Skip to main content

Certain new proportional and Hadamard proportional fractional integral inequalities

Abstract

The main goal of this paper is estimating certain new fractional integral inequalities for the extended Chebyshev functional in the sense of synchronous functions by employing proportional fractional integral (PFI) and Hadamard proportional fractional integral. We establish certain inequalities concerning one- and two-parameter proportional and Hadamard proportional fractional integrals. We also discuss certain particular cases.

Introduction

The integral inequalities play a major role in the field of differential equations and applied mathematics. Applications of integral inequalities are found in applied sciences, such as statistical problems, transform theory, numerical quadrature, and probability. In the last few years, many researchers have established various types of integral inequalities by employing different approaches. The interested readers are suggested to see [4, 5, 8, 14, 15, 17, 18]. In [28, 3941] the researchers established different kinds of integral inequalities by employing various types of fractional integrals.

In the last few years, the field of fractional calculus has been extensively studied due to wide applications in diverse domains. Several different kinds of fractional integral and derivative operators have been investigated. We refer the readers to [13, 6, 7, 11, 21, 24]. In [20, 22] the authors introduced the idea of fractional conformable integral operators. Jarad et al. [19] introduced the idea of proportional fractional integral operators. Recently, the researchers have established certainly remarkable inequalities, properties, and applications of the fractional conformable integrals and generalized proportional integrals [27, 29, 3337, 42]. Rahman et al. [37] recently established bounds of proportional fractional integrals for convex functions and their applications.

We consider the following extended Chebyshev functional:

$$\begin{aligned} \mathfrak{T} (\mathcal{U}, \mathcal{V},\mu ,\nu ) =& \int _{r}^{s} \mu (\vartheta )\,d\vartheta \int _{r}^{s} \nu (\vartheta )\mathcal{U}( \vartheta )\mathcal{V}(\vartheta )\,d\vartheta \\ &{}+ \int _{r}^{s} \nu ( \vartheta )\,d\vartheta \int _{r}^{s} \mu (\vartheta )\mathcal{U}( \vartheta )\mathcal{V}(\vartheta )\,d\vartheta \\ &{}- \biggl( \int _{r}^{s} \nu (\vartheta )\mathcal{U}( \vartheta )\,d\vartheta \biggr) \biggl( \int _{r}^{s} \mu (\vartheta )\mathcal{V}( \vartheta )\,d\vartheta \biggr) \\ &{}- \biggl( \int _{r}^{s} \mu (\vartheta ) \mathcal{U}( \vartheta )\,d\vartheta \biggr) \biggl( \int _{r}^{s} \nu ( \vartheta )\mathcal{V}( \vartheta )\,d\vartheta \biggr), \end{aligned}$$
(1)

where the functions \(\mathcal{U}\) and \(\mathcal{V}\) are integrable on \([r,s]\), and the functions μ and ν are positive and integrable on \([r,s]\). The functions \(\mathcal{U}\) and \(\mathcal{V}\) are said to be synchronous on \([r,s]\) if

$$ \bigl(\mathcal{U}(\rho )-\mathcal{U}(\zeta ) \bigr) \bigl( \mathcal{V}(\rho )- \mathcal{V}(\zeta ) \bigr)\geq 0,\quad \rho ,\zeta \in [r,s]. $$

The functions \(\mathcal{U}\) and \(\mathcal{V}\) are said to be asynchronous on \([r,s]\) if the inequality is reversed, that is,

$$ \bigl(\mathcal{U}(\rho )-\mathcal{U}(\zeta ) \bigr) \bigl( \mathcal{V}(\rho )- \mathcal{V}(\zeta ) \bigr)\leq 0,\quad \rho ,\zeta \in [r,s]. $$

If the functions \(\mathcal{U}\) and \(\mathcal{V}\) are synchronous on \([r,s]\), then \(\mathfrak{T} (\mathcal{U}, \mathcal{V},\mu ,\nu )\geq 0\). For more detail, see Kuang [23] and Mitrinovic [26]. The Chebyshev functional (1) leads to the Chebyshev inequality [12] if \(\mu (\vartheta )=\nu (\vartheta )=1\), \(\vartheta \in [r,s]\). Ostrowski [30] obtained the following generalization of the Chebyshev inequality: Let \(\mathcal{U}\) and \(\mathcal{V}\) be differentiable and synchronous functions on \([r,s]\) such that \(|\mathcal{U}^{\prime }(\vartheta )|\geq m\) and \(|\mathcal{V}^{\prime }(\vartheta )|\geq k\) for \(\vartheta \in [r,s]\), and let μ be a positive integrable function on \([r,s]\). Then

$$ \mathfrak{T} (\mathcal{U}, \mathcal{V},\mu )=\mathfrak{T} (\mathcal{U}, \mathcal{V},\mu ,\nu )\geq mk\mathfrak{T} (\vartheta -a, \vartheta -a;\mu )\geq 0. $$

If the functions \(\mathcal{U}\) and \(\mathcal{V}\) are asynchronous on \([r,s]\), then

$$ \mathfrak{T} (\mathcal{U}, \mathcal{V},\mu )=\mathfrak{T} (\mathcal{U}, \mathcal{V},\mu ,\nu )\leq mk\mathfrak{T} (\vartheta -a, b-\vartheta ;\mu )\leq 0. $$

If \(\mathcal{U}\) and \(\mathcal{V}\) are differentiable functions on \([r,s]\) such that \(|\mathcal{U}^{\prime }(\vartheta )|\geq M\) and \(| \mathcal{V}^{\prime }(\vartheta )|\geq K\) for \(\vartheta \in [r,s]\) and μ is a positive integrable function on \([r,s]\), then

$$ \bigl\vert \mathfrak{T} (\mathcal{U}, \mathcal{V},\mu ) \bigr\vert \leq MK \mathfrak{T} (\vartheta -a, \vartheta -a;\mu )\leq 0. $$

The researchers studied the functional \(\mathfrak{T} (\mathcal{U}, \mathcal{V},\mu )\) and established several extensions and generalizations, which can be found in [9, 10, 16, 25].

Preliminaries

In this section, we present some well-known definitions and mathematical preliminaries of fractional calculus.

Definition 2.1

([31, 38])

The Riemann–Liouville (left and right)-sided fractional integrals of order \(\kappa >0\) are respectively given by

$$ \bigl({}_{r}\mathfrak{J}^{\kappa }\mathcal{U} \bigr) (x)= \frac{1}{\Gamma (\kappa )} \int _{r}^{\vartheta }(\vartheta -\xi )^{ \kappa -1} \mathcal{U}(\xi )\,d\xi ,\quad r< \vartheta , $$
(2)

and

$$ \bigl(\mathfrak{J}_{b}^{\kappa }\mathcal{U} \bigr) (\vartheta )= \frac{1}{\Gamma (\kappa )} \int _{\vartheta }^{s}(\xi -\vartheta )^{ \kappa -1} \mathcal{U}(\xi )\,d\xi , \quad \vartheta < s, $$
(3)

where \(\Gamma (\kappa )\) is the classic gamma function.

Definition 2.2

([19])

The left-sided PFI (proportional fractional integral) is defined by

$$ \bigl({}_{r}\mathfrak{J}^{\kappa ,\omega }\mathcal{U} \bigr) ( \vartheta )=\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{r}^{\vartheta }\exp \biggl[\frac{\omega -1}{\omega }( \vartheta -\xi )\biggr] ( \vartheta -\xi )^{\kappa -1}\mathcal{U}(\xi )\,d\xi ,\quad r< \vartheta , $$
(4)

where \(\kappa >0\) is the order of PFI, and \(\omega \in (0,1]\) is the proportionality index.

Definition 2.3

The right-sided PFI (proportional fractional integral) is defined by

$$ \bigl(\mathfrak{J}_{b}^{\kappa ,\omega }\mathcal{U} \bigr) (x)= \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{\vartheta }^{s}\exp \biggl[ \frac{\omega -1}{\omega }( \xi -\vartheta )\biggr](\xi -\vartheta )^{\kappa -1} \mathcal{U}(\xi )\,d\xi ,\quad \vartheta < s. $$
(5)

Remark 2.1

Setting \(\omega =1\) in (4) and (5), we obtain the Riemann–Liouville integrals (2) and (3), respectively.

In this paper, we consider the following one-sided PFI-operator.

Definition 2.4

The one-sided PFI is defined by

$$ \bigl(\mathfrak{J}_{0}^{\kappa ,\omega }\mathcal{U} \bigr) ( \vartheta )= \bigl(\mathfrak{J}^{\kappa ,\omega }\mathcal{U} \bigr) ( \vartheta )=\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }\exp \biggl[\frac{\omega -1}{\omega }( \vartheta -\xi )\biggr] ( \vartheta -\xi )^{\kappa -1}\mathcal{U}(\xi )\,d\xi , $$
(6)

where \(\kappa >0\) is the order of PFI, and \(\omega \in (0,1]\) is the proportionality index.

Definition 2.5

The left-sided Hadamard fractional integral of order \(\kappa >0\) is defined by

$$ \bigl({}_{r}\mathcal{H}^{\kappa } \mathcal{U} \bigr) (\vartheta )= \frac{1}{\Gamma (\kappa )} \int _{r}^{\vartheta }(\ln \vartheta -\ln t)^{ \kappa -1}\frac{\mathcal{U}(\xi )}{\xi }\,d\xi , \quad r< \vartheta . $$
(7)

Definition 2.6

The right-sided Hadamard fractional integral of order \(\kappa >0\) is defined by

$$ \bigl(\mathcal{H}_{b}^{\kappa } \mathcal{U} \bigr) (\vartheta )= \frac{1}{\Gamma (\kappa )} \int _{\vartheta }^{s}(\ln \xi -\ln \vartheta )^{\kappa -1}\frac{\mathcal{U}(\xi )}{\xi }\,d\xi ,\quad \vartheta < s. $$
(8)

Definition 2.7

The one-sided Hadamard fractional integral of order \(\kappa >0\) is defined by

$$ \bigl(\mathcal{H}_{1,\vartheta }^{\kappa } \mathcal{U} \bigr) ( \vartheta )=\frac{1}{\Gamma (\kappa )} \int _{1}^{\vartheta }(\ln \vartheta -\ln \xi )^{\kappa -1}\frac{\mathcal{U}(\xi )}{\xi }\,d\xi ,\quad \vartheta >1. $$
(9)

Rahman et al. [32] recently presented the following generalized Hadamard proportional fractional integrals.

Definition 2.8

The left-sided Hadamard proportional fractional integral is defined by

$$\begin{aligned}& \bigl({}_{r}\mathcal{H}^{\kappa ,\omega } \mathcal{U} \bigr) ( \vartheta ) \\& \quad =\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{r}^{\vartheta }\exp \biggl[\frac{\omega -1}{\omega }( \ln \vartheta -\ln \xi )\biggr]( \ln \vartheta -\ln \xi )^{\kappa -1} \frac{\mathcal{U}(\xi )}{\xi }\,d\xi ,\quad r< \vartheta . \end{aligned}$$
(10)

Definition 2.9

The right-sided Hadamard proportional fractional integral is defined by

$$\begin{aligned}& \bigl(\mathcal{H}_{b}^{\kappa ,\omega } \mathcal{U} \bigr) ( \vartheta ) \\& \quad =\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{\vartheta }^{s} \exp \biggl[\frac{\omega -1}{\omega }( \ln \xi -\ln \vartheta )\biggr](\ln \xi - \ln \vartheta )^{\kappa -1} \frac{\mathcal{U}(\xi )}{\xi }\,d\xi , \quad \vartheta < s. \end{aligned}$$
(11)

Definition 2.10

The one-sided Hadamard proportional fractional integral is defined by

$$\begin{aligned}& \bigl(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } \mathcal{U} \bigr) ( \vartheta ) \\& \quad =\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }\exp \biggl[\frac{\omega -1}{\omega }( \ln \vartheta -\ln \xi )\biggr]( \ln \vartheta -\ln \xi )^{\kappa -1} \frac{\mathcal{U}(\xi )}{\xi }\,d\xi ,\quad \vartheta >1, \end{aligned}$$
(12)

where \(\kappa >0\) is the order, and \(\omega \in (0,1]\) is the proportionality index.

Remark 2.2

Setting \(\omega =1\), (10)–(12) lead to integrals (7)–(9), respectively.

The following results can be easily proved.

Lemma 2.1

$$\begin{aligned}& \biggl(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega }\exp \biggl[ \frac{\omega -1}{\omega }(\ln \vartheta )\biggr](\ln \vartheta )^{\lambda -1} \biggr) (\vartheta ) \\& \quad = \frac{\Gamma (\lambda )}{\omega ^{\kappa }\Gamma (\kappa +\lambda )} \exp \biggl[\frac{\omega -1}{\omega }(\ln \vartheta )\biggr](\ln \vartheta )^{ \kappa +\lambda -1}, \end{aligned}$$
(13)

and

$$ \bigl(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } \bigr) \bigl( \mathcal{H}_{1,\vartheta }^{\lambda ,\omega } \bigr)\mathcal{U}( \vartheta )= \bigl(\mathcal{H}_{1,\vartheta }^{\kappa +\lambda ,\omega } \bigr)\mathcal{U}(\vartheta ) $$
(14)

(the semigroup property).

Remark 2.3

Setting \(\omega =1\), (13) reduces to (see [38])

$$ \bigl(\mathcal{H}_{1,\vartheta }^{\kappa }(\ln \vartheta )^{\lambda -1} \bigr) (\vartheta )= \frac{\Gamma (\lambda )}{\Gamma (\kappa +\lambda )}(\ln \vartheta )^{ \kappa +\lambda -1}. $$
(15)

The paper is organized as follows. In Sect. 3, we present two integral inequalities for the extended Chebyshev functional. The first result concerns one-parameter PFI, and the second one deals with two-parameter PFI. In Sect. 4, we establish integral inequalities for the extended Chebyshev functional by employing the Hadamard proportional fractional integral.

Certain fractional proportional integral inequalities

In this section, we present proportional fractional integral inequalities for the extended Chebyshev functional (1) by utilizing the PFI (6). To establish our main result, we first prove the following lemma.

Lemma 3.1

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(v,w:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >0\), \(\kappa >0\), and \(\omega \in (0,1]\), we have the following inequality for the PFI-operator (6):

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (v ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (w\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (w ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (v \mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (w\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\kappa ,\omega } (w\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (v\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(16)

Proof

Since the functions \(\mathcal{U}\) and \(\mathcal{V}\) are synchronous on \([0,\infty )\), for all \(\rho \geq 0\) and \(\zeta \geq 0\), we have

$$ \bigl(\mathcal{U}(\rho )-\mathcal{U}(\zeta ) \bigr) \bigl( \mathcal{V}(\rho )- \mathcal{V}(\zeta ) \bigr)\geq 0. $$

Therefore

$$ \mathcal{U}(\rho )\mathcal{V}(\rho )+\mathcal{U}(\zeta ) \mathcal{V}( \zeta )\geq \mathcal{U}(\rho )\mathcal{V}(\zeta )+\mathcal{U}(\zeta ) \mathcal{V}(\rho ). $$
(17)

Multiplying (17) by \(\frac{1}{\omega ^{\kappa }\Gamma (\kappa )}e^{\frac{\omega -1}{\omega }( \vartheta -\rho )}(\vartheta -\rho )^{\kappa -1}v(\rho )\), \(\rho \in (0, \vartheta )\), and integrating the obtained inequality with respect to ρ over \((0,\vartheta )\), we get

$$\begin{aligned}& \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\rho )}(\vartheta -\rho )^{ \kappa -1}v(\rho )\mathcal{U}(\rho )\mathcal{V}(\rho )\,d\rho \\& \qquad {}+ \mathcal{U}( \zeta )\mathcal{V}(\zeta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\rho )}(\vartheta -\rho )^{ \kappa -1}v(\rho ) \,d\rho \\& \quad \geq \mathcal{V}(\zeta )\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{\frac{\omega -1}{\omega }(\vartheta -\rho )}( \vartheta -\rho )^{\kappa -1}v(\rho )\mathcal{U}(\rho )\,d\rho \\& \qquad {}+ \mathcal{U}(\zeta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{\frac{\omega -1}{\omega }(\vartheta -\rho )}(\vartheta - \rho )^{\kappa -1}v(\rho ). \mathcal{V}(\rho )\,d\rho . \end{aligned}$$

In view of (6), we get

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathcal{U}(\zeta )\mathcal{V}(\zeta )\mathfrak{J}^{ \kappa ,\omega } (v ) (\vartheta ) \\ &\quad \geq \mathcal{V}(\zeta )\mathfrak{J}^{\kappa ,\omega } (v \mathcal{U} ) ( \vartheta )+\mathcal{U}(\zeta )\mathfrak{J}^{ \kappa ,\omega } (v\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(18)

Now multiplying (18) by \(\frac{1}{\omega ^{\kappa }\Gamma (\kappa )}e^{\frac{\omega -1}{\omega }( \vartheta -\zeta )}(\vartheta -\zeta )^{\kappa -1}w(\zeta )\), \(\zeta \in (0,\vartheta )\), and integrating the obtained inequality with respect to ζ over \((0,\vartheta )\), we obtain

$$\begin{aligned}& \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta )\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{\frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta - \zeta )^{\kappa -1}w(\zeta )\,d\zeta \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (v ) (\vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta -\zeta )^{ \kappa -1}w(\zeta ) \mathcal{U}(\zeta )\mathcal{V}(\zeta )\,d\zeta \\& \quad \geq \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U} ) ( \vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{\frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta - \zeta )^{\kappa -1}w(\zeta )\mathcal{V}(\zeta )\,d\zeta \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (v\mathcal{V} ) ( \vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{0}^{\vartheta }e^{\frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta - \zeta )^{\kappa -1}w(\zeta )\mathcal{U}(\zeta )\,d\zeta , \end{aligned}$$
(19)

which in view of (6) gives the desired inequality (16). □

Theorem 3.1

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(r, p, q:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >0\), \(\kappa >0m\) and \(\omega \in (0,1]\), we have the following inequality for the PFI-operator (6):

$$\begin{aligned}& 2\mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega }p(\vartheta )\mathfrak{J}^{\kappa , \omega } (q \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ 2\mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) (r \mathcal{U}\mathcal{V} ) (\vartheta ) \\& \quad \geq \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\kappa ,\omega } (q\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (q\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) (\vartheta ) \bigr] \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) (\vartheta ) \bigr] . \end{aligned}$$
(20)

Proof

Taking \(v=p\) and \(w=q\) in Lemma 3.1, we obtain

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (q\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (p \mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\kappa ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(21)

Multiplying both sides of (21) by \(\mathfrak{J}^{\kappa ,\omega } (r )(\vartheta )\), we get

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta )\mathfrak{J}^{ \kappa ,\omega } (q \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q ) ( \vartheta )\mathfrak{J}^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\kappa ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\kappa ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(22)

Now taking \(v=r\) and \(w=q\) in Lemma 3.1, we have

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (q\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (r \mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\kappa ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(23)

Multiplying both sides of (23) by \(\mathfrak{J}^{\kappa ,\omega } (p )(\vartheta )\), we get

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta )\mathfrak{J}^{ \kappa ,\omega } (q \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q ) ( \vartheta )\mathfrak{J}^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\kappa ,\omega } (q\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(24)

Similarly, taking \(v=r\) and \(w=p\) in Lemma 3.1 and then multiplying both sides of the resultant inequality by \(\mathfrak{J}^{\kappa ,\omega } (q )(\vartheta )\), we obtain

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta )\mathfrak{J}^{ \kappa ,\omega } (p \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\kappa ,\omega } (p ) ( \vartheta )\mathfrak{J}^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(25)

Hence by adding (22), (24), and (25) we get the desired statement (20). □

Remark 3.1

Setting \(\omega =1\) in Theorem 3.1, we get Theorem 2 proved by Dahmani [14].

Lemma 3.2

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(v,w:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >0\), \(\kappa , \eta >0\), and \(\omega \in (0,1]\), we have the following inequality for the PFI-operator (6):

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (v ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (w\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (w ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (v \mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\eta ,\omega } (w\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (w\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (v\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(26)

Proof

Multiplying (19) by \(\frac{1}{\omega ^{\eta }\Gamma (\eta )}e^{\frac{\omega -1}{\omega }( \vartheta -\zeta )}(\vartheta -\zeta )^{\eta -1}w(\zeta ), \zeta \in (0, \vartheta )\) and integrating the obtained inequality with respect to ζ over \((0,\vartheta )\), we obtain

$$\begin{aligned}& \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta -\zeta )^{ \eta -1}w(\zeta )\,d\zeta \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (v ) (\vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta -\zeta )^{ \eta -1}w(\zeta )\mathcal{U}(\zeta )\mathcal{V}(\zeta )\,d\zeta \\& \quad \geq \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U} ) ( \vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta -\zeta )^{ \eta -1}w(\zeta )\mathcal{V}(\zeta )\,d\zeta \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (v\mathcal{V} ) ( \vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{0}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\vartheta -\zeta )}(\vartheta -\zeta )^{ \eta -1}w(\zeta )\mathcal{U}(\zeta )\,d\zeta , \end{aligned}$$

which by (6) gives

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (v ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (w \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (w ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (v\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\eta ,\omega } (w\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (w\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (v\mathcal{V} ) ( \vartheta ). \end{aligned}$$

This completes the proof of Lemma 3.2. □

Remark 3.2

Setting \(\kappa =\eta \) in Lemma 3.2, we get Lemma 3.1.

Theorem 3.2

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(r, p, q:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >0\), \(\kappa >0m\) and \(\omega \in (0,1]\), we have the following inequality for the PFI-operator (6):

$$\begin{aligned}& \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega }p(\vartheta )\mathfrak{J}^{\eta ,\omega } (q \mathcal{U}\mathcal{V} ) (\vartheta )+2\mathfrak{J}^{ \kappa ,\omega } (p ) ( \vartheta )\mathfrak{J}^{\eta , \omega } (q\mathcal{U}\mathcal{V} ) (\vartheta ) \\& \qquad {}+ \mathfrak{J}^{\eta ,\omega } (q ) (\vartheta ) \mathfrak{J}^{ \kappa ,\omega } (p \mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\& \qquad {}+ \bigl[\mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (q ) (\vartheta )+ \mathfrak{J}^{ \eta ,\omega } (p ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigr] \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U}\mathcal{V} ) (\vartheta ) \\& \quad \geq \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\eta ,\omega } (q\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (q\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (q\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (q\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) (\vartheta ) \bigr] \\& \qquad {}+ \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (p\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (p\mathcal{U} ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) (\vartheta ) \bigr] . \end{aligned}$$
(27)

Proof

Taking \(v=p\) and \(w=q\) in Lemma 3.2, we obtain

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (q\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (q ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (p \mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\eta ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(28)

Multiplying (28) by \(\mathfrak{J}^{\kappa ,\omega } (r )(\vartheta )\), we get

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta )\mathfrak{J}^{ \eta ,\omega } (q \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\eta ,\omega } (q ) ( \vartheta )\mathfrak{J}^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (p\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\eta ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(29)

Setting \(v=r\) and \(w=q\) in Lemma 3.2, we obtain

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta ) \mathfrak{J}^{\eta ,\omega } (q\mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (q ) (\vartheta ) \mathfrak{J}^{\kappa ,\omega } (r \mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\eta ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(30)

Multiplying (30) by \(\mathfrak{J}^{\kappa ,\omega } (p )(\vartheta )\), we get

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta )\mathfrak{J}^{ \eta ,\omega } (q \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\eta ,\omega } (q ) ( \vartheta )\mathfrak{J}^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (p ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\eta ,\omega } (q\mathcal{V} ) ( \vartheta )+\mathfrak{J}^{\eta ,\omega } (q\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(31)

Similarly, setting \(v=r\) and \(w=p\) in Lemma 3.2 and multiplying both sides of the resultant inequality by \(\mathfrak{J}^{\kappa ,\omega } (q )(\vartheta )\), we obtain

$$\begin{aligned} &\mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r ) (\vartheta )\mathfrak{J}^{ \eta ,\omega } (p \mathcal{U}\mathcal{V} ) (\vartheta )+ \mathfrak{J}^{\eta ,\omega } (p ) ( \vartheta )\mathfrak{J}^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) (\vartheta ) \bigr] \\ &\quad \geq \mathfrak{J}^{\kappa ,\omega } (q ) (\vartheta ) \bigl[ \mathfrak{J}^{\kappa ,\omega } (r\mathcal{U} ) ( \vartheta )\mathfrak{J}^{\eta ,\omega } (p\mathcal{V} ) ( \vartheta )+ \mathfrak{J}^{\eta ,\omega } (p\mathcal{U} ) ( \vartheta ) \mathfrak{J}^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(32)

Hence we obtain statement (27) by adding inequalities (29), (31), and (32). □

Remark 3.3

Setting \(\kappa =\eta \) in Theorem 3.2, we get Theorem 3.1.

Remark 3.4

Setting \(\omega =1\) in Theorem 3.2, we get Theorem 4 proved by Dahmani [14].

Remark 3.5

Inequalities (20) and (27) will be reversed in the following cases:

  1. (i)

    The functions \(\mathcal{U}\) and \(\mathcal{V}\) are asynchronous on \([0,\infty )\).

  2. (ii)

    The functions r, p, and q are negative on \([0,\infty )\).

  3. (iii)

    Two of the functions r, p, and q are positive, and the third one is negative on \([0,\infty )\).

Remark 3.6

The Chebyshev inequality [12] on \([0,x]\) can be obtained for any \(\vartheta \in [0,\infty )\) if we set \(\kappa =\eta =\omega =1\) and \(p(\vartheta )=q(\vartheta )=r(\vartheta )=1\) in Theorem 3.2.

Inequalities via Hadamard proportional fractional integral

In this section, we present some inequalities for the extended Chebyshev functional (1) by employing the Hadamard proportional fractional integral (12).

Lemma 4.1

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(v,w:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >1\), \(\kappa >0\), and \(\omega \in (0,1]\), we have the following inequality for (12):

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v ) ( \vartheta )\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (w \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (w ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (w \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (w\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (v\mathcal{V} ) (\vartheta ). \end{aligned}$$
(33)

Proof

Since the functions \(\mathcal{U}\) and \(\mathcal{V}\) are synchronous on \([0,\infty )\), for all \(\rho \geq 0\), \(\zeta \geq 0\), we have

$$ \bigl(\mathcal{U}(\rho )-\mathcal{U}(\zeta ) \bigr) \bigl( \mathcal{V}(\rho )- \mathcal{V}(\zeta ) \bigr)\geq 0. $$

Therefore

$$ \mathcal{U}(\rho )\mathcal{V}(\rho )+\mathcal{U}(\zeta ) \mathcal{V}( \zeta )\geq \mathcal{U}(\rho )\mathcal{V}(\zeta )+\mathcal{U}(\zeta ) \mathcal{V}(\rho ). $$
(34)

Multiplying (34) by \(\frac{1}{\omega ^{\kappa }\Gamma (\kappa )}e^{\frac{\omega -1}{\omega }( \ln \vartheta -\ln \rho )}(\ln \vartheta -\ln \rho )^{\kappa -1} \frac{v(\rho )}{\rho }, \rho \in (1,\vartheta )\), and integrating the obtained inequality with respect to ρ over \((1,\vartheta )\), we get

$$\begin{aligned}& \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\ln \vartheta -\ln \rho )}(\ln \vartheta - \ln \rho )^{\kappa -1}v(\rho )\mathcal{U}(\rho )\mathcal{V}(\rho ) \frac{d\rho }{\rho } \\& \qquad {}+ \mathcal{U}(\zeta )\mathcal{V}(\zeta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\ln \vartheta -\ln \rho )}(\ln \vartheta - \ln \rho )^{\kappa -1}v(\rho ) \frac{d\rho }{\rho } \\& \quad \geq \mathcal{V}(\zeta )\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \rho )}(\ln \vartheta - \ln \rho )^{\kappa -1}v(\rho )\mathcal{U}( \rho )\frac{d\rho }{\rho } \\& \qquad {}+ \mathcal{U}(\zeta )\frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \rho )}(\ln \vartheta - \ln \rho )^{\kappa -1}v(\rho ) \mathcal{V}(\rho ) \frac{d\rho }{\rho }. \end{aligned}$$

In view of (12), we get

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} \mathcal{V} ) (\vartheta )+ \mathcal{U}(\zeta )\mathcal{V}( \zeta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v ) ( \vartheta ) \\ &\quad \geq \mathcal{V}(\zeta )\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v \mathcal{U} ) (\vartheta )+\mathcal{U}(\zeta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{V} ) ( \vartheta ). \end{aligned}$$
(35)

Now multiplying (35) by \(\frac{1}{\omega ^{\kappa }\Gamma (\kappa )}e^{\frac{\omega -1}{\omega }( \ln \vartheta -\ln \zeta )}(\ln \vartheta -\ln \zeta )^{\kappa -1} \frac{w(\zeta )}{\zeta }, \zeta \in (1,\vartheta )\), and integrating the obtained inequality with respect to ζ over \((1,\vartheta )\), we obtain

$$\begin{aligned}& \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} \mathcal{V} ) ( \vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}(\ln \vartheta - \ln \zeta )^{\kappa -1}w(\zeta )\frac{d\zeta }{\zeta } \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v ) ( \vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}( \ln \vartheta - \ln \zeta )^{\kappa -1}w(\zeta ) \mathcal{U}(\zeta ) \mathcal{V}(\zeta ) \frac{d\zeta }{\zeta } \\& \quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} ) (\vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}( \ln \vartheta - \ln \zeta )^{\kappa -1}w(\zeta )\mathcal{V}(\zeta ) \frac{d\zeta }{\zeta } \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{V} ) (\vartheta ) \frac{1}{\omega ^{\kappa }\Gamma (\kappa )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}( \ln \vartheta - \ln \zeta )^{\kappa -1}w(\zeta )\mathcal{U}(\zeta ) \frac{d\zeta }{\zeta }, \end{aligned}$$

which in view of (6) gives the desired inequality (16). □

Theorem 4.1

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(r, p, q:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >1\), \(\kappa >0\), and \(\omega \in (0,1]\), we have the following inequality for (12):

$$\begin{aligned}& 2\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega }p( \vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ 2\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) (r\mathcal{U} \mathcal{V} ) (\vartheta ) \\& \quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (p\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (p\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr] . \end{aligned}$$
(36)

Proof

Taking \(v=p\) and \(w=q\) in Lemma 4.1, we obtain

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta )\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (p\mathcal{V} ) (\vartheta ). \end{aligned}$$
(37)

Multiplying (37) by \(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r )( \vartheta )\), we get

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(38)

Now taking \(v=r\) and \(w=q\) in Lemma 4.1, we have

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta )\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (r\mathcal{V} ) (\vartheta ). \end{aligned}$$
(39)

Multiplying (39) by \(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p )( \vartheta )\), we get

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(40)

Similarly, taking \(v=r\) and \(w=p\) in Lemma 4.1 and then multiplying both sides of the resultant inequality by \(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q )( \vartheta )\), we obtain

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p \mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa , \omega } (p\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (p\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(41)

Hence by adding (38), (40), and (41) we get the desired statement (36). □

Remark 4.1

Setting \(\omega =1\) in Theorem 4.1, we get Theorem 3.2 proved by Chinchane and Pachpatte [13].

Lemma 4.2

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(v,w:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >1\), \(\kappa , \eta >0\), and \(\omega \in (0,1]\), we have the following inequality for (12):

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v ) ( \vartheta )\mathcal{H}_{1,\vartheta }^{\eta ,\omega } (w \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (w ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (w \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\eta , \omega } (w\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (v\mathcal{V} ) (\vartheta ). \end{aligned}$$
(42)

Proof

Multiplying (35) by \(\frac{1}{\omega ^{\eta }\Gamma (\eta )}e^{\frac{\omega -1}{\omega }( \ln \vartheta -\ln \zeta )}(\ln \vartheta -\ln \zeta )^{\eta -1} \frac{w(\zeta )}{\zeta }, \zeta \in (1,\vartheta )\), and integrating the resultant inequality with respect to ζ over \((1,\vartheta )\), we obtain

$$\begin{aligned}& \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} \mathcal{V} ) ( \vartheta )\frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}(\ln \vartheta - \ln \zeta )^{\eta -1}w(\zeta ) \frac{d\zeta }{\zeta } \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v ) ( \vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{1}^{\vartheta }e^{ \frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}(\ln \vartheta - \ln \zeta )^{\eta -1}w(\zeta )\mathcal{U}(\zeta )\mathcal{V}(\zeta ) \frac{d\zeta }{\zeta } \\& \quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} ) (\vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}( \ln \vartheta - \ln \zeta )^{\eta -1}w(\zeta )\mathcal{V}(\zeta ) \frac{d\zeta }{\zeta } \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{V} ) (\vartheta ) \frac{1}{\omega ^{\eta }\Gamma (\eta )} \int _{1}^{\vartheta }e^{\frac{\omega -1}{\omega }(\ln \vartheta -\ln \zeta )}( \ln \vartheta - \ln \zeta )^{\eta -1}w(\zeta )\mathcal{U}(\zeta ) \frac{d\zeta }{\zeta }, \end{aligned}$$

which by (12) gives

$$\begin{aligned}& \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v ) ( \vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (w \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (w ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (v\mathcal{U}\mathcal{V} ) ( \vartheta ) \\& \quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (v\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (w \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\eta , \omega } (w\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (v\mathcal{V} ) (\vartheta ). \end{aligned}$$

This completes the proof of Lemma 4.2. □

Remark 4.2

Setting \(\kappa =\eta \) in Lemma 4.2, we get Lemma 4.1.

Theorem 4.2

Let \(\mathcal{U}\) and \(\mathcal{V}\) be synchronous functions on \([0,\infty )\), and let \(r, p, q:[0,\infty )\rightarrow [0,\infty )\). Then for all \(\vartheta >1\), \(\kappa >0\), and \(\omega \in (0,1]\), we have the following inequality for (12):

$$\begin{aligned}& \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega }p( \vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+2\mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (q\mathcal{U}\mathcal{V} ) ( \vartheta ) \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{U} \mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q ) ( \vartheta )+ \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (p ) ( \vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigr] \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U}\mathcal{V} ) ( \vartheta ) \\& \quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\eta ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\eta ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr] \\& \qquad {}+ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta , \omega } (p\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\eta ,\omega } (p\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr] . \end{aligned}$$
(43)

Proof

Taking \(v=p\) and \(w=q\) in Lemma 4.2, we obtain

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta )\mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\eta , \omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (p\mathcal{V} ) (\vartheta ). \end{aligned}$$
(44)

Multiplying (44) by \(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r )( \vartheta )\), we get

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (p\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\eta ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(45)

Setting \(v=r\) and \(w=q\) in Lemma 4.2, we obtain

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) ( \vartheta )\mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) ( \vartheta ) \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{V} ) (\vartheta )+ \mathcal{H}_{1,\vartheta }^{\eta , \omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1, \vartheta }^{\kappa ,\omega } (r\mathcal{V} ) (\vartheta ). \end{aligned}$$
(46)

Multiplying (46) by \(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p )( \vartheta )\), we get

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (q \mathcal{U}\mathcal{V} ) ( \vartheta )+\mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (q ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (p ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta , \omega } (q\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\eta ,\omega } (q\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(47)

Similarly, setting \(v=r\) and \(w=p\) in Lemma 4.2 and multiplying both sides of the resultant inequality by \(\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q )( \vartheta )\), we obtain

$$\begin{aligned} &\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigl[\mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta ,\omega } (p \mathcal{U}\mathcal{V} ) ( \vartheta )+ \mathcal{H}_{1,\vartheta }^{ \eta ,\omega } (p ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{ \kappa ,\omega } (r\mathcal{U}\mathcal{V} ) ( \vartheta ) \bigr] \\ &\quad \geq \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (q ) ( \vartheta ) \bigl[ \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r \mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\eta , \omega } (p\mathcal{V} ) (\vartheta )+ \mathcal{H}_{1, \vartheta }^{\eta ,\omega } (p\mathcal{U} ) (\vartheta ) \mathcal{H}_{1,\vartheta }^{\kappa ,\omega } (r\mathcal{V} ) ( \vartheta ) \bigr]. \end{aligned}$$
(48)

Hence we obtain the desired statement (43) by adding inequalities (45), (47), and (48). □

Remark 4.3

Setting \(\kappa =\eta \) in Theorem 4.2, we get Theorem 4.1.

Remark 4.4

Setting \(\omega =1\) in Theorem 3.2, we get Theorem 3.4 proved by Chinchane and Pachpatte [13]

Remark 4.5

Inequalities (36) and (43) will be reversed in the following cases:

  1. (i)

    The functions \(\mathcal{U}\) and \(\mathcal{V}\) are asynchronous on \([0,\infty )\).

  2. (ii)

    The functions r, p, and q are negative on \([0,\infty )\).

  3. (iii)

    Two of the functions r, p, and q are positive, and the third one is negative on \([0,\infty )\).

Concluding remarks

In the last few decades, fractional calculus has been extensively studied due to its wide applications in diverse fields cited in the literature. Based on that notion, the idea of generalized proportional fractional integral operators concerning the exponential function in their kernels was recently introduced by Jarad et al. [19]. Later on, the Hadamard proportional fractional integrals were introduced by Rahman et al. [32], who established certain inequalities for convex functions by employing the Hadamard proportional fractional integrals. Recently, many researchers established integral inequalities by employing generalized proportional fractional integral operators cited in the literature. In this paper, we established integral inequalities for the extended Chebyshev functional by utilizing the generalized proportional fractional and Hadamard proportional fractional integrals. Particular cases of our results can be found in the works of Dahmani [14] and Chinchane and Pachpatte [13].

Availability of data and materials

Not applicable.

References

  1. 1.

    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015). https://doi.org/10.1016/j.cam.2014.10.016

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Abdeljawad, T., Baleanu, D.: Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 78 (2017). https://doi.org/10.1186/s13662-017-1126-1

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80, 11–27 (2017). https://doi.org/10.1016/S0034-4877(17)30059-9

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Aldhaifallah, M., Tomar, M., Nisar, K.S., Purohit, S.D.: Some new inequalities for \((k, s)\)-fractional integrals. J. Nonlinear Sci. Appl. 9(9), 5374–5381 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Anber, A., Dahmani, Z., Bendoukha, B.: New integral inequalities of Feng Qi type via Riemann–Liouville fractional integration. Facta Univ., Ser. Math. Inform. 27(2), 13–22 (2012)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109–137 (2015)

    MathSciNet  Google Scholar 

  7. 7.

    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016). https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  8. 8.

    Belarbi, S., Dahmani, Z.: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 10(3), 1–12 (2009)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Biernacki, M.: Sur une inégalité entre les intégrales due Tchebysheff. Ann. Univ. Mariae Curie-Sklodowska 1(5), 23–29 (1951)

    MATH  Google Scholar 

  10. 10.

    Burkill, H., Mirsky, L.: Comments on Chebysheff’s inequality. Period. Math. Hung. 6, 3–16 (1975)

    Article  Google Scholar 

  11. 11.

    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  12. 12.

    Chebyshev, P.L.: Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limite. Proc. Math. Soc. Charkov. 2, 93–98 (1882)

    Google Scholar 

  13. 13.

    Chinchane, V.L., Pachpatte, D.B.: On some integral inequalities using Hadamard fractional integral. Malaya J. Mat. 1(1), 62–66 (2012)

    MATH  Google Scholar 

  14. 14.

    Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9, 493–497 (2010)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Dahmani, Z., Tabharit, L.: On weighted Gruss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2, 31–38 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Gavrea, I.: On Chebyshev type inequalities involving functions whose derivatives belong to \(L_{p}\) spaces via isotonic functional. J. Inequal. Pure Appl. Math. 7(4), 121–128 (2006)

    MATH  Google Scholar 

  17. 17.

    Houas, M.: Certain weighted integral inequalities involving the fractional hypergeometric operators. Scientia, Ser. A, Math. Sci. 27, 87–97 (2016)

    MATH  Google Scholar 

  18. 18.

    Houas, M.: On some generalized integral inequalities for Hadamard fractional integrals. Mediterr. J. Model. Simul. 9, 43–52 (2018)

    Google Scholar 

  19. 19.

    Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 226, 3457–3471 (2017). https://doi.org/10.1140/epjst/e2018-00021-7

    Article  Google Scholar 

  20. 20.

    Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Khan, T.U., Khan, M.A.: Generalized conformable fractional integral operators. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.07.018

    Article  MATH  Google Scholar 

  23. 23.

    Kuang, J.C.: Applied Inequalities. Shandong Sciences and Technologie Press (Chinese) (2004)

    Google Scholar 

  24. 24.

    Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  25. 25.

    Marinkovic, S., Rajkovic, P., Stankovic, M.: The inequalities for some types q-integrals. Comput. Math. Appl. 56, 2490–2498 (2008)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Mitrinovic, D.S.: Analytic Inequalities. Springer, Berlin (1970)

    Book  Google Scholar 

  27. 27.

    Niasr, K.S., Tassadiq, A., Rahman, G., Khan, A.: Some inequalities via fractional conformable integral operators. J. Inequal. Appl. 2019, 217 (2019). https://doi.org/10.1186/s13660-019-2170-z

    MathSciNet  Article  Google Scholar 

  28. 28.

    Nisar, K.S., Rahman, G., Khan, A., Tassaddiq, A., Abouzaid, M.S.: Certain generalized fractional integral inequalities. AIMS Math. 5(2), 1588–1602 (2020). https://doi.org/10.3934/math.2020108

    MathSciNet  Article  Google Scholar 

  29. 29.

    Nisar, K.S., Rahman, G., Mehrez, K.: Chebyshev type inequalities via generalized fractional conformable integrals. J. Inequal. Appl. 2019, 245 (2019). https://doi.org/10.1186/s13660-019-2197-1

    MathSciNet  Article  Google Scholar 

  30. 30.

    Ostrowski, A.M.: On an integral inequality. Aequ. Math. 4, 358–373 (1970)

    Article  Google Scholar 

  31. 31.

    Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  32. 32.

    Rahman, G., Abdeljawad, T., Jarad, F., Khan, A., Nisar, K.S.: Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2019, 454 (2019). https://doi.org/10.1186/s13662-019-2381-0

    MathSciNet  Article  Google Scholar 

  33. 33.

    Rahman, G., Nisar, K.S., Abdeljawad, T., Ullah, S.: Certain fractional proportional integral inequalities via convex functions. Mathematics 8, 222 (2020). https://doi.org/10.3390/math8020222

    Article  Google Scholar 

  34. 34.

    Rahman, G., Nisar, K.S., Ghaffar, A., Qi, F.: Some inequalities of the Grüss type for conformable k-fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 9 (2020). https://doi.org/10.1007/s13398-019-00731-3

    Article  MATH  Google Scholar 

  35. 35.

    Rahman, G., Nisar, K.S., Qi, F.: Some new inequalities of the Gruss type for conformable fractional integrals. AIMS Math. 3(4), 575–583 (2018)

    Article  Google Scholar 

  36. 36.

    Rahman, G., Ullah, Z., Khan, A., Set, E., Nisar, K.S.: Certain Chebyshev type inequalities involving fractional conformable integral operators. Mathematics 7, 364 (2019). https://doi.org/10.3390/math7040364

    Article  Google Scholar 

  37. 37.

    Rahmnan, G., Abdeljawad, T., Jarad, F., Nisar, K.S.: Bounds of generalized proportional fractional integrals in general form via convex functions and their applications. Mathematics 8, 113 (2020). https://doi.org/10.3390/math8010113

    Article  Google Scholar 

  38. 38.

    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Yverdon (1993). Edited and with a foreword by S. M. Nikol’skǐ, Translated from the 1987 Russian original, Revised by the authors

    MATH  Google Scholar 

  39. 39.

    Sarikaya, M.Z., Budak, H.: Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 145(4), 1527–1538 (2017)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F.: \((k, s)\)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Set, E., Noor, M.A., Awan, M.U., Gözpinar, A.: Generalized Hermite–Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 169 (2017)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Tassaddiq, A., Rahman, G., Nisar, K.S., Samraiz, M.: Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals. Adv. Differ. Equ. 2020, 96 (2020). https://doi.org/10.1186/s13662-020-2543-0

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The third author thanks Prince Sultan University for funding this research through the group “Nonlinear Analysis Methods in Applied Mathematics” (NAMAM, group number RG-DES-2017-01-17).

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and approved the final version.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, G., Nisar, K.S. & Abdeljawad, T. Certain new proportional and Hadamard proportional fractional integral inequalities. J Inequal Appl 2021, 71 (2021). https://doi.org/10.1186/s13660-021-02604-z

Download citation

MSC

  • 26A33
  • 26D10
  • 26D53

Keywords

  • Fractional integrals
  • Proportional fractional integrals
  • Hadamard proportional fractional integrals
  • Fractional integral inequalities
  • Chebyshev functional