Skip to main content

Advertisement

A double inequality for tanhx

Abstract

In this paper, we prove that, for \(x>0\),

$$ \sqrt{1-\exp \biggl(-\frac{x^{2}}{\sqrt{x^{2}+1}} \biggr)}< \tanh x< \sqrt[3]{1-\exp \biggl(- \frac{x^{3}}{\sqrt{x^{3}+1}} \biggr)}. $$

This solves an open problem proposed by Ivády.

Introduction

Ivády (see [1, Problem 51]) proposed the following problem: Show that, for \(x>0\),

$$ \begin{gathered}\sqrt{1-\exp \biggl(-\frac{x^{2}}{\sqrt{x^{2}+1}} \biggr)}< \tanh x< \sqrt[3]{1- \exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr)}\end{gathered} $$
(1.1)

holds. Subsequently, a solution was presented by the proposer (see [2]).

In [2], the proof of the left-hand side of (1.1) is correct, but the proof of the right-hand side of (1.1) is not correct.

Using the inverse function of tanhx, the second inequality in (1.1) has the equivalent form

$$ \begin{gathered}\frac{1}{2}\ln \biggl(\frac{1+\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}}{1-\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}} \biggr)>x\quad \text{for } x>0.\end{gathered} $$
(1.2)

According to the mean-value theorem, Ivády [2, Eq. (8)] got on \([0, x]\)

$$ \begin{aligned}[b]&\frac{1}{2x}\ln \biggl(\frac{1+\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}}{1-\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}} \biggr)\\ &\quad= \frac{\frac{1}{2}\ln (\frac{1+\sqrt[3]{1-\exp (-\frac{x^{3}}{\sqrt{x^{3}+1}} )}}{1-\sqrt[3]{1-\exp (-\frac{x^{3}}{\sqrt{x^{3}+1}} )}} )}{x} =\frac{\eta^{2}(\eta^{3}+2)}{2(\eta^{3}+1)^{3/2} (1-\exp (-\frac{\eta^{3}}{\sqrt{\eta^{3}+1}} ) )^{2/3} (1- (1-\exp (-\frac{\eta^{3}}{\sqrt{\eta^{3}+1}} ) )^{2/3} )}\hspace{-12pt}\end{aligned} $$
(1.3)

for some \(0 < \eta< x\), and then proved that, for all \(\eta> 0\),

$$\begin{aligned} \frac{\eta^{2}(\eta^{3}+2)}{2(\eta^{3}+1)^{3/2} (1-\exp (-\frac{\eta^{3}}{\sqrt{\eta^{3}+1}} ) )^{2/3} (1- (1-\exp (-\frac{\eta^{3}}{\sqrt{\eta^{3}+1}} ) )^{2/3} )}>1. \end{aligned}$$

We note that (1.3) may be corrected as

$$\begin{aligned} &\frac{1}{2x}\ln \biggl(\frac{1+\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}}{1-\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}} \biggr) \\ &\quad=\frac{\eta^{2}(\eta^{3}+2)\exp (-\frac{\eta^{3}}{\sqrt {\eta^{3}+1}} )}{2(\eta^{3}+1)^{3/2} (1-\exp (-\frac {\eta^{3}}{\sqrt{\eta^{3}+1}} ) )^{2/3} (1- (1-\exp (-\frac{\eta^{3}}{\sqrt{\eta^{3}+1}} ) )^{2/3} )} \end{aligned}$$

for some \(0 < \eta< x\).

In this paper, we provide a proof of the right-hand side of (1.1).

The numerical values given in this paper have been calculated via the computer program MAPLE 13.

Lemma

Lemma 2.1

Let

$$\begin{aligned} G(x)&=\frac{x^{2}(x^{3}+2)}{2(x^{3}+1)^{3/2}}\exp \biggl(-\frac{x^{3}}{\sqrt {x^{3}+1}} \biggr)- \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{2/3} \\ &\quad+ \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{4/3}. \end{aligned}$$
(2.1)

Then, for \(x>0\),

$$\begin{aligned} G(x)>0. \end{aligned}$$
(2.2)

Proof

We split the proof into three cases.

Case 1. \(0< x<0.5\).

We first prove the following inequalities:

$$\begin{aligned}& \frac{x^{3}+2}{2(x^{3}+1)^{3/2}}\exp \biggl(-\frac{x^{3}}{\sqrt {x^{3}+1}} \biggr)>1-2x^{3}, \end{aligned}$$
(2.3)
$$\begin{aligned}& \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{2/3}< x^{2}-\frac{2}{3}x^{5}+ \frac{7}{12}x^{8}, \end{aligned}$$
(2.4)

and

$$\begin{aligned} \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{4/3}>x^{4}-\frac{4}{3}x^{7} \end{aligned}$$
(2.5)

for \(0< x<0.5\).

The inequality (2.3) can be converted to

$$\begin{aligned} \frac{y}{\sqrt{y+1}}+\ln \biggl(\frac{2(y+1)^{3/2}(1-2y)}{y+2} \biggr)< 0 \quad\text{for } 0< y< 0.125. \end{aligned}$$

We consider the function \(f_{1}(y)\) defined, for \(0< y<0.125\), by

$$\begin{aligned} f_{1}(y)=\frac{y}{\sqrt{y+1}}+\ln2 +\frac{3}{2}\ln(y+1)+\ln (1-2y)-\ln(y+2). \end{aligned}$$

Differentiation yields

$$\begin{aligned} -2(y+1)f'_{1}(y)=\frac{6y^{2}+19y+4}{(1-2y)(y+2)}-\frac{y+2}{(y+1)^{1/2}}. \end{aligned}$$

By direct computation, we get, for \(0< y<0.125\),

$$\begin{aligned} \biggl(\frac{6y^{2}+19y+4}{(1-2y)(y+2)} \biggr)^{2}-\frac {(y+2)^{2}}{y+1}= \frac{y (4y^{4}(2-y)+199y^{3}+597y^{2}+601y+200 )}{(1-2y)^{2}(y+2)^{2}(y+1)}>0. \end{aligned}$$

We then obtain \(f'_{1}(y)<0\) for \(0< y<0.125\). Hence, \(f_{1}(y)\) is strictly decreasing for \(0< y<0.125\), and we have

$$\begin{aligned} f_{1}(y)=\frac{y}{\sqrt{y+1}}+\ln \biggl(\frac {2(y+1)^{3/2}(1-2y)}{y+2} \biggr)< f_{1}(0)=0. \end{aligned}$$

The inequality (2.4) can be written for \(0< x<0.5\) as

$$\begin{aligned} \frac{x^{3}}{\sqrt{x^{3}+1}}+\ln \biggl(1-x^{3} \biggl(1- \frac {2}{3}x^{3}+\frac{7}{12}x^{6} \biggr)^{3/2} \biggr)< 0. \end{aligned}$$
(2.6)

In order to prove (2.6), it suffices to show that

$$\begin{aligned} f_{2}(y)< 0\quad\text{for } 0< y< 0.125, \end{aligned}$$

where

$$\begin{aligned} f_{2}(y)=\frac{y}{\sqrt{y+1}}+\ln \biggl(1-y \biggl(1- \frac {2}{3}y+\frac{7}{12}y^{2} \biggr)^{3/2} \biggr). \end{aligned}$$

Differentiation yields

$$\begin{aligned} -f'_{2}(y)=\frac{4(3-5y+7y^{2})\sqrt {36-24y+21y^{2}}}{72-(12y-8y^{2}+7y^{3})\sqrt{36-24y+21y^{2}}}-\frac {y+2}{2(y+1)^{3/2}}. \end{aligned}$$

We now prove \(f'_{2}(y)<0\) for \(0< y<0.125\). It suffices to show that, for \(0< y<0.125\),

$$\begin{aligned} \frac{4(3-5y+7y^{2})\sqrt{36-24y+21y^{2}}}{72-(12y-8y^{2}+7y^{3})\sqrt {36-24y+21y^{2}}}>\frac{y+2}{2(y+1)^{3/2}}. \end{aligned}$$

It is not difficult to prove that

$$\begin{aligned} \frac{4(3-5y+7y^{2})\sqrt{36-24y+21y^{2}}}{72-(12y-8y^{2}+7y^{3})\sqrt {36-24y+21y^{2}}}>1-y+\frac{9}{8}y^{2} \end{aligned}$$

and

$$\begin{aligned} \frac{y+2}{2(y+1)^{3/2}}< 1-y+\frac{9}{8}y^{2} \end{aligned}$$

for \(0< y<0.125\) (we here omit the proofs). Hence, \(f'_{2}(y)<0\) holds for \(0< y<0.125\). So, \(f_{2}(y)\) is strictly decreasing for \(0< y<0.125\), and we have

$$\begin{aligned} f_{2}(y)=\frac{y}{\sqrt{y+1}}+\ln \biggl(1-y \biggl(1- \frac {2}{3}y+\frac{7}{12}y^{2} \biggr)^{3/2} \biggr)< f_{2}(0)=0 \end{aligned}$$

for \(0< y<0.125\).

The inequality (2.5) can be written for \(0< x<0.5\) as

$$\begin{aligned} \frac{x^{3}}{\sqrt{x^{3}+1}}+\ln \biggl(1-x^{3} \biggl(1- \frac {4}{3}x^{3} \biggr)^{3/4} \biggr)>0. \end{aligned}$$
(2.7)

In order to prove (2.7), it suffices to show that

$$\begin{aligned} f_{3}(y)>0\quad\text{for } 0< y< 0.125, \end{aligned}$$

where

$$\begin{aligned} f_{3}(y)=\frac{y}{\sqrt{y+1}}+\ln \biggl(1-y \biggl(1- \frac {4}{3}y \biggr)^{3/4} \biggr). \end{aligned}$$

Differentiation yields

$$\begin{aligned} f'_{3}(y)=\frac{y+2}{2(y+1)^{3/2}}-\frac{3-7y}{3 (1-\frac {4}{3}y )^{1/4} (1-y(1-\frac{4}{3}y)^{3/4} )}. \end{aligned}$$

We now prove \(f'_{3}(y)>0\) for \(0< y<0.125\). It suffices to show that, for \(0< y<0.125\),

$$\begin{aligned} 1-y \biggl(1-\frac{4}{3}y \biggr)^{3/4}>\frac {2(3-7y)(y+1)^{3/2}}{3(y+2) (1-\frac{4}{3}y )^{1/4}}. \end{aligned}$$

It is not difficult to prove that

$$\begin{aligned} 1-y \biggl(1-\frac{4}{3}y \biggr)^{3/4}>1-y \quad\text{and}\quad \frac{2(3-7y)(y+1)^{3/2}}{3(y+2) (1-\frac{4}{3}y )^{1/4}}< 1-y \end{aligned}$$

for \(0< y<0.125\) (we here omit the proofs). Hence, \(f'_{3}(y)>0\) holds for \(0< y<0.125\). So, \(f_{3}(y)\) is strictly increasing for \(0< y<0.125\), and we have

$$\begin{aligned} f_{3}(y)=\frac{y}{\sqrt{y+1}}+\ln \biggl(1-y \biggl(1- \frac {4}{3}y \biggr)^{3/4} \biggr)>f_{3}(0)=0 \end{aligned}$$

for \(0< y<0.125\).

We then obtain by (2.3), (2.4) and (2.5), for \(0< x<0.5\),

$$\begin{aligned} G(x)&>x^{2}\bigl(1-2x^{3}\bigr)- \biggl(x^{2}- \frac{2}{3}x^{5}+\frac{7}{12}x^{8} \biggr)+x^{4}-\frac{4}{3}x^{7} \\ &=\frac{1}{12}x^{4} \bigl(12-16x-16x^{3}-7x^{4} \bigr)>0. \end{aligned}$$

Case 2. \(0.5\leq x \leq3\).

Let

$$\begin{aligned} G(x)=G_{1}(x)+G_{2}(x), \end{aligned}$$

where

$$\begin{aligned} G_{1}(x)&=\frac{x^{2}(x^{3}+2)}{2(x^{3}+1)^{3/2}}\exp \biggl(- \frac {x^{3}}{\sqrt{x^{3}+1}} \biggr)- \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt {x^{3}+1}} \biggr) \biggr)^{2/3} \end{aligned}$$
(2.8)

and

$$\begin{aligned} G_{2}(x)&= \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{4/3}. \end{aligned}$$
(2.9)

It is not difficult to prove that

$$\begin{aligned} \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{1/3}< x,\quad x>0 \end{aligned}$$
(2.10)

(we here omit the proof). Differentiating \(G_{1}(x)\) and using (2.10), we obtain, for \(x>0\),

$$\begin{aligned} &{-}\frac{(x^{3}+1)^{3/2}}{x}\exp \biggl(\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr)G'_{1}(x) \\ &\quad=\frac{-(x^{6}+8)\sqrt{x^{3}+1}+3x^{3}(x^{3}+2)^{2}}{4(x^{3}+1)^{3/2}} +\frac{x(x^{3}+2)}{ (1-\exp (-\frac{x^{3}}{\sqrt {x^{3}+1}} ) )^{1/3}} \\ &\quad>\frac{-(x^{6}+8)\sqrt{x^{3}+1}+3x^{3}(x^{3}+2)^{2}}{4(x^{3}+1)^{3/2}} +x^{3}+2 \\ &\quad=\frac{3x^{3} ((x^{3}+4)\sqrt{x^{3}+1}+x^{6}+4x^{3}+4 )}{4(x^{3}+1)^{3/2}}>0. \end{aligned}$$

Therefore, the function \(G_{1}(x)\) is strictly decreasing for \(x>0\).

Differentiation yields

$$\begin{aligned} &G'_{2}(x)= \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{1/3}\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \frac {2x^{2}(x^{3}+2)}{(x^{3}+1)^{3/2}}>0. \end{aligned}$$

Therefore, the function \(G_{2}(x)\) is strictly increasing for \(x>0\).

Let \(0.5\leq r \leq x \leq s \leq3\). Since \(G_{1}(x)\) is decreasing and \(G_{2}(x)\) is increasing, we obtain

$$\begin{aligned} G(x)\geq G_{1}(s)+G_{2}(r)=:\sigma(r,s). \end{aligned}$$

We divide the interval \([0.5, 3]\) into 250 subintervals:

$$\begin{aligned}{} [0.5, 3]=\bigcup_{k=0}^{249} \biggl[0.5+ \frac{k}{100}, 0.5+\frac {k+1}{100} \biggr]\quad\text{for } k = 0, 1, 2, \ldots, 249. \end{aligned}$$

By direct computation we get

$$\begin{aligned} \sigma \biggl(0.5+\frac{k}{100}, 0.5+\frac{k+1}{100} \biggr)>0\quad \text{for } k = 0, 1, 2, \ldots, 249. \end{aligned}$$

Hence,

$$\begin{aligned} G(x)>0 \quad\text{for } x\in \biggl[0.5+\frac{k}{100}, 0.5+ \frac {k+1}{100} \biggr]\text{ and } k = 0, 1, 2, \ldots, 249. \end{aligned}$$

This implies that \(G(x)\) is positive for \(0.5\leq x \leq3\).

Case 3. \(x>3\).

We first prove that, for \(x>3\),

$$\begin{aligned} \frac{3x^{3}(x^{3}+2)-(x^{3}+1)^{3/2}}{4\sqrt{x}} \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{1/3}>x^{2}\bigl(x^{3}+2\bigr), \end{aligned}$$
(2.11)

which can be written for \(x>3\) as

$$\begin{aligned} \frac{x^{3}}{\sqrt{x^{3}+1}}+\ln \biggl(1- \biggl(\frac {4x^{5/2}(x^{3}+2)}{3x^{3}(x^{3}+2)-(x^{3}+1)^{3/2}} \biggr)^{3} \biggr)>0, \end{aligned}$$
(2.12)

which can be converted to

$$\begin{aligned} \frac{y}{\sqrt{y+1}}+\ln \biggl(1- \biggl(\frac {4y^{5/6}(y+2)}{3y(y+2)-(y+1)^{3/2}} \biggr)^{3} \biggr)>0\quad\text{for } y>27. \end{aligned}$$
(2.13)

It is not difficult to prove that

$$\begin{aligned} \frac{y}{\sqrt{y+1}}>\sqrt{y}-\frac{1}{2\sqrt{y}} \end{aligned}$$

and

$$\begin{aligned} 1- \biggl(\frac{4y^{5/6}(y+2)}{3y(y+2)-(y+1)^{3/2}} \biggr)^{3}>1-\frac {64}{27\sqrt{y}}- \frac{64}{27y}-\frac{128}{81y^{3/2}} \end{aligned}$$

for \(y>27\) (we here omit the proofs).

In order to prove (2.13), it suffices to show that

$$\begin{aligned} \sqrt{y}-\frac{1}{2\sqrt{y}}+\ln \biggl(1-\frac{64}{27\sqrt {y}}- \frac{64}{27y}-\frac{128}{81y^{3/2}} \biggr)>0\quad\text{for } y>27. \end{aligned}$$
(2.14)

We consider the function \(f_{4}(z)\) defined, for \(z>3\sqrt{3}\), by

$$\begin{aligned} f_{4}(z)=z-\frac{1}{2z}+\ln \biggl(1-\frac{64}{27z}- \frac {64}{27z^{2}}-\frac{128}{81z^{3}} \biggr). \end{aligned}$$

Differentiation yields, for \(z>3\sqrt{3}\),

$$\begin{aligned} f'_{4}(z)=\frac {162z^{5}-384z^{4}+81z^{3}+320z^{2}+576z-128}{2z^{2}(81z^{3}-192z^{2}-192z-128)}>0. \end{aligned}$$

Hence, \(f_{4}(z)\) is strictly increasing for \(z>3\sqrt{3}\), and we have

$$\begin{aligned} f_{4}(z)=z-\frac{1}{2z}+\ln \biggl(1-\frac{64}{27z}- \frac {64}{27z^{2}}-\frac{128}{81z^{3}} \biggr)>f_{4}(3\sqrt{3})=4.289 \ldots>0 \end{aligned}$$

for \(z>3\sqrt{3}\). Hence, (2.14) holds for \(y>27\).

We now prove \(G(x)>0\) for \(x>3\). It is easy to see that

$$\begin{aligned} \frac{x^{2}(x^{3}+2)}{(x^{3}+1)^{3/2}}>\sqrt{x}\quad\text{for } x>3. \end{aligned}$$

In order to prove \(G(x)>0\) for \(x>3\), it is enough to prove the following inequality:

$$\begin{aligned} H(x)>0 \quad\text{for } x>3, \end{aligned}$$

where

$$\begin{aligned} H(x)&=\frac{\sqrt{x}}{2}\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr)- \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{2/3} \\ &\quad+ \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{4/3}. \end{aligned}$$

Differentiating \(H(x)\) and using (2.11) yield, for \(x>3\),

$$\begin{aligned} &{-}\bigl(x^{3}+1\bigr)^{3/2}\exp \biggl(\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr)H'(x) \\ &\quad=\frac{3x^{3}(x^{3}+2)-(x^{3}+1)^{3/2}}{4\sqrt{x}} \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{1/3} \\ &\qquad+x^{2}\bigl(x^{3}+2\bigr)-2x^{2} \bigl(x^{3}+2\bigr) \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt {x^{3}+1}} \biggr) \biggr)^{2/3} \\ &\quad>2x^{2}\bigl(x^{3}+2\bigr) \biggl\{ 1- \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt {x^{3}+1}} \biggr) \biggr)^{2/3} \biggr\} >0. \end{aligned}$$

Therefore, the function \(H(x)\) is strictly decreasing for \(x\geq3\), and we have

$$ H(x)>\lim_{t\to\infty}H(t)=0 \quad\text{for } x\geq3. $$

Hence, we have \(G(x)>0\) for all \(x>0\). The proof of Lemma 2.1 is complete. □

Proof of the right-hand side of (1.1)

It is sufficient to prove the following inequality:

$$ F(x)=\frac{1}{2}\ln \biggl(\frac{1+\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}}{1-\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}} \biggr)-x>0 \quad\text{for } x>0. $$
(3.1)

Differentiating \(F(x)\) and using (2.2), we obtain, for \(x>0\),

$$\begin{aligned} & \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{2/3} \biggl[1- \biggl(1-\exp \biggl(-\frac{x^{3}}{\sqrt{x^{3}+1}} \biggr) \biggr)^{2/3} \biggr]F'(x)=G(x)>0, \end{aligned}$$

where \(G(x)\) is given in (2.1). Therefore, \(F(x)\) is strictly increasing for \(x>0\), and we have

$$ F(x)=\frac{1}{2}\ln \biggl(\frac{1+\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}}{1-\sqrt[3]{1-\exp (-\frac {x^{3}}{\sqrt{x^{3}+1}} )}} \biggr)-x>F(0)=0 $$

for \(x>0\). The proof is complete.

References

  1. 1.

    Cakić, N.P., Merkle, M.J. (eds.): Problem section. Publ. Elektroteh. Fak. Univ. Beogr., Mat. 14, 111–114 (2003). http://pefmath2.etf.rs/files/123/problem_section.pdf

  2. 2.

    Cakić, N.P. (ed.): Problem section. Publ. Elektroteh. Fak. Univ. Beogr., Mat. 16, 146–155 (2005). http://pefmath2.etf.rs/files/125/problem_section.pdf

Download references

Funding

Not applicable.

Author information

Both authors contributed equally to this work. Both authors read and approved the final manuscript.

Correspondence to Bo Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Chen, C. A double inequality for tanhx. J Inequal Appl 2020, 19 (2020). https://doi.org/10.1186/s13660-020-2289-y

Download citation

MSC

  • 26D07

Keywords

  • Inequality
  • Exponential function
  • Hyperbolic function