- Research
- Open Access
- Published:
Wavelet approximation of a function using Chebyshev wavelets
Journal of Inequalities and Applications volume 2020, Article number: 187 (2020)
Abstract
In this paper, we estimate the best wavelet approximations of a function f having bounded second derivatives and bounded higher-order derivatives using Chebyshev wavelets of third and fourth kinds.
1 Introduction
In recent years, wavelets have found their way into many different fields of science and engineering; particularly, wavelets are very successfully used in signal analysis for waveform representation and segmentation, time-frequency analysis, and fast algorithms for easy implementation. Wavelets allow an accurate representation of variety of functions and operators.
The wavelet approximation technique is a recent tool to detect and analyze abrupt change in seismic signal processing. The wavelet approximation of a function by Haar wavelet has been determined by Devore [2], Debnath [1], Meyer [7], Morlet [11], and Lal and Kumar [4].
Chebyshev polynomials have become increasingly crucial in approximation theory. It is well known that there are four kinds of Chebyshev polynomials, and they all are particular cases of the more widely known class of Jacobi polynomials. The first and second kind Chebyshev polynomials are particular cases of symmetric Jacobi polynomials (i.e., ultraspherical polynomials), whereas third and fourth kinds of Chebyshev polynomials are particular cases of the nonsymmetric Jacobi polynomials (see Mastroianni and Milovanović [6, pp. 131–140]).
Note that a good amount of work on Chebyshev polynomials of the first kind \(T_{n}(x)\) and the second kind \(U_{n}(x)\) and their applications has already been done. But a very few research work has appeared on the Chebyshev polynomials of third and fourth kinds. We see that the Chebyshev polynomials of third kind \(V_{n}(x)\) and fourth kind \(W_{n}(x)\) and their applications are highly important in many areas, including wavelet approximation of certain functions.
It is important to note that \(V_{n}(x)\) and \(W_{n}(x)\) can be useful in situations in which singularities occur at one end point \((+1 \text{ or } -1)\) but not at the other.
The Chebyshev wavelet approximation method provides the best approximation of a certain function belonging to an approximate class. This motivates us to consider the Chebyshev wavelets of third and fourth kinds to estimate the error of approximation of a function.
Therefore, in this paper, we obtain the best wavelet approximation of a function f by shifted Chebyshev wavelets. In fact, we prove four theorems. In the first two theorems, we obtain the approximation of a function f having bounded second-order derivative and bounded mth derivative using shifted third kind Chebyshev wavelets. In the other two theorems, we obtain the best wavelet approximation of a function f having second-order derivative and bounded mth derivative using shifted fourth kind Chebyshev wavelets. It is important to note that the estimate of a function having more bounded derivatives is better and sharper than the estimate having less bounded derivatives, so comparison of estimated approximation has a significant importance in wavelet analysis.
The outline of the paper is as follows. In Sect. 2, we describe the Chebyshev polynomials and shifted Chebyshev polynomials of third and fourth kinds. In this section, we also define the functional approximation, projection, and wavelet approximation. Four our main theorems are given in Sect. 3. In Sect. 4, we present their proofs. Two corollaries are deduced in Sec. 5. In the last Sect. 6, we conclude our results.
2 Definitions
2.1 Chebyshev polynomials of third and fourth kinds
The Chebyshev polynomial of third kind is a polynomial of degree n given by
and the Chebyshev polynomial of fourth kind is a polynomial of degree n given by
where \(x=\cos \theta \).
Examples of Chebyshev polynomials of third and fourth kinds
Using (1), we get
and using (2), we get
Remark 1
The polynomials \(V_{n}(x)\) and \(W_{n}(x)\) are, in fact, rescalings of two particular Jacobi polynomials \(P_{n}^{\alpha ,\beta }(x) \) with \(\alpha =-\frac{1}{2}\) and \(\beta =\frac{1}{2}\) and vice versa. Explicitly,
These polynomials also may be efficiently generated by using the recurrence relation \(W_{n}(x)=(-1)^{n} V_{n}(-x)\) (see [3, 8, 10] for application in numerical integration).
Since
and
it immediately follows that
with
and
with
It is clear from (5) and (6) that both \(V_{n}(x)\) and \(W_{n}(x)\) are polynomials of degree n in x, in which all powers of x are present, and in which the leading coefficients (of x) are equal to \(2^{n}\).
The polynomials \(V_{n}(x)\) and \(W_{n}(x) \) are orthogonal on \((-1,1)\), that is,
where
2.2 Shifted Chebyshev polynomials of third and fourth kinds
The shifted polynomials \(V_{n}^{*}\) and \(W_{n}^{*}\) of third and fourth kinds, respectively, are defined as
The orthogonal relations of \(V_{n}^{*}(t)\) and \(W_{n}^{*}(t)\) on \([0,1]\) are given by
where
According to (10) and (11) and the relation \(W_{n}(x) = (-1)^{n}V_{n}(-x)\), we can conclude that
so that the orthogonal polynomials with respect to \(w_{2}^{*}\) can be obtained from those orthogonal with respect to \(w_{1}^{*}\) by the previous simple substitution \(x := 1-x\) and the factor \((-1)^{n}\) (in order to get all positive leading coefficients). Therefore it suffices to consider only one of these weights, say, \(w_{1}^{*}\).
The polynomials \(V_{n}^{*}(x)\) satisfy the following three-term recurrence relation:
with \(V_{0}^{*}(x)=1\) and \(V_{1}^{*}(x) = 4x-3\). The next polynomials are
and so on.
2.3 Shifted Chebyshev wavelets of third and fourth kind
When the dilation parameter a and the translation parameter b vary continuously, then we have the following family of continuous wavelets:
Each of the third and fourth kind of Chebyshev wavelets \(\psi _{n,m}(t):=\psi (k,n,m,t)\) has four arguments with \(k,n\in \mathbb{N}\), m is the order of the polynomial \(V_{m}^{*}(t) \) or \(W_{m}^{*}(t)\), and t is the normalized time. The Chebyshev wavelets of third and fourth kinds are defined explicitly on the interval \([ 0,1 ]\) by
and
respectively.
2.4 Functional approximation
A function \(f \in L^{2}(\mathbb{R})\) defined over \([0,1]\) is expanded in terms of Chebyshev wavelet series as
where
with weights \(w_{i}^{*} \), \(i=1,2 \), defined in (13). If an infinite series in (15) is truncated, then it can be written as
where C and \(\varPsi (t)\) are two \(2^{k}M\times 1\) matrices given by
and
2.5 Multiresolution analysis
A sequence of closed subspaces \(V_{j}\) of \(L^{2}(\mathbb{R})\), \(j \in \mathbb{Z}\), is called a multiresolution in \(L^{2}(\mathbb{R})\) if it satisfies the following conditions:
-
(i)
\(V_{j} \subset V_{j+1}\);
-
(ii)
\(f(x) \in V_{j} \Leftrightarrow f(2x) \in V_{j+1}\);
-
(iii)
\(f(x) \in V_{0} \Leftrightarrow f(x + 1) \in V_{0}\);
-
(iv)
\(\bigcup_{-\infty }^{ \infty }V_{j} \) is dense in \(L^{2}(\mathbb{R})\), and \(\bigcap_{-\infty }^{ \infty }V_{j}=0 \);
-
(v)
There exists a function \(\varphi \in V_{0} \) such that the collection \({ \lbrace \varphi (x-k): k \in \mathbb{Z} \rbrace } \) is a Riesz basis of \(V_{0}\) ([1]).
2.6 Projection \(P_{n}(f)\)
Let \(P_{n}(f)\) be the orthogonal projection of \(L^{2}(R)\) onto \(V_{n}\). Then
Thus
2.7 Wavelet approximation
The wavelet approximation under the supremum norm is defined by
The degree of wavelet approximation \(E_{n}(f)\) of f by \(P_{n}f \) under the norm \(\Vert \cdot \Vert _{r}\) is given by
Remark 2
If \(E_{n}(f) \rightarrow 0 \) as \(n \rightarrow \infty \), then \(E_{n}(f)\) is called the best approximation of f [13].
3 Main theorems
In this paper, we prove the following theorems.
Theorem 3.1
If a continuous function\(f \in L^{2}_{w_{1}^{*}}[0,1]\), , such that\(\vert f''(t)\vert \leq P< \infty \)is expanded as an infinite series of third kind Chebyshev wavelet series
then the Chebyshev wavelet approximation\(E_{2^{k-1}, M}(t)\)offby\((2^{k-2}, M)\)th partial sums
of its Chebyshev wavelet series in\(L^{2}_{w_{1}^{*}}[0,1]\)is given by
Theorem 3.2
If a continuous function\(f\in L^{2}_{w_{1}^{*}}[0,1]\), , is such that\(\sup_{t\in [0,1]}\vert f^{M}(t)\vert <\infty \), then the Chebyshev wavelet approximation of\(E_{2^{k-1}, M}(t)\)offby\((2^{k-1},M)\)th partial sums
of its Chebyshev wavelet series in\(L^{2}_{w_{1}^{*}}[0,1]\)is given by
Theorem 3.3
If a continuous function\(f \in L^{2}_{w_{2}^{*}}[0,1]\), , is such that\(\vert f''(t)\vert \leq P < \infty \)can be expanded as an infinite series of fourth kind Chebyshev wavelet series
then the Chebyshev wavelet approximation\(E_{2^{k-1}, M}(t)\)offby\((2^{k-2}, M)\)th partial sums
of its Chebyshev wavelet series in\(L^{2}_{w_{2}^{*}}[0,1]\)is given by
Theorem 3.4
If a continuous function\(f\in L^{2}_{w_{2}^{*}}[0,1]\), , is such that\(\sup_{t\in [0,1]}\vert f^{M}(t)\vert <\infty \), then the Chebyshev wavelet approximation of\(E_{2^{k-1}, M}(t)\)offby\((2^{k-1}, M)\)th partial sums
of its Chebyshev wavelet series in\(L^{2}_{w_{2}^{*}}[0,1]\)is given by
4 Proof of the main theorems
Proof of Theorem 3.1
Chebyshev wavelet series \(f \in L^{2}_{w_{1}^{*}}[0,1]\) is given by
where
From Chebyshev wavelet we have
Let \(n=2^{k-2}+1 \). Then (19) becomes
Since \(\psi _{n,m} \) vanishes outside the interval \([0,1 ]\), the third and fourth terms of (17) become 0. Thus (17) becomes
Now (20) can be written as
Now
Let \(2^{k}t-\hat{n}=u\). Then (22) becomes
Using (7), we get
Now we have
Considering \(2^{k}t-\hat{n}=\cos \theta \), we get
Integrating (26) by parts, we get
Now integrating (27) by parts, we get
Applying the given condition \(f''(x)\leq P \) in (28), we get
Hence
This completes the proof of Theorem 3.1. □
Proof of Theorem 3.2
Since a function f is M times differentiable, by Taylor’s expansion we have
where
Now we write
Using (30) and dividing the interval \([0, 1]\) into subintervals \([ \frac{ {l}}{2^{k-1}},\frac{ l+1}{2^{k-1}} ] \), we get
Now
Hence
Thus
This completes the proof of Theorem 3.2. □
Proof of Theorem 3.3
Theorem 3.3 can be proved along the lines of the proof of Theorem 3.1. □
Proof of Theorem 3.4
Theorem 3.4 can be proved along the lines of the proof of Theorem 3.2. □
5 Corollaries
Corollary 5.1
If a continuous function\(f \in L^{2}_{w_{2}^{*}}[0,1]\), , such that\(\vert f''(t)\vert \leq P < \infty \)can be expanded as an infinite series of fourth kind Chebyshev wavelet series
then the Chebyshev wavelet approximation\(E_{2^{k-1}, M}(t)\)of f by\((2^{k-2}, M)\)th partial sums
of its Chebyshev wavelet series in\(L^{2}_{w_{2}^{*}}[0,1]\)is given by
Proof
Replacing \(V_{n}^{*}\) by \(W_{n}^{*}\) and \(\omega _{1}^{*}\) by \(\omega _{2}^{*}\) in Theorem 3.1, we obtain Corollary 5.1. □
Corollary 5.2
If a continuous function\(f\in L^{2}_{w_{2}^{*}}[0,1]\), , is such that\(\sup_{t\in [0,1]}\vert f^{M}(t)\vert <\infty \), then the Chebyshev wavelet approximation of\(E_{2^{k-1}, M}(t)\)offby\((2^{k-1}, M)\)th partial sums
of its Chebyshev wavelet series in\(L^{2}_{w_{2}^{*}}[0,1]\)is given by
Proof
Replacing \(V_{n}^{*}\) by \(W_{n}^{*}\) and \(\omega _{1}^{*}\) by \(\omega _{2}^{*}\) in Theorem 3.2, we obtain Corollary 5.2. □
6 Conclusion
-
1.
In our results, the estimate of wavelet approximation of a function having more bounded derivatives is sharper than the estimate of wavelet approximation of a function having less bounded derivatives.
-
2.
In view of Remark 2, our results are best possible.
References
Debnath, L.: Wavelet Transforms and Their Applications. Birkhäuser, Boston (2002)
DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)
Gautschi, W., Notaris, S.E.: Gauss–Kronrod quadrature formulae for weight function of Bernstein–Szegö type. J. Comput. Appl. Math. 25, 199–224 (1989)
Lal, S., Kumar, S.: Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. Thai J. Math. 15(2), 409–419 (2017)
Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall, New York (2003)
Mastroianni, G., Milovanović, G.V.: Interpolation Processes: Basic Theory and Applications. Springer, Berlin (2008)
Meyer, Y.: Wavelets: their past and their future. In: Meyer, Y., Roques, S. (eds.) Progress in Wavelet Analysis and Applications. Editions Frontieres, B. P. 33, 91192 Gif-sur-Yvette Cedex, France, pp. 9–18 (1993)
Milovanović, G.V.: Quadrature with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)
Milovanović, G.V.: Orthogonal polynomials on the radial rays in the complex plane and applications. Rend. Circ. Mat. Palermo Ser. II Suppl. 68, 65–94 (2002)
Milovanović, G.V., Spalević, M.M.: Error bounds for Gauss–Turán quadrature formulae of analytic functions. Math. Comput. 72, 1855–1872 (2003)
Morlet, J., Arens, G., Fourgeau, E., Giard, D.: Wave propagation and sampling theory, part I: complex signal land scattering in multilayer media. Geophysics 47(2), 203–221 (1982)
Sweldens, W., Piessens, R.: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J. Numer. Anal. 31(4), 1240–1264 (1994)
Zygmund, A.: Trigonometric Series, vol. I. Cambridge University Press, New York (1959)
Acknowledgements
First author expresses his gratitude toward his mother for her blessings. The first author also expresses his gratitude toward his father in heaven, whose soul is always guiding and encouraging him. Third author expresses his gratitude toward his father in heaven, whose soul is always guiding and encouraging him. The authors are extremely thankful to the learned referee for giving valuable comments and suggestions, which improved the paper significantly in its present form. This work is a part of a project EMR/2016/002003, and the first author is also thankful to SERB, Government of India, New Delhi, for support to this work.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors jointly worked on the results, and they read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Nigam, H.K., Mohapatra, R.N. & Murari, K. Wavelet approximation of a function using Chebyshev wavelets. J Inequal Appl 2020, 187 (2020). https://doi.org/10.1186/s13660-020-02453-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02453-2
MSC
- 41A30
- 42C40
Keywords
- Wavelet approximation
- Chebyshev wavelets
- Admissibility conditions
- Functions of bounded derivatives