _{\mathbb{T}})\). Moreover, we find a new upper bound:
It is easy to see that
Therefore our upper bound is more precise than Wang and Tice’s one. Moreover, we directly see from (2.1) that
We mention that, in the classical Rayleigh–Taylor (RT) experiments [8, 12], the phenomenon of that the instability growth is limited by surface tension during the linear stage, where the growth is exponential in time, has been shown. Obviously, the convergence behavior (2.2) mathematically verifies the phenomenon.
Before stating our main results in detail, we introduce some simplified notations used throughout this article.
-
(1)
Basic notations: \(I_{T}:=(0,T)\). \(\mathbb{R}^{+}:=(0,\infty )\), \(\mathbb{R}^{+}_{0}:=[0,\infty )\). The jth difference quotient of size h is \(D_{j}^{h} w:=(w(y+h e_{j})-w(y))/h\) for \(j=1\) and 2, and \(D^{h}_{\mathrm{h}}w:=(D_{1}^{h}w_{1},D_{2}^{h}w_{2})\), where \(|h|\in (0,1)\). ℜf, resp. ℑf denote the real, resp. imaginary parts of the complex function f. \(\nabla _{\mathrm{h}}^{k} f\) denotes a \((k+1)\times (k+1)\) matrix \((\partial _{1}^{i}\partial _{2}^{j} f)_{ij}\) for \(k\geqslant 0 \). \(a\lesssim b\) means that \(a\leqslant cb\) for some constant \(c>0\), where the positive constant c may depend on the domain Ω and known parameters such as \(\rho _{\pm }\), \(\mu _{\pm }\), g, and ϑ, and may vary from line to line.
-
(2)
Simplified notations of Sobolev spaces:
$$\begin{aligned} &L^{p}:=L^{p} \bigl(\Omega _{-}^{+} \bigr)=W^{0,p}\bigl(\Omega _{-}^{+}\bigr),\qquad W^{i,2}:=W^{i,2}\bigl(\Omega _{-}^{+} \bigr), \qquad {H}^{i}:=W^{i,2} , \\ & H^{\infty }:=\bigcap_{j=1}^{\infty }H^{j},\qquad \underline{H}^{i}:= \biggl\{ w \in {H}^{i} \Bigm| \int _{\Omega _{-}^{+}}w\,\mathrm{d}y=0 \biggr\} , \\ &H^{1}_{\sigma }:=\bigl\{ w\in {H}^{1}(\Omega ) \mid w \vert _{\Sigma _{-}^{+}}=0 \mbox{ in the sense of trace}, \operatorname{div}w=0\bigr\} , \\ & H_{\sigma }^{i}:=H_{\sigma }^{1} \cap H^{i}, \qquad H_{\sigma ,\Sigma }^{1}:= \bigl\{ w\in {H}_{\sigma }^{1} \mid w_{3} \vert _{\Sigma }\in H^{1}( \mathbb{T}) \bigr\} , \\ &H^{1}_{\sigma ,3}:= \bigl\{ w\in H^{1}_{\sigma ,\vartheta } \mid w_{3}\neq 0 \mbox{ on }\Sigma \bigr\} , \qquad H_{\sigma , \vartheta }^{1}= \textstyle\begin{cases} H_{\sigma ,\Sigma }^{1} & \mbox{if }\vartheta \neq 0, \\ H_{\sigma }^{1} &\mbox{if }\vartheta = 0, \end{cases}\displaystyle \\ & \mathcal{A}: = \bigl\{ w\in {H}_{\sigma ,\vartheta }^{1} \mid \Vert \sqrt{ {\rho }}w \Vert ^{2}_{L^{2}}=1 \bigr\} ,\qquad H^{-1}_{\sigma }= \mbox{the dual space of }H^{1}_{\sigma }, \end{aligned}$$where \(1< p\leqslant \infty \) and \(i\geqslant 0\) is an integer. Sometimes, we denote \(\mathcal{A}\) by \(\mathcal{A}_{\vartheta }\) to emphasize the dependence of ϑ. In addition, to prove the existence of unstable classical solutions of the linearized RT problem, we introduce a function space
$$ H_{\sigma , \vartheta }^{1,k}:= \textstyle\begin{cases} \{w\in H_{\sigma ,\vartheta }^{1} \mid\nabla _{\mathrm{h}}^{j} w \in H^{1}\mbox{ and }w_{3}|_{\Sigma }\in H^{k+1}(\mathbb{T}) \mbox{ for } j\leqslant k \} & \mbox{if }\vartheta \neq 0, \\ \{w\in H_{\sigma }^{1} \mid \nabla _{\mathrm{h}}^{j}w \in H^{1} \mbox{ for } j\leqslant k \} &\mbox{if }\vartheta = 0, \end{cases} $$where \(k\geqslant 0\) is an integer. It should be noted that \(H_{\sigma ,\vartheta }^{1,0}=H_{\sigma , \vartheta }^{1}\).
-
(3)
Simplified norms: \(\|\cdot \|_{i} :=\|\cdot \|_{W^{i,2}}\), \(|\cdot |_{s} := \|\cdot |_{\Sigma } \|_{H^{s}(\mathbb{T})}\), where s is a real number and i is a nonnegative integer.
-
(4)
Functionals: \(\mathcal{E}(w):= \vartheta |\nabla _{\mathrm{h}}w_{3}|_{0}^{2}-g [\!\![\rho ]\!\!]|w_{3}|_{0}^{2}\) and \(F(w,s):= -(\mathcal{E}(w) +s\|\sqrt{\mu } \mathbb{D}w\|^{2}_{0}/2)\).
In addition, we give the definition of the largest growth rate of RT instability in the linearized RT problem.
Definition 2.1
We call \(\Lambda >0\) the largest growth rate of RT instability in the linearized RT problem (1.10) if it satisfies the following two conditions:
-
(1)
For any strong solution \((\eta , u)\in C^{0}([0,T),H^{3}\cap H^{2}_{\sigma })\cap L^{2}(I_{T},H^{3} \cap H^{3}_{\sigma })\) of the linearized RT problem with q enjoying the regularity \(q\in C^{0}([0,T),H^{1})\cap L^{2}(I_{T},H^{2})\), we have, for any \(t\in [ 0,T)\),
$$ \bigl\Vert (\eta ,u) \bigr\Vert _{1}^{2}+ \Vert u_{t} \Vert ^{2}_{0 }+ \int _{0}^{t} \bigl\Vert u(s) \bigr\Vert ^{2}_{1} \,\mathrm{d}s\lesssim e^{2\Lambda t}\bigl( \bigl\Vert \eta ^{0} \bigr\Vert _{3}^{2}+ \bigl\Vert u^{0} \bigr\Vert _{2}^{2}\bigr). $$(2.3) -
(2)
There exists a strong solution \((\eta , u)\) of the linearized RT problem in the form
$$ (\eta , u):=e^{\Lambda t}( \tilde{\eta }, \tilde{u} ), $$where \(( \tilde{\eta }, \tilde{u} )\in H^{2}\).
Now we state the first result on the existence of the largest growth rate in the linearized RT problem.
Theorem 2.1
Let \(g>0\), \(\rho >0\), and \(\mu >0\) be given. Then, for any given
there is an unstable solution
to the linearized RT problem (1.10), where \((w,\beta )\in H^{\infty }\) solves the boundary value problem
with the largest growth rate \(\Lambda >0\) satisfying
Moreover,
Next we briefly introduce how to prove Theorem 2.1 by the modified variational method of PDEs and the regularity theory of stratified (steady) Stokes problem. The detailed proof is given in Sect. 4.
We assume a growing mode ansatz to the linearized problem
for some \(\Lambda >0\). Substituting this ansatz into the linearized RT problem (1.10), we get a spectrum problem
and then eliminating η̃ by using the first equation, we arrive at the boundary value problem (2.5) for w and β. Obviously, the linearized RT problem is unstable if there exists a solution \((w,\beta )\) to the boundary value problem (2.5) with \(\Lambda >0\).
To look for the solution, we use a modified variational method of PDEs and thus modify (2.5) as follows:
where \(s>0\) is a parameter. To emphasize the dependence of s upon α and ϑ, we write \(\alpha (s,\vartheta )=\alpha \).
Note that the modified problem (2.8) enjoys the following variational identity:
Thus, by a standard variational approach, there exists a maximizer \(w\in \mathcal{A} \) of the functional F defined on \(\mathcal{A}\); moreover, w is just a weak solution to (2.8) with α defined by the relation
see Proposition 4.1. Then we further use the method of difference quotients and the existence theory of the stratified (steady) Stokes problem to improve the regularity of the weak solution, and thus prove that \((w,\beta )\in H^{\infty }\) is a classical solution to the boundary value problem (2.8), see Proposition 4.2.
In view of the definition of \(\alpha (s ,\vartheta )\) and the instability condition (2.4), we can infer that, for given ϑ, the function \(\alpha (s,\cdot )\) on the variable s enjoys some good properties (see Proposition 4.3), which imply that there exists Λ satisfying the fixed point relation
Then we obtain a nontrivial solution \((w,\beta )\in H^{\infty }\) to (2.5) with Λ defined by (2.10), and therefore the linear instability follows. Moreover, Λ is the largest growth rate of RT instability in the linearized RT problem (see Proposition 4.4), and thus we get Theorem 2.1.
Next we turn to introduce the second result on the properties of the largest growth rate constructed by (2.10).
Theorem 2.2
The largest growth rate \(\Lambda _{\vartheta }:=\Lambda \) in Theorem 2.1enjoys the estimate (2.1). Moreover,
The proof of Theorem 2.2 is presented in Sect. 5. Here we briefly mention the idea of the proof. We find that, for fixed s, \(\alpha (\cdot ,\vartheta )\) defined by (2.9) strictly decreases and is continuous with respect to ϑ (see Proposition 5.1). Thus, by the fixed point relation (2.10) and some analysis based on the definition of continuity, we can show that \(\Lambda _{\vartheta }:=\Lambda \) also inherits the monotonicity and continuity of \(\alpha (\cdot ,\vartheta )\). Finally, we derive (2.1) from (2.6) by some estimate techniques.
3 Preliminary
This section is devoted to introducing some preliminary lemmas, which will be used in the next two sections.
Lemma 3.1
Difference quotients and weak derivatives: Let D be Ω or \(\mathbb{T}\).
-
(1)
Suppose \(1\leqslant p<\infty \) and \(w\in W^{1,p}(D)\). Then \(\|D^{h}_{\mathrm{h}} w\|_{L^{p}(D) }\lesssim \|\nabla _{\mathrm{h}}w \|_{L^{p}(D)}\).
-
(2)
Assume \(1< p<\infty \), \(w\in L^{p}(D)\), and there exists a constant c such that \(\|D^{h}_{\mathrm{h}} w\|_{L^{p}(D)}\leqslant c\). Then \(\nabla _{\mathrm{h}} w\in L^{p}(D)\) satisfies \(\|\nabla _{\mathrm{h}}w\|_{L^{p}(D)}\leqslant c\) and \(D^{-h_{k}}_{\mathrm{h}} w \rightharpoonup \nabla _{\mathrm{h}}w\) in \(L^{p}(D)\) for some subsequence \(-h_{k}\to 0\).
Proof
Following the argument of [7, Theorem 3] and using the periodicity of w, we can easily get the desired conclusions. □
Lemma 3.2
Existence theory of a stratified (steady) Stokes problem (see [36, Theorem 3.1]): Let \(k\geqslant 0\), \(f^{\mathrm{S},1}\in H^{k}\), and \(f^{\mathrm{S},2}\in H^{k+1/2}\), then there exists a unique solution \((u,q)\in H^{k+2}\times \underline{H}^{k+1}\) satisfying
Moreover,
Lemma 3.3
Equivalent form of instability condition: the instability condition (2.4) is equivalent to the following integral version of instability condition:
Proof
The conclusion in Lemma 3.3 is obvious if we have the assertion
Next we verify (3.4) by two steps. Without loss of generality, we assume that \(L_{1}^{2}={\max \{L_{1}^{2},L_{2}^{2}\}}\).
(1) We first prove that \(a\geqslant L_{1}^{2}\). We choose a nonzero function \(\psi \in H_{0}^{2}(-h_{-},h_{+})\) such that \(\psi (0)\neq 0\). We denote
then \({w} \in H^{1}_{\sigma ,\vartheta }\) and
which yields \(a\geqslant L_{1}^{2}\).
(2) We turn to the proof of \(a\leqslant L_{1}^{2}\). It should be noted that
In fact, let \(w\in H_{\sigma ,3}^{1}\). Since \(\operatorname{div}w=0\), we have
Thus, using Poincare’s inequality, we have
which immediately implies assertion (3.5).
Let \(w\in H_{\sigma ,3}^{1}\), then \(|\nabla _{\mathrm{h}} w_{3} |_{0}^{2}\neq 0\). Let \(\hat{w}_{3}(\xi ,y_{3})\) be the horizontal Fourier transform of \(w_{3}(y) \), i.e.,
where \(\xi =(\xi _{1},\xi _{2})\), then \(\widehat{\partial _{3} w_{3}} = \partial _{3} \widehat{w}_{3}\). We denote \(\psi (\xi ,y_{3}):= \psi _{1}(\xi ,y_{3}) + \mathrm{i}\psi _{2}( \xi ,y_{3}):=\hat{w}_{3}(\xi ,y_{3})\), where \(\psi _{1}\) and \(\psi _{2}\) are real functions. Noting that \(\psi (0)=0\), by Parseval’s theorem (see [9, Proposition 3.1.16]), we have
which immediately yields that \(a\leqslant L^{2}_{1}\). The proof is complete. □
Lemma 3.4
Friedrichs’s inequality (see [26, Lemma 1.42]): Let \(1\leqslant p<\infty \) and D be a bounded Lipschitz domain. Let a set \(\Gamma \subset \partial D\) be measurable with respect to the \((N-1)\)-dimensional measure \({\mu }:=\mathrm{meas}_{N-1}\) defined on ∂D, and let \(\mathrm{meas}_{N-1}(\Gamma )>0\). Then
for all \(u\in W^{1,p}(D)\) satisfying that the trace of u on Γ is equal to 0 a.e. with respect to the \((N-1)\)-dimensional measure μ.
Remark 3.1
By Friedrichs’s inequality and the fact
we get the Korn’s inequality
Lemma 3.5
Trace estimates:
Proof
See [24, Lemma 9.7] for (3.8). Since \(C_{\sigma }^{\infty }:=C^{\infty }_{0}(\mathbb{R}^{2}\times (-h_{-},h_{+})) \cap H_{\sigma }^{1}\) is dense in \(H^{1}_{\sigma }\), it suffices to prove that (3.9) holds for any \(w\in C_{\sigma }^{\infty }\) by (3.8).
Let ŵ be the horizontal Fourier transformed function of \(w\in C_{\sigma }^{\infty }\), and
Then
and \(\psi (\cdot , y_{3})\in H^{2}_{0}(-h_{-},h_{+})\), because of \(\operatorname{div} {w}=0\) and \(w|_{\Sigma _{-}^{+}}=0\). Moreover,
In addition, we can deduce from (3.10) that
By (3.11) and Fubini’s and Parseval’s theorems, one has
and
where
Using (3.10), we find that
which imply that
for given \(\xi \in (L^{-1}_{1}\mathbb{Z}\times L^{-1}_{2}\mathbb{Z}) \backslash \{0\}\). Employing (3.12)–(3.14) and the relation
we obtain
Similarly, we also have
which, together with (3.15), yields the desired conclusion. This completes the proof. □
Remark 3.2
From the derivation of (3.9), we easily see that
Lemma 3.6
Negative trace estimate:
Proof
Estimate (3.17) can be derived by integration by parts and an inverse trace theorem [26, Lemma 1.47]. □
Lemma 3.7
Let X be a given Banach space with dual \(X^{*}\), and let u and w be two functions belonging to \(L^{1}((a,b),X)\). Then the following two conditions are equivalent:
-
(1)
For each test function \(\phi \in C_{0}^{\infty }(a,b)\),
$$ \int _{a}^{b} u(t)\phi '(t) \,\mathrm{d}t=- \int _{a}^{b} w(t)\phi (t) \,\mathrm{d}t. $$ -
(2)
For each \(\eta \in X^{*}\),
$$ \frac{\mathrm{d}}{\mathrm{d}t}\langle u,\eta \rangle_{X\times X^{*}}=\langle w,\eta \rangle_{X \times X^{*}}, $$in the scalar distribution sense, on \((a,b)\), where \(\langle \cdot ,\cdot \rangle_{X\times X^{*}}\) denotes the dual pair between X and \(X^{*}\).
Proof
See Lemma 1.1 in Chap. 3 in [30]. □
4 Linear instability
In this section, we use the modified variational method to construct unstable solutions for the linearized RT problem. The modified variational method was firstly used by Guo and Tice to construct unstable solutions to a class of ordinary differential equations arising from a linearized RT instability problem [11]. This idea had been also used in [4, 5]. In this paper, we directly apply Guo and Tice’s modified variational method to the partial differential equations (2.5) and thus obtain a linear instability result of the RT problem by further using an existence theory of the stratified Stokes problem. Next we prove Theorem 2.1 by four subsections.
4.1 Existence of weak solutions to the modified problem
In this subsection, we consider the existence of weak solutions to the modified problem
where \(s>0\) is any given. To prove the existence of weak solutions of the above problem, we consider the variational problem of the functional \(F(\varpi ,s )\):
for given \(s>0\), where we have defined that
Sometimes, we denote \(\alpha (s,\vartheta )\) and \(F(\varpi ,s)\) by α (or \(\alpha (s)\)) and \(F(\varpi )\), resp., for simplicity. Then we have the following conclusions.
Proposition 4.1
Let \(s>0\) be any given.
-
1.
In the variational problem (4.2), \(F(\varpi )\) achieves its supremum on \(\mathcal{A}\).
-
2.
Let w be a maximizer and \(\alpha := \sup_{\varpi \in \mathcal{A}}F(\varpi ) \), the w is a weak solution of the boundary problem (4.1) with given α.
Proof
Noting that
thus, by Young’s inequality and Korn’s inequality (3.7), we see that \(\{F(\varpi )\}_{\varpi \in \mathcal{A}}\) has an upper bound for any \(\varpi \in \mathcal{A}\). Hence there exists a maximizing sequence \(\{w^{n}\}_{n=1}^{\infty }\subset \mathcal{A}\), which satisfies \(\alpha =\lim_{n\to \infty } F(w_{n})\). Moreover, making use of (4.3), the fact \(\|\sqrt{ {\rho }}w^{n}\|_{0}=1\), trace estimate (3.9), and Young’s and Korn’s inequalities, we have \(\|w^{n}\|_{1}+\vartheta |\nabla _{\mathrm{h}}w^{n}_{3}|_{0} \leqslant c_{1}\) for some constant \(c_{1}\), which is independent of n. Thus, by the well-known Rellich–Kondrachov compactness theorem and (4.3), there exist a subsequence, still labeled by \(w^{n}\), and a function \(w\in \mathcal{A}\) such that
Exploiting the above convergence results and the lower semicontinuity of weak convergence, we have
Hence w is a maximum point of the functional \(F(\varpi )\) with respect to \(\varpi \in \mathcal{A}\).
Obviously, w constructed above is also a maximum point of the functional \(F(\varpi )/ \|\sqrt{\rho }\varpi \|^{2}_{0}\) with respect to \(\varpi \in H_{\sigma , \vartheta }^{1}\). Moreover, \(\alpha = F(w)/\|\sqrt{\rho }w\|^{2}_{0}\). Thus, for any given \(\varphi \in H^{1}_{\sigma ,\vartheta } \), the point \(t=0\) is the maximum point of the function
Then, by computing out \(I'(0)=0\), we have the weak form
Note that (4.4) is equivalent to
This means that w is a weak solution of the modified problem (4.1). □
4.2 Improving the regularity of weak solution
By Proposition 4.1, the boundary value problem (4.1) admits a weak solution \(w\in H^{1}_{\sigma ,\vartheta }\). Next we further improve the regularity of w.
Proposition 4.2
Let w be a weak solution of the boundary value problem (4.1). Then \(w\in H^{\infty }\).
Proof
To begin with, we establish the following preliminary conclusion:
For any \(i\geqslant 0\) , we have
and
Obviously, by induction, the above assertion reduces to verifying the following recurrence relation:
For given \(i\geqslant 0\), if \(w \in H^{1,i}_{\sigma ,\vartheta }\) satisfies (4.6) for any \(\varphi \in H^{1}_{\sigma ,\vartheta } \), then
and w satisfies
Next we verify the above recurrence relation by the method of difference quotients.
Now we assume that \(w \in H^{1,i}_{\sigma ,\vartheta }\) satisfies (4.6) for any \(\varphi \in H^{1}_{\sigma ,\vartheta } \). Noting that \(\partial _{\mathrm{h}}^{i}w \in H^{1}_{\sigma ,\vartheta }\), we can deduce from (4.6) that, for \(j=1\) and 2,
and
which yield that
and
resp.
By Korn’s inequality,
thus, using (4.3), Young’s inequality, and the first conclusion in Lemma 3.1, we further deduce from (4.10) that
Thus, using (4.3), trace estimate (3.9), and the second conclusion in Lemma 3.1, there exists a subsequence of \(\{-h\}_{h\in \mathbb{R}}\) (still denoted by −h) such that
Using the regularity of w in (4.11) and the fact \(w\in H_{\sigma ,\vartheta }^{1,i}\), we have (4.7). In addition, exploiting the limit results in (4.11), we can deduce (4.8) from (4.9). This completes the proof of the recurrence relation, and thus (4.5) holds.
With (4.5) in hand, we can consider a stratified Stokes problem:
where \(k\geqslant 0\) is a given integer, and we have defined that
Recalling the regularity (4.5) of w, we see that \(\partial _{\mathrm{h}}^{k}w\in L^{2}\) and \(\partial _{\mathrm{h}}^{k}\mathcal{L}^{1} \in H^{1}(\mathbb{T})\). Applying the existence theory of the stratified Stokes problem (see Lemma 3.2), there exists a unique strong solution \((\omega ^{k},\beta ^{k})\in H^{2}\times \underline{H}^{1}\) of the above problem (4.12).
Multiplying (4.12)1 by \(\varphi \in H^{1}_{\sigma ,\vartheta }\) in \(L^{2}\) (i.e., taking the inner product in \(L^{2}\)) and using the integration by parts and (4.12)2–(4.12)4, we have
Subtracting the two identities (4.6) and (4.13) yields that
Taking \(\varphi := \partial _{\mathrm{h}}^{k} w-\omega ^{k}\in H^{1}_{ \sigma ,\vartheta }\) in the above identity and using the Korn’s inequality, we find that \(\omega ^{k}= \partial _{\mathrm{h}}^{k} w\). Thus we immediately see that
which implies \(\partial _{\mathrm{h}}^{k}w\in H^{1}\) and \(\partial _{\mathrm{h}}^{k}\mathcal{L}^{1}\in H^{2}(\mathbb{T})\) for any \(k\geqslant 0\). Thus, applying the stratified Stokes estimate (3.2) to (4.12), we have
Obviously, by induction, we can easily follow the improving regularity method from (4.14) to (4.15) to deduce that \(w\in H^{\infty }\). In addition, we have \(\beta :=\beta ^{0}\in H^{\infty }\); moreover, \(\beta ^{k}\) in (4.12) is equal to \(\partial ^{k}_{\mathrm{h}}\beta \).
Finally, recalling the embedding \(H^{k+2}\hookrightarrow C^{0}(\overline{\Omega })\) for any \(k\geqslant 0\), we easily see that \((w,\beta )\) constructed above is indeed a classical solution to the modified problem (4.1). □
4.3 Some properties of the function \(\alpha (s)\)
In this subsection, we derive some properties of the function \(\alpha (s)\), which ensure the existence of a fixed point of \(\sqrt{\alpha (s)}\) in \(\mathbb{R}^{+}\).
Proposition 4.3
For given \(\vartheta \in \mathbb{R}^{+}_{0}\), we have
Proof
To begin with, we verify (4.16). For given \(s_{2}>s_{1}\), there exists \(v^{s_{2}}\in \mathcal{A}\) such that \(\alpha (s_{2}) = F(v^{s_{2}},s_{2})\). Thus, by Korn’s inequality and the fact \(\|\sqrt{\rho }v^{s_{2}}\|_{0}=1\),
which yields (4.16).
Now we turn to prove (4.17). Choosing a bounded interval \([c_{4},c_{5}]\subset (0,\infty )\), for any \(s\in [c_{4},c_{5}] \), there exists a function \(v^{s}\) satisfying \(\alpha (s)=F(v^{s},s)\). Thus, by the monotonicity of (4.16), we have
which yields
Thus, for any \(s_{1}\), \(s_{2}\in [c_{4},c_{5}]\),
and
which immediately imply \(|\alpha (s_{1})-\alpha (s_{2})|\leqslant \xi | {s_{2}}-s_{1}|\). Hence (4.17) holds.
Finally, (4.19) can be deduced from the definition of α by using Korn’s inequality and (4.3), while (4.18) is obvious by the definition of α and Lemma 3.3. □
4.4 Construction of an interval for a fixed point
Let \(\mathfrak{I}:=\sup \{\text{all the real constant }s\text{, which satisfy that } \alpha ( \tau )>0\text{ for any }\tau \in (0,s)\}\). By virtue of (4.18) and (4.19), \(\mathfrak{I}\in \mathbb{R}^{+}\). Moreover, \(\alpha (s)>0\) for any \(s\in (0,\mathfrak{I})\) and, by the continuity of \(\alpha (s)\),
Using the monotonicity and the upper boundedness of \(\alpha (s)\), we see that
Now, exploiting (4.20), (4.21), and the continuity of \({\alpha }(s)\) on \((0,\mathfrak{I})\), we find by a fixed point argument on \((0,\mathfrak{I})\) that there is unique \(\Lambda \in (0,\mathfrak{I})\) satisfying
Thus we get a classical solution \((w,\beta ) \in H^{\infty }\) to the boundary problem (2.5) with Λ constructed by (4.22). Moreover,
In addition, (2.7) directly follows (4.23) and the fact \(w\in H_{\sigma }^{1}\).
4.5 Largest growth rate
Next we prove that Λ constructed in the previous section is the largest growth rate of RT instability in the linearized RT problem and thus complete the proof of Theorem 2.1.
Proposition 4.4
Under the assumptions of Theorem 2.1, \(\Lambda >0\) constructed by (4.22) is the largest growth rate of RT instability in the linearized RT problem.
Proof
Recalling the definition of largest growth rate, it suffices to prove that Λ enjoys the first condition in Definition 2.1.
Let u be a strong solution to the linearized RT problem. Then we derive that, for a.e. \(t\in I_{T}\) and all \(w\in H_{\sigma }^{1}\),
Thus,
Using the regularity of \((\eta ,u)\), we can show that the right-hand side of (4.25) is bounded above by \(A(t)(\|w\|_{1}+|w|_{1})\) for some positive function \(A(t)\in L^{2}(I_{T})\). Then there exists \(f\in L^{2}(I_{T}, H^{-1}_{\sigma })\) such that, for a.e. \(t\in I_{T}\),
Hence it follows from Lemma 3.7 that
In addition, by a classical regularization method (referring to Theorem 3 in Chap. 5.9 in [7] and Lemma 6.5 in [26]), we have
Therefore, we can derive from (4.26) and the above two identities that
Then, integrating the above identity in time from 0 to t yields that
Using Newton–Leibniz’s formula and Young’s inequality, we find that
In addition, by (2.6), we have
Thus, we infer from (4.27)–(4.29) that
Recalling that
we further deduce from (4.30) the differential inequality
Applying Gronwall’s inequality [26, Lemma 1.2] to the above inequality, one concludes
which, together with (4.30), yields
Multiplying (1.10)2 by \(u_{t}\) in \(L^{2}\) and using the integral by parts, we get
Exploiting (3.17), we can estimate that
In addition, using (1.10)5 and trace estimate (3.9), we have
Using the above two estimates, we can derive from (4.33) that
which implies that
By the above estimate and Korn’s inequality, we derive from (4.31) and (4.32) that
Finally, from (1.10)1 we get
By the two estimates above, we see that Λ satisfies the first condition in Definition 2.1. The proof is completed. □
5 Effect of surface tension
5.1 Properties of \(\alpha (s,\vartheta )\) with respect to ϑ
To emphasize the dependence of Λ and \(\mathcal{G}\) upon ϑ, we denote them by \(\Lambda _{\vartheta }\) and \(\mathcal{G}_{\vartheta }\), respectively. To prove Theorem 2.2, we further derive relations (2.1) and (2.11) of the surface tension coefficient and the largest growth rate. To this end, we need the following auxiliary conclusions.
Proposition 5.1
Let \(g>0\), \(\rho >0\), and \(\mu >0\) be given.
-
(1)
Strict monotonicity: if \(\vartheta _{1}\) and \(\vartheta _{2}\) are constants satisfying \(0\leqslant \vartheta _{1}<\vartheta _{2}\), then
$$ \alpha (s,\vartheta _{2})< \alpha (s,\vartheta _{1}) $$(5.1)for any given \(s>0\). Moreover, if \(\vartheta _{2}\) further satisfies \(\vartheta _{2}<\vartheta _{\mathrm{c}}\),
$$ \mathcal{G}_{\vartheta _{\mathrm{1}}}>\mathcal{G}_{\vartheta _{ \mathrm{2}}}, $$(5.2)where
$$ \mathcal{G}_{\vartheta _{i}}:=\sup \bigl\{ s\in \mathbb{R} \mid \alpha (\tau , \vartheta _{i})>0\textit{ for any } \tau \in (0,s)\bigr\} \quad \textit{and}\quad \alpha ( \mathcal{G}_{\vartheta _{i}},\vartheta _{i})=0. $$(5.3) -
(2)
Continuity: for given \(s>0\), \(\alpha (s,\vartheta )\in C^{0,1}_{\mathrm{loc}}(\mathbb{R}^{+})\) with respect to the variable ϑ.
Proof
(1) Let \(s>0\) be fixed and \(0\leqslant \vartheta _{1}<\vartheta _{2}\). Then there exist functions \({w}^{\vartheta _{i}}\in H^{\infty }\cap \mathcal{A}_{\vartheta _{i}}\), \(i=1,2\), such that
where \({E}( {w}^{\vartheta _{i}}):=g[\!\![\rho ]\!\!]| {w}^{ \vartheta _{i}}_{3}|_{0}^{2} -{s}\|\sqrt{\mu } \mathbb{D} {w}^{ \vartheta _{i}}\|_{0}^{2}/2\). Since \({w}^{\vartheta _{i}}\in \mathcal{A}_{\vartheta _{i}}\), by virtue of (2.7) and (3.5), we have
and thus
This yields the desired conclusion (5.1).
Next we prove (5.2) by contradiction. If \(\mathcal{G}_{\vartheta _{\mathrm{1}}}<\mathcal{G}_{\vartheta _{ \mathrm{2}}}\), then we get from (5.1) and the strict monotonicity of \(\alpha (s,\cdot )\) with respect to s that
which is a paradox. If \(\mathcal{G}_{\vartheta _{\mathrm{1}}}=\mathcal{G}_{\vartheta _{ \mathrm{2}}}\), exploiting (5.1), we have
which is also a paradox. Thus we immediately get the desired conclusion.
(2) Let \(s>0\) be fixed. We choose a bounded interval \([b_{1},b_{2}]\subset \mathbb{R}^{+}\). Then, for any given \(\theta \in [ b_{1},b_{2}]\), there is a function \({w}^{\theta }\in \mathcal{A}_{\vartheta }\) satisfying \(\alpha (s,\theta )={E}( {w}^{\theta }) -\theta |\nabla _{\mathrm{h}} {w}_{3}^{ \theta }|_{0}^{2}\). Thus, in view of the monotonicity of \(\alpha (\cdot ,\theta )\), we know that
which yields
Thus, for any \(\vartheta _{1}\), \(\vartheta _{2}\in [b_{1},b_{2}]\),
Reversing the role of indices 1 and 2 in the derivation of the above inequality, we obtain the same boundedness with the indices switched. Therefore, we deduce that
which yields \(\alpha (s,\vartheta )\in C^{0,1}_{\mathrm{loc}}(\mathbb{R}^{+})\). This completes the proof. □
5.2 Proof of Theorem 2.2
First, we verify the monotonicity of \(\Lambda _{\vartheta }\) with respect to the variable \(\vartheta \in [0, \vartheta _{\mathrm{c}})\).
For given two constants \(\vartheta _{1}\) and \(\vartheta _{2}\) satisfying \(0\leqslant \vartheta _{1}<\vartheta _{2}< \vartheta _{\mathrm{c}}\), there exist two associated curve functions \(\alpha (s,\vartheta _{1})\) and \(\alpha (s,\vartheta _{2})\) defined in \((0,\vartheta _{\mathrm{c}})\). By the first assertion in Proposition 5.1,
On the one hand, the fixed point \(\Lambda _{\vartheta _{i}}\) satisfying \(\Lambda _{\vartheta _{i}}=\sqrt{\alpha (\Lambda _{\vartheta _{i}})}\) can be obtained from the intersection point of the two curves \(y=s\) and \(y=\sqrt{\alpha (s,\vartheta _{i})}\) on \((0,\mathcal{G}_{\vartheta _{i}})\) for \(i=1\) and 2. Thus we can immediately observe the monotonicity
Second, we prove the continuity for \(\Lambda _{\vartheta }\).
We choose a constant \(\vartheta _{0}>0\) and an associated function \(\alpha (s,\vartheta _{0})\). Noting that \(\alpha (\Lambda _{\vartheta _{0}},\vartheta _{0})=\Lambda ^{2}_{ \vartheta _{0}}>0\) and \(\alpha (\cdot ,\vartheta )\in C^{0,1}_{\mathrm{loc}}[0,\vartheta _{ \mathrm{c}})\) are strictly decreasing and continuous with respect to ϑ, for any given \(\varepsilon >0\), there exists a constant \(\delta >0\) such that
and
In particular, we have
By the monotonicity of \(\Lambda _{\vartheta }\) with respect to ϑ, we get
Thus, using the monotonicity of \(\alpha (s,\cdot )\) with respect to s, we obtain
and
Chaining the five inequalities above, we immediately get
Then, for any \(\vartheta \in (\vartheta _{0}-\delta ,\vartheta _{0}+\delta )\), we arrive at \(\Lambda _{\vartheta _{0}}-\varepsilon <\Lambda _{\vartheta }<\Lambda _{ \vartheta _{0}}+\varepsilon \). Hence
Now we study the limit of \(\Lambda _{\vartheta }\) as \(\vartheta \to 0\). For any \(\varepsilon >0\), there exists \({w}\in \mathcal{A}_{0} \) such that
In addition,
Thus, making use of (2.6), (5.7), and (5.8), there exists a sufficiently small constant \(\vartheta _{1}\in (0,\vartheta _{\mathrm{c}})\) such that, for any \(\vartheta \in (0,\vartheta _{1})\),
Hence we get
which, together with (5.6), yields that
Finally, we derive the upper bound (2.1) for \(\Lambda _{\vartheta }\).
Recalling the definition of \(\vartheta _{\mathrm{c}}\), we see from (3.4) that
Hence, by virtue of (2.6), for any given \(\vartheta \in [0,\vartheta _{\mathrm{c}})\), there exists \({w}^{\vartheta }\in \mathcal{A}_{\vartheta }\) such that
which yields that
By (3.6) and trace estimate (3.9), we can estimate that
Similarly, we also have
By the above two estimates, we derive from (5.11) that
which yields that
Noting that \(\|\sqrt{\rho }{w}^{\vartheta } \|_{0}=1\), by (3.16), we have
Putting the above estimate into (5.11) and then using Young’s inequality, we get
which yields that
Similarly, we also have
Summing up the above two estimates yields that
which, together with (5.12), implies that
Consequently we complete the proof of Theorem 2.2 from (5.5), (5.10), and (5.16).
6 Conclusion
We investigate the effect of (interface) surface tension on the linear Rayleigh–Taylor (RT) instability in stratified incompressible viscous fluids. The existence of linear RT instability solutions with largest growth rate Λ is proved under the instability condition (i.e., the surface tension coefficient ϑ is less than a threshold \(\vartheta _{\mathrm{c}}\)) by the modified variational method of PDEs. Moreover, we find a new upper bound for Λ. In particular, we directly observe from the upper bound that Λ decreasingly converges to zero as ϑ goes from zero to the threshold \(\vartheta _{\mathrm{c}}\). However, we have no idea to provide a numerical example, since it is very difficult for us to do the numerical experiment for the motion of stratified fluids in three dimensions. We will further investigate this topic in the future.
Availability of data and materials
Not applicable.
References
Bellman, R., Pennington, R.: Effects of surface tension and viscosity on Taylor instability. Q. Appl. Math. 12, 151–162 (1954)
Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Clarendon, Oxford (1961)
Chen, Y.P., Wang, W.W., Zhao, Y.Y.: On effects of elasticity and magnetic fields in the linear Rayleigh–Taylor instability of stratified fluids. J. Inequal. Appl. 2018, 203 (2018)
Dai, Z.F., Kang, J.: Some new efficient mean-variance portfolio selection models. Int. J. Finance Econ. (2021). https://doi.org/10.1002/ijfe.2400
Dai, Z.F., Kang, J., Wen, F.: Predicting stock returns: a risk measurement perspective. Int. Rev. Financ. Anal. 74, 101676 (2021)
Duan, R., Jiang, F., Yin, J.P.: Rayleigh–Taylor instability for compressible rotating flows. Acta Math. Sci. Ser. B Engl. Ed. 35, 1359–1385 (2015)
Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (1998)
Garnier, J., Cherfils-Clérouin, C., Holstein, P.A.: Statistical analysis of multimode weakly nonlinear Rayleigh–Taylor instability in the presence of surface tension. Phys. Rev. E 68, 036401 (2003)
Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, Berlin (2008)
Guo, Y., Tice, I.: Compressible, inviscid Rayleigh–Taylor instability. Indiana Univ. Math. J. 60, 677–712 (2011)
Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688–1720 (2011)
Haan, S.W.: Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids, B Plasma Phys. 3, 2349 (1991)
Huang, G.J., Jiang, J., Wang, W.W.: On the nonlinear Rayleigh–Taylor instability of nonhomogeneous incompressible viscoelastic fluids under \(L^{2}\)-norm. J. Math. Anal. Appl. 455, 873–904 (2017)
Hwang, H.J., Guo, Y.: On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167, 235–253 (2003)
Jang, J., Tice, I., Wang, Y.J.: The compressible viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 221, 215–272 (2016)
Jang, J., Tice, I., Wang, Y.J.: The compressible viscous surface-internal wave problem: stability and vanishing surface tension limit. Commun. Math. Phys. 343, 1039–1113 (2016)
Jiang, F., Jiang, S.: On instability and stability of three-dimensional gravity driven viscous flows in a bounded domain. Adv. Math. 264, 831–863 (2014)
Jiang, F., Jiang, S.: On linear instability and stability of the Rayleigh–Taylor problem in magnetohydrodynamics. J. Math. Fluid Mech. 17, 639–668 (2015)
Jiang, F., Jiang, S.: On the stabilizing effect of the magnetic fields in the magnetic Rayleigh–Taylor problem. SIAM J. Math. Anal. 50, 491–540 (2018)
Jiang, F., Jiang, S.: On the dynamical stability and instability of Parker problem. Physica D 391, 17–51 (2019)
Jiang, F., Jiang, S., Wang, W.W.: Nonlinear Rayleigh–Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic fluids. Discrete Contin. Dyn. Syst., Ser. S 9, 1853–1898 (2016)
Jiang, F., Jiang, S., Wang, Y.J.: On the Rayleigh–Taylor instability for the incompressible viscous magnetohydrodynamic equations. Commun. Partial Differ. Equ. 39, 399–438 (2014)
Jiang, F., Jiang, S., Wu, G.C.: On stabilizing effect of elasticity in the Rayleigh–Taylor problem of stratified viscoelastic fluids. J. Funct. Anal. 272, 3763–3824 (2017)
Jiang, F., Jiang, S., Zhan, W.: Instability of the abstract Rayleigh–Taylor problem and applications. Math. Models Methods Appl. Sci. 30, 2299–2388 (2020)
Jiang, F., Wu, G.C., Zhong, X.: On exponential stability of gravity driven viscoelastic flows. J. Differ. Equ. 260, 7498–7534 (2016)
Novotnỳ, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, London (2004)
Prüess, J., Simonett, G.: On the Rayleigh–Taylor instability for the two-phase Navier–Stokes equations. Indiana Univ. Math. J. 59, 1853–1871 (2010)
Rayleigh, L.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Sci. Pap. II, 200–207 (1990)
Taylor, G.I.: The stability of liquid surface when accelerated in a direction perpendicular to their planes. Proc. R. Soc. A 201, 192–196 (1950)
Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)
Wang, J.: Two-Dimensional Nonsteady Flows and Shock Waves. Science Press, Beijing (1994) (in Chinese)
Wang, W.W., Zhao, Y.Y.: On the Rayleigh–Taylor instability in compressible viscoelastic fluids. J. Math. Anal. Appl. 463, 198–221 (2018)
Wang, Y.: Critical magnetic number in the MHD Rayleigh–Taylor instability. J. Math. Phys. 53, 073701 (2012)
Wang, Y.: Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D. Arch. Ration. Mech. Anal. 231, 1675–1743 (2019)
Wang, Y., Tice, I.: The viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability. Commun. Partial Differ. Equ. 37, 1967–2028 (2012)
Wang, Y.J., Tice, I., Kim, C.: The viscous surface-internal wave problem: global well-posedness and decay. Arch. Ration. Mech. Anal. 212, 1–92 (2014)
Wilke, M.: Rayleigh–Taylor instability for the two-phase Navier–Stokes equations with surface tension in cylindrical domains, Habilitations–Schrift Universität Halle. Naturwissenschaftliche Fakultäxt II (2013). arXiv:1703.05214
Acknowledgements
The authors would like to thank the anonymous referee for invaluable suggestions, which improved the presentation of this paper. The authors also thank Prof. Jiang for kind discussion.
Funding
The research of Changsheng Dou was supported by NSFC (Grant No. 11671273), BJNSF (Grant No. 1182007), Top young talents of Beijing Gaochuang project, Special Fund for Fundamental Scientific Research of Beijing Colleges in CUEB (QNTD202109) and CUEB’s Fund Project for reserved discipline leader, and Weiwei Wang by the Natural Science Foundation of Fujian Province of China (2020J02013).
Author information
Authors and Affiliations
Contributions
All authors have made the same contribution and finalized the current version of this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Dou, C., Wang, J. & Wang, W. A new upper bound for the largest growth rate of linear Rayleigh–Taylor instability. J Inequal Appl 2021, 78 (2021). https://doi.org/10.1186/s13660-021-02613-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-021-02613-y
Keywords
- Rayleigh–Taylor instability
- Stratified viscous fluids
- Incompressible fluids
- Surface tension