- Research
- Open Access
- Published:
Hybrid method for equilibrium problems and variational inclusions
Journal of Inequalities and Applications volume 2020, Article number: 190 (2020)
Abstract
By providing a new iterative method our aim is finding a common element of the set of fixed points of two nonexpansive mappings, the set of solutions to a variational inclusion and the set of solutions of a generalized equilibrium problem in a real Hilbert space. We review the strong convergence of the new iterative method in the framework of Hilbert spaces. Finally, we show that our main result is a generalization for some known theorems in this field.
1 Introduction
Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, let \(A: C \to H\) be a nonlinear map, and let F be a bifunction from \(C \times C\) to \(\mathbb{R}\). In 2008, Takahashi et al. [1] considered the generalized equilibrium problem: Finding \(x\in C\) such that
The set of solutions of (1) is denoted by \(\operatorname{GEP}(F,A)\). If \(A=0\), then problem (1) becomes the equilibrium problem: Finding \(x\in C\) such that
Problem (2) was studied by Blum et al. [2] in 1994. The set of solutions of (2) is denoted by \(\operatorname{EP}(F)\). If \(F(x, y) = 0\) for all \(x, y \in C\), then problem (1) becomes the variational inequality problem: Finding \(x\in C\) such that
Problem (3) was studied by Hartman et al. [3] in 1966 and has been extensively in the literature (see, e.g., [4–10]). The set of solutions of (3) is denoted by \(\operatorname{VI}(C,A)\). If \(C=H\), then \(\operatorname{VI}(H,A)=A^{-1}(0)=\{x\in H:Ax=0\}\). Recall that a mapping \(A : C\to H\) is said to be monotone if \(\langle Au-Av,u-v\rangle \geq 0\) for all \(u,v\in C\) [6, 7, 11]. A mapping A is said to be α-strongly monotone if there exists a positive real number α such that \(\langle Au-Av,u-v\rangle \geq \alpha \Vert u-v \Vert ^{2}\) for all \(u,v\in C\) [6, 7, 11]. A mapping A is said to be α-inverse strongly monotone if there exists a positive real number α such that \(\langle Au-Av,u-v\rangle \geq \alpha \Vert Au-Av \Vert ^{2}\) for all \(u,v\in C\) [6, 7, 11]. In such a case, A is said to be α-inverse-strongly monotone.
Let \(T:C\to C\) be a mapping. We denote by \(F(T)\) the fixed-point set of T, that is, \(F(T)=\{x\in C: T(x)=x\}\). A mapping T is said to be L-Lipschitz if there exists \(L \geq 0\) such that \(\Vert Tu-Tv \Vert \leq L \Vert u-v \Vert \) for all \(u,v\in C\). The mapping T is called nonexpansive if \(L=1\). It is also called contraction if \(L < 1\). Note that any α-inverse strongly monotone mapping A is Lipschitz and \(\Vert Au-Av \Vert \leq \frac{1}{\alpha } \Vert u-v \Vert \) [6, 7, 11]. There are a lot works associated with the fixed point algorithms for nonexpansive mappings (see, e.g., [12–23]).
Let \(A : H \to H\) be a single-valued nonlinear map, and let \(B : H \to 2^{H}\) be a set-valued mapping. The variational inclusion is finding \(p \in H\) such that
where θ is the zero vector in H. For \(A = 0\), (4) becomes the inclusion problem introduced by Rockafellar [24]. The effective domain of B is denoted by \(D(B)\), that is, \(D(B) = \{x \in H : Bx \neq \emptyset \}\). The graph of B is \(G(B)=\{(u,v)\in H\times H :v\in Bu\}\). A set-valued mapping B is said to be monotone if \(\langle x-y,f-h\rangle \geq 0\) for all \(x,y\in D(B)\), \(f\in Bx\), and \(h\in By\) [25]. A monotone operator B is maximal if the graph \(G(B)\) of B is not properly contained in the graph of any other monotone mapping [25]. Also, a monotone mapping B is maximal if and only if \(\langle x-y,f-h\rangle \geq 0\) (\((x,f) \in H\times H\)\((y,h)\in G(B)\)) implies \(f\in B x\) [25]. For a maximal monotone operator B on H and \(r > 0\), we define the single-valued operator \(J^{B}_{r}x=(I+rB)^{-1}:H\to D(B)\), which is called the resolvent of B for r. It is well known that \(J^{B}_{r}x\) is firmly nonexpansive, that is, \(\langle x - y,J^{B}_{r}x - J^{B}_{r}y\rangle \geq \Vert J^{B}_{r}x-J^{B}_{r}y \Vert ^{2}\) for all \(x,y\in H\) (see [13]), and that a solution of (4) is a fixed point of \(J^{B}_{r}(I-rA)\) for all \(r>0\) [25].
A basic problem for maximal monotone operator B is finding
A known method for solving problem (5) is the proximal point algorithm: \(x_{1} = x\in H\), and
where \(J^{B}_{r_{n}} = (I + r_{n}B)^{-1}\) and \(\{r_{n}\} \subset (0,\infty )\). Then Rockafellar [24, 26] proved that the sequence \(\{x_{n}\}\) converges weakly to an element of \(B^{-1}(0)\) (see also [27]). In the literature, there are a large number references associated with the proximal point algorithm [27–29]. In 2011, Shehu [8] suggested the following iterative sequence. Let \(\{x_{n}\}\) be the sequence generated by
Under appropriate conditions, the author proved that the sequence \(\{x_{n}\}\) converges strongly to a point \(P_{F(T)\cap (A +B)^{-1}(0)\cap \operatorname{GEP}(F,A)}u\) [8]. Our goal in this paper is to present an iterative method that converges strongly to a common element of the fixed point set of two nonexpansive mappings and the zero set of the sums of maximal monotone operators in Hilbert spaces. Our results extend and improve some related old results.
2 Preliminaries
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. It is well known that, for any \(x\in H\), there exists a unique nearest point in C, denoted by \(P_{C}(x)\), such that \(\Vert x-P_{C}(x) \Vert =\inf_{y\in C} \Vert x-y \Vert =:d(x,C)\). It is well known that \(P_{C}\) is nonexpansive monotone mapping from H onto C, \(\langle x-P_{C}x,z-P_{C}x\rangle \leq 0\), \(\Vert x-z \Vert ^{2}\geq \Vert x-P_{C}x \Vert ^{2}+ \Vert z-P_{C}x \Vert ^{2}\) for all \(x\in H\) and \(z\in C\), and \(\langle P_{C}x-P_{C}z,x-z\rangle \geq \Vert P_{C}x-P_{C}z \Vert ^{2}\) for all \(z,x\in H\) (see [13]). Let A be a monotone mapping from C into H. In the context of the variational inequality problem, it is easy to see that from the relation \(\langle x-P_{C}x,z-P_{C}x\rangle \leq 0\) we have
For solving the equilibrium problem for a a bifunction \(F: C \times C\to \mathbb{R}\), we assume that F satisfy the following conditions:
- \((A_{1})\):
-
\(F(x, x)=0\) for all \(x \in C\),
- \((A_{2})\):
-
F is monotone, that is, \(F(x, y) + F(y, x) \leq 0\) for all \(x, y \in C\),
- \((A_{3})\):
-
for each \(x, y, z \in C\), \(\lim_{t\to 0} F(tz+(1-t)x, y)\leq F(x,y)\),
- \((A_{4})\):
-
for each \(x \in C\), the function \(y \mapsto F(x, y)\) is convex and lower semicontinuous.
Put \(F (x, y) = \langle Ax, y - x\rangle \) for \(x, y \in C\). Then we see that the equilibrium problem (2) is reduced to the variational inequality (3). We need the following results.
Lemma 2.1
LetCbe a nonempty closed convex subset ofH, and letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})-(A_{4})\). For\(r > 0\)and\(x \in H\), consider the map\(T_{r} : H \to C\)defined by\(T_{r}(x)=\{z\in C: F(z,y)+\frac{1}{r}\langle y-z,z-x\rangle \geq 0\textit{ for all }y\in C\}\). Then\(T_{r}(x) \neq \emptyset \)for all\(x \in H\), \(T_{r}\)is single-valued, \(\operatorname{EP}(F)\)is closed and convex, \(F(T_{r}) = \operatorname{EP}(F)\), and\(T_{r}\)is firmly nonexpansive, that is, \(\Vert T_{r}(x)-T_{r}(y) \Vert ^{2}\leq \langle T_{r}(x)-T_{r}(y),x-y\rangle \)for all\(x, y \in H\).
Lemma 2.2
([31])
LetCbe a nonempty closed convex subset ofH, and letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})-(A_{4})\). Define the multivalued mapping\(A_{F}\)fromHinto itself by\(A_{F}x=\{z\in C: F(z,y)\leq \langle y-x,z\rangle\textit{ for all }y\in C\}\)whenever\(x \in C\)and\(A_{F}x=\emptyset \)otherwise. Then\(A_{F}\)is a maximal monotone operator with the domain\(T_{r}(x)=(I+rA_{F})^{-1}x\)for all\(x \in H\)and\(r > 0\).
Lemma 2.3
([32])
LetHbe a real Hilbert space, letCbe a closed convex subset ofH, and let\(T : C\to C\)be a nonexpansive mapping. Then\((I - T)\)is demiclosed at zero, that is, if\(\{x_{n}\}\)is a sequence inCsuch that\(x_{n}\rightharpoonup x\)and\(Tx_{n} -x_{n} \rightarrow 0\), then\(x = T(x)\).
Lemma 2.4
([33])
Let\(\{x_{n}\}\)be a sequence of nonnegative real numbers satisfying
where\(\{\lambda _{n}\}\)is a sequence in\((0,1)\), and\(\gamma _{n}\)is a sequence with\(\sum_{n=0}^{\infty }\lambda _{n}=\infty \)and\(\limsup_{n\to \infty }\gamma _{n}\leq 0\)or\(\sum_{n=0}^{\infty } \vert \gamma _{n}\lambda _{n} \vert <\infty \). Then\(\lim_{n\to \infty }x_{n}=0\).
Lemma 2.5
([34])
LetHbe a real Hilbert space, let\(x_{j}\in H\), and let\(a_{j}\in [0, 1]\), \(j = 1, 2, 3\), be such that\(a_{1} + a_{2} + a_{3} = 1\). Then we have
Lemma 2.6
([31])
LetBbe a maximal monotone operator on H. Then we have
3 Main results
Now we are ready to state and prove our main results.
Theorem 3.1
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap (M+B)^{-1}(0) \cap \operatorname{GEP}(F,A)\neq \emptyset \)and\(f: C \to C\)is a contraction map with the constant\(\rho \in (0,1)\). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and\(\{x_{n}\}\), \(\{y_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
Suppose the following conditions hold:
- \((d_{1})\):
-
\(0< c\leq \lambda _{n}\leq d<2\beta \), \(\lim_{n\to \infty } \vert \lambda _{n}-\lambda _{n-1} \vert =0\),
- \((d_{2})\):
-
\(0< a\leq r_{n}\leq b<2\alpha \), \(\lim_{n\to \infty } \vert r_{n}-r_{n-1} \vert =0\),
- \((d_{3})\):
-
\(\lim_{n\to \infty }b_{n}=0\), \(\sum_{n=1}^{\infty }b_{n}=\infty \), \(\sum_{n=1}^{\infty } \vert b_{n}-b_{n-1} \vert <\infty \),
- \((d_{4})\):
-
\(\sum_{n=1}^{\infty } \vert \mu _{n}-\mu _{n-1} \vert <\infty \), \(\sum_{n=1}^{\infty } \vert a_{n}-a_{n-1} \vert <\infty \).
Then\(\{x_{n}\}\)converges strongly to a point\(q\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)q,x-q\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
First, we show that \(I - \lambda _{n}M\) is nonexpansive. Let \(x,y\in C\) and \(0<\lambda _{n}<2\beta \). Then
Thus \(I - \lambda _{n}M\) is nonexpansive. Note that \(y_{n}\) can be rewritten as \(y_{n} = T_{r_{n}} (x_{n}-r_{n}Ax_{n})\) for \(n \geq 1\). Let \(q\in \varOmega \). From \((d_{2})\) and Lemma 2.1 we have
By (6) and (7), since \(J_{\lambda _{n}}^{B}\) is nonexpansive, we have
Hence
Thus \(\{x_{n}\}\) is bounded, and the sequences \(\{y_{n}\}\) and \(\{z_{n}\}\) are bounded as well. From \(y_{n}=T_{r_{n}}(x_{n}- r_{n}Ax_{n})\) and \(y_{n-1}=T_{r_{n-1}}(x_{n-1}- r_{n-1}Ax_{n-1})\) we obtain
and
By substituting \(y=y_{n-1}\) into (10) and \(y=y_{n}\) into (11), we find
and
Now from \((A_{2})\) we get \(\langle Ax_{n-1}-Ax_{n}, y_{n} - y_{n-1}\rangle +\langle y_{n-1} - y_{n}, \frac{y_{n} - x_{n}}{r_{n}}-\frac{y_{n-1} - x_{n-1}}{r_{n-1}}\rangle \geq 0\), and so
This implies that \(\Vert y_{n} - y_{n-1} \Vert ^{2}\leq \Vert y_{n} - y_{n-1} \Vert [ \vert 1- \frac{r_{n}}{r_{n-1}} \vert \Vert y_{n-1}-x_{n-1} \Vert + \Vert x_{n}-x_{n-1} \Vert ]\), and so
Set \(w_{n}=J_{\lambda _{n}}^{B}(y_{n}-\lambda _{n}My_{n})\) and \(u_{n}=y_{n}-\lambda _{n}My_{n}\) for \(n\geq 1\). By using Lemma 2.6 we obtain
which gives
Set \(t_{n}=a_{n}Sz_{n}+(1-a_{n}) Ty_{n}\) for \(n\geq 1\). By using (12) and last inequality we have
which implies that
where L is a constant such that
Now by using \((d_{1})\), \((d_{2})\), \((d_{3})\), \((d_{4})\), and Lemma 2.4 we get
From (6) we have
Consequently, from the condition \((d_{3})\) we obtain
Let \(q = P_{\varOmega }f(q)\). In addition, from (6), (8), Lemma 2.5, and (9) we get
which yields
and
By using \((d_{1})\), \((d_{2})\), \((d_{3})\), and (13) we get
Since \(\Vert t_{n}-Ty_{n} \Vert \leq a_{n} \Vert Sz_{n}-Ty_{n} \Vert \) and \(\Vert t_{n}-Sz_{n} \Vert \leq (1-a_{n}) \Vert Ty_{n}-Sz_{n} \Vert \), we obtain
Note that
and so
By using Lemma 2.1 and (6) we have
It follows that
From (8), (17), and (18) we have
By using (6) and last inequality we see that
Thus
and
From \((d_{3})\), (15), and \(\lim_{n\to \infty } \Vert x_{n}-x_{n+1} \Vert =0\) we find \(\lim_{n\to \infty } \Vert x_{n}-y_{n} \Vert =0\) and also \(\lim_{n\to \infty } \Vert y_{n}-w_{n} \Vert =0\). Since \(\Vert x_{n}-w_{n} \Vert \leq \Vert x_{n}-y_{n} \Vert + \Vert y_{n}-w_{n} \Vert \), we get \(\Vert x_{n}-w_{n} \Vert \to 0\). Consequently, by using (6) we get \(\lim_{n\to \infty } \Vert z_{n} - x_{n} \Vert = \lim_{n\to \infty }(1-\mu _{n}) \Vert w_{n} - x_{n} \Vert =0\). Moreover, from (14) and (16) we get \(\Vert z_{n} - Sz_{n} \Vert \leq \Vert z_{n} - x_{n} \Vert + \Vert x_{n} - t_{n} \Vert + \Vert t_{n} - Sz_{n} \Vert \to 0\) and \(\Vert y_{n} - Ty_{n} \Vert \leq \Vert y_{n} - x_{n} \Vert + \Vert x_{n} - t_{n} \Vert + \Vert t_{n} - Ty_{n} \Vert \to 0\). Hence
and
which implies
Now we show that \(\limsup_{n\to \infty }\langle f(q)-q,x_{n}-q\rangle \leq 0\), where \(q=P_{\varOmega }f(q)\). The existence of q is justified since \(P_{\varOmega }\) is nonexpansive and f is a contraction. Hence \(P_{\varOmega } \circ f\) is a contraction and so has a fixed point. We can choose a subsequence \(\{x_{n_{i}}\}\) of \(\{x_{n}\}\) such that
Since \(\{x_{n_{i}}\}\) is bounded, there exists a subsequence \(\{x_{n_{i_{j}}}\}\) of \(\{x_{n_{i}}\}\) that converges weakly to v. Without loss of generality, we can assume that \(x_{n_{i}}\rightharpoonup v\). Since \(\Vert x_{n}-y_{n} \Vert \to 0\) and \(\Vert x_{n}-z_{n} \Vert \to 0\), we find \(y_{n_{i}}\rightharpoonup v\) and \(y_{n_{i}}\rightharpoonup v\). Since \(\{y_{n_{i}}\}\) and \(\{z_{n_{i}}\}\) lie in C and C is closed and convex, we obtain \(v\in C\). It is easy to check that \(v\in F(T)\) and \(v\in F(S)\). By using (19) and Lemma 2.3 we get \(v\in F(T)\cap F(S)\). Now we show \(v\in \operatorname{GEP}(F)\). Since \(y_{n} = T_{r_{n}}(x_{n} -r_{n}Ax_{n})\), we obtain
From \((A_{2})\) we get \(\langle Ax_{n},y-y_{n}\rangle +\frac{1}{r_{n}}\langle y-y_{n},y_{n}-x_{n} \rangle \geq F(y,y_{n})\) for all \(y\in C\). Hence
for all \(y\in C\). For \(0 < t\leq 1\) and \(y \in C\), put \(y_{t} = ty + (1 - t)v\). Since \(y \in C\) and \(v\in C\), we obtain \(y_{t}\in C\). From (21) we conclude that
Since \(\Vert y_{n_{i}}-x_{n_{i}} \Vert \to 0\), we have \(\Vert Ay_{n_{i}}-Ax_{n_{i}} \Vert \to 0\). Further, from the inverse-strongly monotonicity of A we have \(\langle y_{t}-y_{n_{i}},Ay_{t}-Ay_{n_{i}}\rangle \geq 0\). By using \((A_{4})\), \(\frac{y_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\to 0\), and \(y_{n_{i}}\rightharpoonup v\) we get \(\langle y_{t}-v,Ay_{t}\rangle \geq F(y_{t},v)\). From \((A_{1})\)–\((A_{4})\) we have
and so \(0\leq F(y_{t},y)+(1-t)\langle y-v,Ay_{t}\rangle \). Thus \(F(v,y)+(1-t)\langle y-v,Av\rangle \geq 0\) for all \(y \in C\). This implies that \(v\in \operatorname{GEP}(F, A)\). Finally, we show \(v\in (M+B)^{-1}(0)\). Choose a subsequence \(\{\lambda _{n_{i_{j}}}\}\) of \(\{\lambda _{n_{i}}\}\) such that \(\lambda _{n_{i_{j}}}\to \tilde{\lambda }\in [c,d]\). Without loss of generality, assume that \(\lambda _{n_{i}}\to \tilde{\lambda }\). By using Lemma 2.6 we obtain
Thus
This implies that \(\lim_{k\to \infty } \Vert y_{n_{i}}-J_{\tilde{\lambda }}^{B}(I- \tilde{\lambda }M)y_{n_{i}} \Vert =0\). Since \(J_{\tilde{\lambda }}^{B}(I-\tilde{\lambda }M)\) is nonexpansive, it is demiclosed, and so \(v\in F(J_{\tilde{\lambda }}^{B}(I-\tilde{\lambda }M))\), that is, \(v\in (M+B)^{-1}(0)\). This implies \(v\in \varOmega \). By using (20) we get \(\limsup_{n\to \infty } \langle f(q)-q,x_{n}-q\rangle =\lim_{i\to \infty }\langle f(q)-q,x_{n_{i}}-q\rangle =\langle f(q)-q,v-q\rangle \leq 0\). Now we show that \(x_{n}\to q\). From(8) and (9) we have
Set \(v_{n}=b_{n}f(x_{n})+(1-b_{n})t_{n}\) for all \(n\geq 1\). By using (6) and the property of metric projection we obtain
which implies that \(\Vert x_{n+1} - q \Vert ^{2}\leq (1-b_{n}(1-\rho )) \Vert x_{n}-q \Vert ^{2}+2b_{n} \langle f(q)-q, x_{n+1} - q \rangle \). Now by using \((d_{3})\) and Lemma 2.4 we get \(\lim_{n\to \infty } \Vert x_{n}-q \Vert =0\). This completes the proof. □
Let \(u\in C\) and \(f(x) = u\in C\) for all x. By using Theorem 3.1 we obtain the following result.
Corollary 3.2
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap (M+B)^{-1}(0) \cap \operatorname{GEP}(F,A)\neq \emptyset \). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\), \(\{y_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold, then the sequence\(\{x_{n}\}\)converges strongly to a point\(q\in \varOmega \), which is the unique solution to the variational inequality\(\langle q-u,x-q\rangle \geq 0\)for all\(x \in \varOmega \).
Corollary 3.3
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap (M+B)^{-1}(0) \cap \operatorname{GEP}(F,A)\neq \emptyset \). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\), \(\{y_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold, then the sequence\(\{x_{n}\}\)converges strongly to a point\(q =P_{\varOmega }(0)\), which is the minimum norm element in Ω.
Proof
In Theorem 3.1, put \(f(x) = 0\) for all x. Note that \(x_{n} \to q =P_{\varOmega }(0)\) and \(P_{\varOmega }(0)\) is the minimum norm element in Ω. Since \(\langle (I-f)q,x-q\rangle \geq 0\), we get \(\langle q,q-x\rangle \leq 0\) for all \(x\in \varOmega \), that is, \(\Vert q \Vert ^{2}\leq \langle q,x\rangle \leq \Vert x \Vert \Vert q \Vert \) for all \(x\in \varOmega \). Thus, the point q is the unique solution to the quadratic minimization problem \(q= \arg \min_{x\in \varOmega } \Vert x \Vert ^{2}\). □
Let \(I_{C} \) be the indicator function of C defined by \(I_{C}(x) =0\) for \(x \in C\) and \(I_{C}(x)=\infty \) otherwise. Recall that the subdifferential \(\partial I_{C}\) is a maximal monotone operator. Note that \(I_{C}\) is a proper lower semicontinuous convex function on H. The resolvent \(J_{r}^{\partial I_{C}}\) of \(\partial I_{C}\) for r is \(P_{C}\), and \(\operatorname{VI}(C,M)=(M + \partial I_{C})^{-1}(0)\), where M is an inverse strongly monotone mapping from C into H [35].
Theorem 3.4
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap \operatorname{VI}(C,M) \cap \operatorname{GEP}(F,A)\neq \emptyset \)and\(f: C \to C\)is a contraction map with the constant\(\rho \in (0,1)\). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\), \(\{y_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
If \(B = \partial I_{C}\) in Theorem 3.1, then \(J_{\lambda _{n}} = P_{C}\) for all \(\lambda _{n} > 0\). This completes the proof. □
Note that Theorem 3.4 reduces the results of [1, 36].
Theorem 3.5
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap \operatorname{VI}(C,M)\neq \emptyset \). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\)and\(\{z_{n}\}\)are some sequences generated by
If\((d_{1})\)–\((d_{4})\)hold, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
Put \(F=A=0\), \(B = \partial I_{C}\), and \(r_{n}=1\) for all n in Theorem 3.1. Since \(J_{\lambda _{n}} = P_{C}\) for all \(\lambda _{n} > 0\), we obtain the desired result. □
We can see that Theorem 3.5 extends Theorem 11 in [37]. The next result reduces the related result of [38].
Theorem 3.6
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S: C \to C\)is a nonexpansive mapping such that\({\varOmega }=F(S) \cap \operatorname{VI}(C,M) \neq \emptyset \)and\(f: C \to C\)is a contraction map with the constant\(\rho \in (0,1)\). Suppose that\(\{b_{n}\}\)and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\)and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
Put \(F=A=0\), \(B = \partial I_{C}\), \(T=I\), and \(r_{n}=1\) for all n in Theorem 3.1. Since \(J_{\lambda _{n}} = P_{C}\) for all \(\lambda _{n} > 0\), we obtain the desired result. □
Theorem 3.7
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, and let\(\psi :C\to C\)be aβ-strict pseudo-contraction. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap F(\psi )\neq \emptyset \), and\(f: C \to C\)is a contraction map with the constant\(\rho \in (0,1)\). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\)and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\)and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold and\(0< c<\lambda _{n}<d<1-\beta \)for alln, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
Put \(F=A=0\), \(r_{n}=1\), and \(M = I-\psi \). Then M is \(\frac{1-\beta }{2}\)-inverse-strongly monotone map, \(F (\psi ) = V I(C, M)\), and \(P_{C} (x_{n} -\lambda _{n}Mx_{n}) = (1 - \lambda _{n})x_{n} + \lambda _{n}\psi x_{n}\) for all n. Now by using Theorem 3.5 we obtain the desired result. □
Note that Theorem 3.7 reduces the result of [39].
Theorem 3.8
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letAbe anα-inverse strongly monotone mapping fromCintoH, and let\(\psi :C\to C\)be aβ-strict pseudo-contraction. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap F(\psi )\cap \operatorname{GEP}(F,A) \neq \emptyset \)and\(f: C \to C\)is a contraction map with the constant\(\rho \in (0,1)\). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\), \(\{y_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold and\(0< c<\lambda _{n}<d<1-\beta \)for alln, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
Put \(M = I-\psi \). Then M is \(\frac{1-\beta }{2}\)-inverse-strongly monotone mapping, \(F (\psi ) = V I(C, M)\), and \(P_{C} (y_{n} -\lambda _{n}My_{n}) = (1 - \lambda _{n})y_{n} + \lambda _{n}\psi y_{n}\) for all n. By using Theorem 3.1 we obtain the desired result. □
We can check that Theorem 3.8 reduces the result of [40].
Theorem 3.9
LetCbe a nonempty closed convex subset ofH, letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap (M+B)^{-1}(0)\neq \emptyset \). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\)and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
It is sufficient put \(F=A=0\) and \(r_{n}=1\) for all n in Theorem 3.1. □
We can see that Theorem 3.9 reduces the result of [31]. Let \(g: H \to \mathbb{R} \cup \{+\infty \}\) be a convex lower semicontinuous proper function. Put \(B = \partial g\), where ∂ denotes subdifferential of g. Then B is a maximal monotone operator, and \(0 \in \partial f(x)\) is equivalent to \(g(x^{\prime }) =\min_{x \in C}g(x)\) [24, 26]. Recall that the subdifferential of g at x is defined by
Theorem 3.10
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), Abe anα-inverse strongly monotone mapping fromCintoH, and let\(g : H \to (-\infty , +\infty ]\)be a proper convex lower semicontinuous function. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap (\partial f)^{-1}(0) \cap \operatorname{GEP}(F,A)\neq \emptyset \). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)be sequences in\((0, 1)\)and that\(\{x_{n}\}\), \(\{y_{n}\}\), \(\{u_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold and\(0< c<\lambda _{n}<d<\infty \)for alln, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Proof
Put \(M = 0\). Then by Theorem 3.1 the desired result immediately follows. □
Put \(A = 0\) in Theorem 3.1. Then we obtain next theorem, which reduces the result of [41].
Theorem 3.11
LetCbe a nonempty closed convex subset ofH, letFbe a bifunction from\(C \times C\)to\(\mathbb{R}\)satisfying\((A_{1})\)–\((A_{4})\), letMbe aβ-inverse strongly monotone map fromCintoH, and letBbe a maximal monotone operator onHwith domain contained in C. Assume that\(S,T : C \to C\)are two nonexpansive mappings such that\({\varOmega }=F(T)\cap F(S) \cap (M+B)^{-1}(0) \cap \operatorname{GEP}(F)\neq \emptyset \)and\(f: C \to C\)is a contraction map with the constant\(\rho \in (0,1)\). Suppose that\(\{b_{n}\}\), \(\{a_{n}\}\), and\(\{\mu _{n}\}\)are some sequences in\((0, 1)\)and that\(\{x_{n}\}\), \(\{y_{n}\}\), and\(\{z_{n}\}\)are the sequences generated by
If\((d_{1})\)–\((d_{4})\)hold and\(0< c<\lambda _{n}<d<\infty \)for alln, then\(\{x_{n}\}\)converges strongly to a point\(p\in \varOmega \), which is the unique solution to the variational inequality\(\langle (I-f)p,x-p\rangle \geq 0\)for all\(x \in \varOmega \).
Here we provide an example to illustrate Theorem 3.1.
Example 3.1
Let \(H = \mathbb{R} \) with Euclidean norm and usual Euclidean inner product. Put \(C :=[-1,\infty ) \), \(Sx=\frac{x}{2}\), \(Tx=\frac{x}{3}\), \(Bx=\log (x+1)\), \(Mx=4x\), \(\beta =\frac{1}{4}\), \(F(x,y)=y-x\), \(\alpha =\frac{1}{3}\), and \(Ax =3x-1\) for all x. It is clear that S and T are nonexpansive, M is a β-inverse strongly monotone mapping, B is a maximal monotone operator, F is a bifunction from \(C \times C\) to \(\mathbb{R}\) satisfying \((A_{1})\)–\((A_{4})\), A is an α-inverse strongly monotone mapping, and \(0\in \varOmega =F(T)\cap F(S) \cap (M+B)^{-1}(0) \cap \operatorname{GEP}(F,A)\). Now by using Theorem 3.1 the sequence \(\{x_{n}\}\) converges strongly to a point \(q\in \varOmega \), which is the unique solution to the variational inequality \(\langle (I-f)q,x-q\rangle \geq 0\) for all \(x \in \varOmega \).
References
Takahashi, S., Takahashi, W.: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008)
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential-functional equations. Acta Math. 115, 271–310 (1966)
Ceng, L.C., Petrusel, A., Yao, J.C., Yao, Y.: Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 19(2), 487–502 (2018). https://doi.org/10.24193/fpt-ro.2018.2.39
Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)
Rezapour, S., Zakeri, S.H.: Implicit iterative algorithms for α-inverse strongly accretive operators in Banach spaces. J. Nonlinear Convex Anal. 20(8), 1547–1560 (2019)
Rezapour, S., Zakeri, S.H.: Strong convergence theorem for δ-inverse strongly accretive operator in Banach spaces. Appl. Set-Valued Anal. Optim. 1(1), 39–52 (2019)
Shehu, Y.: An iterative method for fixed point problems, variational inclusions and generalized equilibrium problems. Math. Comput. Model. 54, 1394–1404 (2011)
Takahashi, W., Wen, C.F., Yao, J.C.: The shrinking projection method for a finite family of demi-metric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 19(1), 407–419 (2018). https://doi.org/10.24193/fpt-ro.2018.1.32
Yu, L., Song, J.: Strong convergence theorems for solutions of fixed point and variational inequality problems. J. Inequal. Appl. 2014, 215 (2014)
Rezapour, S., Yao, Y., Zakeri, S.H.: Strong convergence theorems for generalized mixed equilibrium problems, variational inequality problems and fixed point problems with pseudo-contractive mappings. J. Nonlinear Convex Anal. 21(5), 1097–1108 (2020)
Ceng, L.C., Petrusel, A., Yao, J.C.: Strong convergence of modified implicit iterative algorithms with perturbed mappings for continuous pseudo-contractive mappings. Appl. Math. Comput. 209, 162–176 (2009)
Gobel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Taylor & Francis, London (1984)
Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44(1), 147–150 (1974)
Kammura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)
Reich, S.: The fixed point property for nonexpansive mappings I. Am. Math. Mon. 83, 266–268 (1976)
Reich, S.: The fixed point property for nonexpansive mappings II. Am. Math. Mon. 87, 292–294 (1980)
Wang, Y.H., Rezapour, S., Zakeri, S.H.: Strong convergence theorems for Bregman relatively nonexpansive mappings and continuous monotone mapping. J. Nonlinear Convex Anal. 20(3), 551–564 (2019)
Zhou, H.: Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69, 456–462 (2008)
Farid, M.: The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in Hilbert spaces. J. Appl. Numer. Optim. 1(3), 335–345 (2019)
Qin, X., Yao, J.C.: A viscosity iterative method for a split feasibility problem. J. Nonlinear Convex Anal. 20(8), 1497–1506 (2019)
Shahzad, N., Zegeye, H.: Convergence theorems of common solutions for fixed point, variational inequality and equilibrium problems. J. Nonlinear Var. Anal. 3, 189–203 (2019)
Bnouhachem, A., Ansari, Q.H., Yao, J.C.: An improvement of alternating direction method for solving variational inequality problems with separable structure. Fixed Point Theory 21(1), 67–78 (2020). https://doi.org/10.24193/fpt-ro.2020.1.05
Rockafellar, R.T.: Monotone operators and the proximal point algorithms. SIAM J. Control Optim. 14(5), 877–898 (1976)
Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)
Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 140, 75–88 (1970)
Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)
Li, X.B., Qin, X.L., Rezapour, S., Yao, J.C., Zakeri, S.H.: Hybrid approximate proximal method for vector optimization problems. J. Nonlinear Convex Anal. 20(12), 2471–2494 (2019)
Li, X.B., Rezapour, S., Yao, J.C., Zakeri, S.H.: Generalized contractions and hybrid approximate proximal method for vector optimization problems. J. Nonlinear Convex Anal. 21(2), 495–517 (2020)
Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)
Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)
Browder, F.E.: Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces. Bull. Amer. Math. Soc. 73(6), 867–874 (1967) https://projecteuclid.org/euclid.bams/1183529096
Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)
Zegeye, H., Shahzad, N.: Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 62, 4007–4014 (2011)
Lin, L.J., Takahashi, W.: A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications. Positivity 16, 429–453 (2012)
Su, Y., Shang, M., Qin, X.: An iterative method of solutions for equilibrium and optimization problems. Nonlinear Anal. 69, 2709–2719 (2008)
Takahashi, W., Wong, N.C., Yao, J.C.: Two generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applications. Taiwan. J. Math. 16(3), 1151–1172 (2012)
Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly monotone mappings. J. Convex Anal. 11(1), 69–79 (2004)
Moudafi, A.: Krasnoselski–Mann iteration for hierarchical fixed-point problems. Inverse Probl. 23, 1635–1640 (2007)
Yaoa, Y., Cho, Y.J., Liou, Y.C.: Iterative algorithms for hierarchical fixed points problems and variational inequalities. Math. Comput. Model. 52, 1697–1705 (2010)
Peng, J.W., Wang, Y., Shyu, D.S., Yao, J.C.: Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems. J. Inequal. Appl. 2008, Article ID 720371 (2008)
Acknowledgements
Research of both authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to unknown referees for their helpful suggestions, which improved final version of this paper.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in this manuscript, and they read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rezapour, S., Zakeri, S.H. Hybrid method for equilibrium problems and variational inclusions. J Inequal Appl 2020, 190 (2020). https://doi.org/10.1186/s13660-020-02458-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02458-x
MSC
- 46N10
- 47N10
Keywords
- Maximal monotone operator
- Nonexpansive map
- Variational inclusion
- Generalized equilibrium problem
- Inverse strongly monotone map