- Research
- Open Access
- Published:
New lower bounds for the minimum M-eigenvalue of elasticity M-tensors and applications
Journal of Inequalities and Applications volume 2020, Article number: 188 (2020)
Abstract
M-eigenvalues of elasticity M-tensors play an important role in nonlinear elasticity and materials. In this paper, we present several new lower bounds for the minimum M-eigenvalue of elasticity M-tensors and propose numerical examples to illustrate the efficiency of the obtained results. As applications, we provide several checkable sufficient conditions for the strong ellipticity and positive definiteness of irreducible elasticity M-tensors.
1 Introduction
A tensor \(\mathcal{A}=(a_{ijkl})\in \mathbb{E}_{4,n}\) is called a fourth-order real partially symmetric tensor if
where \([n]=\{1,2,\ldots ,n\}\). The tensor of elastic moduli for a linearly anisotropic elastic solid is a fourth-order real partially symmetric tensor [1], and the components of such a tensor are considered as the coefficients of the following optimization problem:
Problem (1.1) has applications in the ordinary ellipticity and strong ellipticity and nonlinear elastic materials analysis [2–28]. The strong ellipticity condition is stated as \(f({\mathbf{x}},{\mathbf{y}})>0\) for all nonzero vectors \({\mathbf{x}}, {\mathbf{y}}\in \mathbb{R}^{n} \), which guarantees the existence of solutions of basic boundary-value problems of elastostatics and ensures an elastic material to satisfy some mechanical properties [29]. In fact, the KKT condition of (1.1) can be regarded as the following definition of M-eigenvalues.
Definition 1.1
([1])
Let \(\mathcal{A}\in \mathbb{E}_{4,n}\). If there are \(\lambda \in \mathbb{R}\) and \(\mathbf{x}, \mathbf{y}\in \mathbb{R}^{n}\backslash \{\mathbf{0}\} \) such that
where \((\mathcal{A}\mathbf{x} \mathbf{y}^{2})_{i}={\sum_{j,k,l \in [n]}}a_{ijkl}x_{j}y_{k}y_{l}\), and \((\mathcal{A} \mathbf{x}^{2} \mathbf{y})_{l}={\sum_{i,j,k \in [n]}}a_{ijkl}x_{i}x_{j}y_{k}\), then the scalar λ is called an M-eigenvalue of \(\mathcal{A}\), and x, y are called the corresponding left and right M-eigenvectors of \(\mathcal{A}\), respectively.
Furthermore, Han et al. revealed that the strong ellipticity condition holds if and only if the smallest M-eigenvalue is positive [1]. Recently, Ding et al. [30] investigated a fourth-order structured partially symmetric tensors named elasticity M-tensors, and some sufficient conditions for the strong ellipticity were provided. Since the strong ellipticity condition and M-positive definiteness can be identified by the smallest M-eigenvalue, He et al. [31] proposed some lower bounds for the minimum M-eigenvalue of elasticity M-tensors.
In this paper, we present several new bounds for the minimum M-eigenvalue of elasticity M-tensors. We prove that the bounds are tighter than those proposed in [31]. Numerical examples illustrate the efficiency of the obtained results. As applications, we give some checkable sufficient conditions for the strong ellipticity and positive definiteness of elasticity tensors.
2 Main results
For an elasticity tensor \(\mathcal{A} \in \mathbb{E}_{4,n}\), its M-spectral radius is denoted by
The identity tensor \(\mathcal{I} = (e_{ijkl})\in \mathbb{E}_{4,n} \) is defined by
Let \(\alpha _{i} =\max_{l\in [n]}\{a_{iill}\}\), \(\beta _{l} = \max_{i\in [n]}\{a_{iill}\}\), and
To continue, we need the following definitions and technical results.
Definition 2.1
([30])
A tensor \(\mathcal{A}\in \mathbb{E}_{4,n}\) is called an elasticity M-tensor if there exist a nonnegative tensor \(\mathcal{B}\in \mathbb{E}_{4,n}\) and a real number \(s\geq \rho (\mathcal{B})\) such that \(\mathcal{A} = s\mathcal{I}-\mathcal{B}\), where \(\rho (\mathcal{B})\) is the M-spectral radius of \(\mathcal{B}\). Furthermore, if \(s>\rho (\mathcal{B})\), then \(\mathcal{A}\) is called a nonsingular elasticity M-tensor.
Definition 2.2
([32])
A tensor \(\mathcal{A} = (a_{i_{1}i_{2}\dots i_{m}})\) of order m and dimension n is called reducible if there exists a nonempty proper index subset \(J\in \{1,2,\dots ,n\}\subset [n]\) such that
If \(\mathcal{A}\) is not reducible, then we say that \(\mathcal{A}\) is irreducible.
Theorem 2.1
([31])
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible and nonnegative partially symmetric tensor, and let\(\tau (\mathcal{A})\)be the minimal M-eigenvalue of\(\mathcal{A}\). Then\(\tau (\mathcal{A})\geq 0\)is an M-eigenvalue of\(\mathcal{A}\)with positive eigenvectors. Moreover, there exist a nonnegative tensor\(\mathcal{B}\)and a real number\(c\geq \rho (\mathcal{B})\)such that\(\mathcal{A} = c\mathcal{I} -\mathcal{B}\).
Theorem 2.2
([31])
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. Then
Theorem 2.3
([31])
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. Then
Now we are in a position to propose some lower bounds for \(\tau (\mathcal{A})\).
Theorem 2.4
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. Then the minimum M-eigenvalue satisfies
where\(\eta _{1}(\mathcal{A})= \frac{\alpha _{i}- r_{i}^{i}(\mathcal{A})+\alpha _{j}-\Delta _{i,j}^{\frac{1}{2}}}{2}\), \(\eta _{2}(\mathcal{A})= \frac{\beta _{k}- c_{k}^{k}(\mathcal{A})+\beta _{l}-\varTheta _{k,l}^{\frac{1}{2}}}{2}\), and
Proof
By Theorem 2.1 suppose that \({\mathbf{x}}=\{x_{i}\}_{i=1}^{n}>0\in \mathbb{R}^{n}\) and \({\mathbf{y}}=\{y_{l}\}_{l=1}^{n}>0\in \mathbb{R}^{n}\) are the corresponding left and right M-eigenvectors, respectively. Let \(x_{p}\geq x_{s} \geq \max_{i\in [n], i\neq p,s}\{x_{i}\}\). From the pth equation of \(\mathcal{A}\mathbf{x} \mathbf{y}^{2}=\tau (\mathcal{A}) \mathbf{x} \) in (1.2) we obtain
that is,
Let \(\alpha _{p} =\min_{l\in [n]}\{a_{ppll}\}\). It follows from Theorem 2.2 that
Note that
Furthermore,
From the sth equation of \(\mathcal{A}\mathbf{x} \mathbf{y}^{2}=\tau (\mathcal{A}) \mathbf{x} \) in (1.2) we have
Let \(\alpha _{s} =\min_{l\in [n]}\{a_{ssll}\}\). It follows from Theorem 2.2 that
Multiplying (2.1) and (2.2), we have
which means that
where \(\Delta _{p,s}=(\alpha _{p}- r_{p}^{p}(\mathcal{A})-\alpha _{s})^{2}+4(r_{p}( \mathcal{A})- r_{p}^{p}(\mathcal{A})+\gamma _{p})R_{s}(\mathcal{A})\).
On the other hand, let \(|y_{q}|\geq |y_{t}| \geq \max_{l\in [n], l\neq q,t}|y_{l}|\). From the qth equation of \(\mathcal{A}\mathbf{x}^{2} \mathbf{y}=\tau (\mathcal{A}) \mathbf{y} \) in (1.2) it follows that
Let \(\beta _{q} =\min_{i\in [n]}\{a_{iiqq}\}\). It follows from Theorem 2.2 that
that is,
From the tth equation of \(\mathcal{A}\mathbf{x}^{2} \mathbf{y}=\tau (\mathcal{A}) \mathbf{y} \) in (1.2) we obtain
Let \(\beta _{t} =\min_{i\in [n]}\{a_{iitt}\}\). This yields
Multiplying (2.4) and (2.5), we have
which means that
where \(\varTheta _{q,t}=(\beta _{q}- c_{p}^{p}(\mathcal{A})-\beta _{t})^{2}+4(c_{p}( \mathcal{A})- c_{p}^{p}(\mathcal{A})+\delta _{q})C_{t}(\mathcal{A})\). Then the conclusion follows. □
Next, we compare the bound in Theorem 2.3 with that in Theorem 2.4 and obtain the following conclusion.
Theorem 2.5
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. Then
Proof
We first show that \(\min_{i,j\in [n],i\neq j } \{\eta _{1}(\mathcal{A})\}\geq \min_{i\in [n] } \{\alpha _{i}-R_{i}(\mathcal{A})\}\) and divide the argument into two cases.
Case 1. For any \(i,j\in [n]\), \(i\neq j\), if \(\alpha _{i}-R_{i}(\mathcal{A})\leq \alpha _{j}-R_{j}(\mathcal{A})\), then
From (2.8) we deduce
Thus
which means that
Case 2. For any \(i,j\in [n]\), \(i\neq j\), if \(\alpha _{i}-R_{i}(\mathcal{A})\geq \alpha _{j}-R_{j}(\mathcal{A})\), then
From (2.9) we have
Then
which implies
Therefore we obtain \(\min_{i,j\in [n],i\neq j } \{\eta _{1}(\mathcal{A})\}\geq \min_{i\in [n] } \{\alpha _{i}-R_{i}(\mathcal{A})\}\).
Similarly, we have \(\min_{i,j\in [n],i\neq j } \{\eta _{2}(\mathcal{A})\}\geq \min_{l\in [n] } \{\beta _{l}-C_{l}(\mathcal{A})\}\). Thus we deduce
and the desired result follows. □
In what follows, we propose another lower bound for \(\tau (\mathcal{A})\).
Theorem 2.6
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. Then
where
and
Proof
Let \(\tau (\mathcal{A})\) be the minimal M-eigenvalue of tensor \(\mathcal{A}\). From Theorem 2.1 we suppose that \({\mathbf{x}}=\{x_{i}\}_{i=1}^{n}>0\in \mathbb{R}^{n}\) and \({\mathbf{y}}=\{y_{l}\}_{l=1}^{n}>0\in \mathbb{R}^{n}\) are the corresponding left and right M-eigenvectors, respectively. Let \(x_{p}\geq x_{s} \geq \max_{i\in [n], i\neq p,s}\{x_{i}\}\). From the sth equation of \(\mathcal{A}\mathbf{x} \mathbf{y}^{2}=\tau (\mathcal{A}) \mathbf{x} \) in (1.2) we have
Let \(\alpha _{s} =\min_{l\in [n]}\{a_{ssll}\}\). It follows from Theorem 2.2 that
Moreover,
When \(\alpha _{s}- r_{s}^{s}(\mathcal{A})>\tau (\mathcal{A})\) or \(\alpha _{p}- r_{p}^{p}(\mathcal{A})>\tau (\mathcal{A})\), multiplying (2.1) and (2.10), we have
that is,
where \(\varOmega _{p,s}=(\alpha _{p}- r_{p}^{p}(\mathcal{A})-(\alpha _{s}-r_{s}^{s}( \mathcal{A})))^{2}+4(R_{p}(\mathcal{A})-r_{p}^{p}(\mathcal{A}))(R_{s}( \mathcal{A})- r_{s}^{s}(\mathcal{A}))\).
On the other hand, let \(|y_{q}|\geq |y_{t}| \geq \max_{l\in [n], l\neq q,t}|y_{l}|\). From the tth equation of \(\mathcal{A}\mathbf{x}^{2} \mathbf{y}=\tau (\mathcal{A}) \mathbf{y} \) in (1.2) we obtain
Let \(\beta _{t} =\min_{i\in [n]}\{a_{iitt}\}\). It follows from Theorem 2.2 that
that is,
When \(\beta _{t}- c_{t}^{t}(\mathcal{A})>\tau (\mathcal{A})\) or \(\beta _{q}- c_{q}^{q}(\mathcal{A})>\tau (\mathcal{A})\), multiplying (2.6) and (2.13), we have
which means that
where \(\varPhi _{q,t}=(\beta _{q}- c_{q}^{q}(\mathcal{A})-(\beta _{t}-c_{t}^{t}( \mathcal{A})))^{2}+4(C_{q}(\mathcal{A})-c_{q}^{q}(\mathcal{A}))(C_{t}( \mathcal{A})- c_{t}^{t}(\mathcal{A}))\). □
Next, we compare the bound in Theorem 2.3 with that in Theorem 2.6 and obtain the following result.
Theorem 2.7
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. Then
Proof
We will show \(\min_{i,j\in [n],i\neq j } \{\theta _{1}(\mathcal{A}), \alpha _{i}- r_{i}^{i}(\mathcal{A}), \alpha _{j}- r_{j}^{j}( \mathcal{A})\}\geq \min_{i\in [n] } \{\alpha _{i}-R_{i}( \mathcal{A})\}\) and divide the argument into two cases.
Case 1. For any \(i,j\in [n]\), \(i\neq j\), if \(\alpha _{i}-R_{i}(\mathcal{A})\leq \alpha _{j}-R_{j}(\mathcal{A})\), then from (2.8) we have
Since
we have
which means that
Case 2. For any \(i,j\in [n]\), \(i\neq j\), if \(\alpha _{i}-R_{i}(\mathcal{A})\geq \alpha _{j}-R_{j}(\mathcal{A})\), then
From (2.16) we have
Since
we have
which means that
Similarly, we have \(\min_{k,l\in [n],k\neq l } \{\theta _{2}(\mathcal{A}), \beta _{k}- c_{k}^{k}(\mathcal{A}),\beta _{l}- c_{l}^{l}(\mathcal{A}) \}\geq \min_{l\in [n] } \{\beta _{l}-C_{l}(\mathcal{A})\}\). Thus we deduce
and the desired result follows. □
The following example shows the superiority of the conclusions obtained in Theorems 2.4 and 2.6.
Example 2.1
([30])
Let \(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,2}\) be an elasticity M-tensor defined by
From the matrices
we know that \(\mathcal{A}\) is irreducible. By simple computation, \(\mathcal{A}\) has six M-eigenvalues: 13.4163, 12.1118, 11.2036, 6.1778, 0.2442, and 0.1964. The minimal M-eigenvalue of \(\mathcal{A}\) is 0.1964. Furthermore, we obtain
From Theorems 3.1 and 3.2 in [31] we have \(\tau (\mathcal{A})\geq -1\) and \(\tau (\mathcal{A})\geq -0.8655\), respectively. By Theorem 2.4 we have \(\tau (\mathcal{A})\geq -0.5567\), and by Theorem 2.6 we have \(\tau (\mathcal{A})\geq -0.5125\). Their comparison is drawn in Fig. 1, which reveals that our bounds are tighter than those of [31].
3 Strong ellipticity and positive definiteness
In this section, based on the results in Theorems 2.4 and 2.6, we present some sufficient conditions for the strong ellipticity and positive definiteness.
Theorem 3.1
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. If
then\(\mathcal{A}\)is positive definite, and the strong ellipticity condition holds.
Proof
From Theorem 2.4 we have
Hence \(\mathcal{A}\) is positive definite, and the strong ellipticity condition holds. □
Theorem 3.2
Let\(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,n}\)be an irreducible elasticity M-tensor. If
then\(\mathcal{A}\)is positive definite, and the strong ellipticity condition holds.
Proof
From Theorem 2.6 we have
Hence \(\mathcal{A}\) is positive definite, and the strong ellipticity condition holds. □
The following example reveals that Theorems 3.1 and 3.2 can identify the positive definiteness of elasticity M-tensors.
Example 3.1
Let \(\mathcal{A}=({{a}}_{ijkl})\in \mathbb{E}_{4,2}\) be an elasticity M-tensor such that
By a direct computation we have
Then \(\mathcal{A}\) is irreducible. Furthermore, by simple computation we obtain
From Theorem 3.1 we have
From Theorem 3.2 we have
Thus from Theorems 3.1 and 3.2 we obtain that \(\mathcal{A}\) is positive definite.
4 Conclusion
In this paper, we present some bounds for the minimum M-eigenvalue of elasticity M-tensors, which are tighter than some existing results. We propose numerical examples that illustrate the efficiency of the obtained results. As applications, we provide some checkable sufficient conditions for the strong ellipticity and positive definiteness.
References
Han, D., Dai, H., Qi, L.: Conditions for strong ellipticity of anisotropic elastic materials. J. Elast. 97, 1–13 (2009)
Knowles, J.K., Sternberg, E.: On the ellipticity of the equations of non-linear elastostatics for a special material. J. Elast. 5, 341–361 (1975)
Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63, 321–336 (1977)
Walton, J.R., Wilber, J.P.: Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int. J. Non-Linear Mech. 38, 411–455 (2003)
Chiritǎ, S., Danescu, A., Ciarletta, M.: On the strong ellipticity of the anisotropic linearly elastic materials. J. Elast. 87, 1–27 (2007)
Padovani, C.: Strong ellipticity of transversely isotropic elasticity tensors. Meccanica 37, 515–525 (2002)
Che, H., Li, M.: The conjugate gradient method for split variational inclusion and constrained convex minimization problems. Appl. Math. Comput. 290, 426–438 (2016)
Che, H., Chen, H., Li, M.: A new simultaneous iterative method with a parameter for solving the extended split equality problem and the extended split equality fixed point problem. Numer. Algorithms 79(4), 1231–1256 (2018)
Che, H., Chen, H., Wang, Y.: On the M-eigenvalue estimation of fourth-order partially symmetric tensors. J. Ind. Manag. Optim. 16(1), 309–324 (2020)
Che, H., Chen, H., Wang, Y.: M-positive semi-definiteness and M-positive definiteness of fourth-order partially symmetric Cauchy tensors. J. Inequal. Appl. 2019(1), 32 (2019)
Li, S., Li, C., Li, Y.: M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor. J. Comput. Appl. Math. 356, 391–401 (2019)
Chen, H., Huang, Z., Qi, L.: Copositivity detection of tensors: theory and algorithm. J. Optim. Theory Appl. 174, 746–761 (2017)
Chen, H., Chen, Y., Li, G., Qi, L.: A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numer. Linear Algebra Appl. 25, e2125 (2018)
Chen, H., Huang, Z., Qi, L.: Copositive tensor detection and its applications in physics and hypergraphs. Comput. Optim. Appl. 69, 133–158 (2018)
Chen, H., Wang, Y.: On computing minimal H-eigenvalue of sign-structured tensors. Front. Math. China 12, 1289–1302 (2017)
Chen, H., Qi, L., Song, Y.: Column sufficient tensors and tensor complementarity problems. Front. Math. China 13(2), 255–276 (2018)
Wang, Y., Caccetta, L., Zhou, G.: Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer. Linear Algebra Appl. 22, 1059–1076 (2015)
Wang, Y., Zhang, K., Sun, H.: Criteria for strong H-tensors. Front. Math. China 11, 577–592 (2016)
Zhou, G., Wang, G., Qi, L., Alqahtani, M.: A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. Numer. Linear Algebra Appl. 25(2), e2134 (2018)
Zhang, K., Wang, Y.: An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms. J. Comput. Appl. Math. 305, 1–10 (2016)
Wang, X., Chen, H., Wang, Y.: Solution structures of tensor complementarity problem. Front. Math. China 13, 935–945 (2018)
Wang, Y., Qi, L., Zhang, X.: A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 16, 589–601 (2009)
Che, H., Chen, H., Wang, Y.: C-eigenvalue inclusion theorems for piezoelectric-type tensors. Appl. Math. Lett. 89, 41–49 (2019)
Wang, C., Chen, H., Wang, Y., Zhou, G.: On copositiveness identification of partially symmetric rectangular tensors. J. Comput. Appl. Math. 372, 112678 (2020)
Zhang, K., Chen, H., Zhao, P.: A potential reduction method for tensor complementarity problems. J. Ind. Manag. Optim. 15(2), 429–443 (2019)
Chen, H., Qi, L., Lous, C., Zhou, G.: Birkhoff–von Neumann theorem and decomposition for doubly stochastic tensors. Linear Algebra Appl. 583, 119–133 (2019)
Chen, H., Wang, Y., High-order copositive tensors and its applications. J. Appl. Anal. Comput. 8(6), 1863–1885 (2018)
Wang, W., Chen, H., Wang, Y.: A new C-eigenvalue interval for piezoelectric-type tensors. Appl. Math. Lett. 100, 106035 (2020)
Gurtin, M.E.: The linear theory of elasticity. In: Linear Theories of Elasticity and Thermoelasticity. Springer, Berlin (1973)
Ding, W., Liu, J., Qi, L., Yan, H.: Elasticity M-tensors and the strong ellipticity condition. Appl. Math. Comput. 373, 124982 (2020)
He, J., Li, C., Wei, Y.: M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity. Appl. Math. Lett. 102, 106137 (2020)
Friedland, S., Gaubert, A., Han, L.: Perron–Frobenius theorems for nonnegative multilinear forms and extensions. Linear Algebra Appl. 438, 738–749 (2013)
Acknowledgements
We thank the editor and the anonymous referee for their constructive comments and suggestions, which greatly improved this paper.
Availability of data and materials
The data used to support the findings of this study are available from the corresponding author upon request.
Funding
This work was supported by the Natural Science Foundation of China (11401438, 11671228, 11601261, 11571120), Shandong Provincial Natural Science Foundation (ZR2019MA022), Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J14LI52), and China Postdoctoral Science Foundation (Grant No. 2017M622163).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Che, H., Chen, H., Xu, N. et al. New lower bounds for the minimum M-eigenvalue of elasticity M-tensors and applications. J Inequal Appl 2020, 188 (2020). https://doi.org/10.1186/s13660-020-02454-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02454-1
MSC
- 15A06
- 74B20
- 47J25
Keywords
- M-eigenvalue
- Elasticity M-tensors
- Strong ellipticity
- M-positive definiteness