Skip to main content

Fractional integral inequalities involving Marichev–Saigo–Maeda fractional integral operator

Abstract

The aim of this present investigation is establishing Minkowski fractional integral inequalities and certain other fractional integral inequalities by employing the Marichev–Saigo–Maeda (MSM) fractional integral operator. The inequalities presented in this paper are more general than the existing classical inequalities cited.

Introduction

In last few decades, various researchers and mathematician have paid their valuable consideration to fractional integral inequalities (FIIs) and their applications. Recent research focuses on various types of FIIs by employing various types of fractional integral operators (see, e.g., [111]). In [1217] the authors have established various types of inequalities and some other results by utilizing the Saigo fractional integral operator. The reverse Minkowski FIIs are found in [18]. Anber et al. [19] have obtained some FIIs by using the Riemann–Liouville fractional integral. The accompanying essential definitions and properties of the MSM fractional operator, which will be utilized to obtain the main results.

Definition 1.1

A real-valued function \(g(\tau )\), \(\tau \geq 0\), is said to be in \(C_{\mu }([a,b])\), \(\mu \in \mathbb{R}\), if there exists \(\sigma \in \mathbb{R}\) such that \(\sigma >\mu \) and \(\varPhi (\tau )=\tau ^{\sigma }\varPhi (\tau )\), where \(\varPhi (\tau )\in C([a,b])\).

Definition 1.2

Let \(\nu , \acute{\nu }, \xi ,\acute{\xi } \in \mathbb{R}\), and let \(\eta > 0\). Then the MSM fractional integral is defined in [20] as

$$ \begin{aligned}[b] &\bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }g \bigr) (x)\\ &\quad = \frac{x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr) g(t)\,dt, \quad x \in \mathbb{R}, \end{aligned} $$
(1)

where \(F_{3}\) is the Appell function defined by [21] as

$$\begin{aligned} F_{3} \bigl( \nu ,\nu ^{\prime },\xi ,\xi ^{\prime };\eta ;x;y \bigr)= \sum_{m,n=0}^{\infty } \frac{(\nu )_{m}(\nu ^{\prime })_{n}(\xi )_{m}(\xi ^{\prime })_{n}}{(\eta )_{m+n}} \frac{x^{m}y^{n}}{m!n!} ,\quad \max \bigl\{ \vert x \vert , \vert y \vert \bigr\} < 1, \end{aligned}$$

and \((\nu )_{m}=\nu (\nu +1)\cdots (\nu +m-1)\) is the Pochhammer symbol.

Lemma 1.1

Let\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\in \mathbb{R}\), \(\eta >0\), and\(\rho >\max \{0,(\nu -\nu ^{\prime }-\xi -\eta ),(\nu ^{\prime }-\xi ^{ \prime })\}\). Then we have the relation

$$ \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta } t^{\rho -1} \bigr) (x)= \frac{\varGamma ( \rho ) \varGamma ( \rho +\eta -\nu -\nu ^{\prime }-\xi ) \varGamma ( \tau +\xi {^{\prime }}-\nu {^{\prime }} ) }{\varGamma ( \rho +\xi {^{\prime }} ) \varGamma ( \rho +\eta -\nu -\nu {^{\prime }} ) \varGamma ( \rho +\eta -\nu {^{\prime }}-\xi ) }x^{\rho -\nu -\nu ^{\prime }+\eta -1}. $$
(2)

Taking \(\rho =1\) in Lemma 1.1, we get the relation

$$ \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }[1] \bigr) (x)= \frac{ \varGamma ( 1+\eta -\nu -\nu ^{\prime }-\xi ) \varGamma ( 1 +\xi {^{\prime }}-\nu {^{\prime }} ) }{\varGamma ( 1+\xi {^{\prime }} ) \varGamma ( 1+\eta -\nu -\nu {^{\prime }} ) \varGamma ( 1+\eta -\nu {^{\prime }}-\xi ) }x^{-\nu -\nu ^{\prime }+\eta }. $$
(3)

The details of the integral operator (1) and its properties can be found in [22, 23]. For further applications of MSM fractional integral, we refer the interested readers to [2428]. For a short history of this operator, see [25, 26, 29].

Reverse Minkowski inequalities via MSM fractional integral operator

In this section, we use the MSM fractional integral operator to develop reverse Minkowski integral inequalities. To prove the following reverse Minkowski FII, we first recall the following result.

Theorem 2.1

(see [30])

If\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\), then we have the inequality

$$\begin{aligned} F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{\prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)>0, \end{aligned}$$
(4)

provided that\(-1<(1-\frac{t}{x})<0\)and\(0<(1-\frac{x}{t})<\frac{1}{2}\). Also, if\(f(x)>0\), then

$$\begin{aligned} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }f \bigr) (x)>0. \end{aligned}$$

Theorem 2.2

Let\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)be such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\), \(\sigma \geq 1\), and letΦ, Ψbe two positive functions on\([0,\infty )\)such that for all\(x>0\), \(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPhi ^{\sigma }(x)]<\infty \)and\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPsi ^{\sigma }(x)]<\infty \). If\(0< m\leq \frac{\varPhi (t)}{\varPsi (t)}\leq M\), \(t\in [0,x]\), then we have the inequality

$$\begin{aligned} \begin{aligned}[b] &\bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\varPhi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}+ \bigl(\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPsi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}\\ &\quad \leq \frac{1+M(m+2)}{(m+1)(M+1)} \bigl( \mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }(\varPhi +\varPsi )^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}, \end{aligned} \end{aligned}$$
(5)

provided that\(-1<(1-\frac{t}{x})<0\)and\(0<(1-\frac{x}{t})<\frac{1}{2}\).

Proof

Using the condition \(\frac{\varPhi (t)}{\varPsi (t)}< M\), \(t\in [0,x]\), \(x>0\), we have

$$ (M+1)^{\sigma }\varPhi ^{\sigma }(t)\leq M^{\sigma } ( \varPhi +\varPsi )^{\sigma }(t). $$
(6)

Consider the function

$$\begin{aligned} \mathfrak{F}(x,t)&= \frac{x^{-\nu }(x-t)^{\eta -1}t^{-\nu ^{\prime }}}{\varGamma (\eta )}F_{3} \biggl( \nu ,\nu ^{ \prime },\xi ,\xi ^{\prime };\eta ;1-\frac{t}{x},1- \frac{x}{t} \biggr) \\ &=\frac{x^{-\nu }(x-t)^{\eta -1}t^{-\nu ^{\prime }}}{\varGamma (\eta )} \biggl[1+ \frac{(\nu ^{\prime })(\xi )}{(\eta )} \biggl(1-\frac{x}{t} \biggr)+ \frac{(\nu )(\xi )}{(\eta )}\biggl(1-\frac{t}{x}\biggr)+\cdots \biggr] . \end{aligned}$$
(7)

In view of Theorem 2.1, the function \(\mathfrak{F}(x,t)\) is positive for all \(t\in (0,x)\), \(x>0\). Therefore multiplying both sides of (6) by \(\mathfrak{F}(x,t)\) and then integrating the resulting inequality with respect to t from 0 to x, we have

$$\begin{aligned} &\frac{(M+1)^{\sigma }x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi ^{\sigma }(t)\,dt \\ &\quad \leq \frac{M^{\sigma }x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr) (\varPhi +\varPsi )^{\sigma }(t) \,dt, \end{aligned}$$

which can be written as

$$ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma }(x)\leq \frac{M^{\sigma }}{(M+1)^{\sigma }}\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } (\varPhi +\varPsi )^{\sigma }(x). $$

Hence it follows that

$$ \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\varPhi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}\leq \frac{M}{(M+1)} \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta } (\varPhi +\varPsi )^{\sigma }(x) \bigr) ^{\frac{1}{\sigma }}. $$
(8)

Now using the condition \(m\varPsi (t)\leq \varPhi (t)\), we have

$$ \biggl(1+\frac{1}{m} \biggr)\varPsi (t)\leq \frac{1}{m} \bigl( \varPhi (t)+ \varPsi (t) \bigr), $$

from which it follows that

$$ \biggl(1+\frac{1}{m} \biggr)^{\sigma }\varPsi ^{\sigma }(t)\leq \biggl(\frac{1}{m}\biggr)^{\sigma } \bigl( \varPhi (t)+\varPsi (t) \bigr)^{\sigma }. $$
(9)

Multiplying both sides of (9) by \(\mathfrak{F}(x,t)\) and then integrating the resulting inequality with respect to t from 0 to x, we get

$$ \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\varPsi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}\leq \frac{1}{(m+1)} \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta } (\varPhi +\varPsi )^{\sigma }(x) \bigr) ^{\frac{1}{\sigma }}. $$
(10)

Summing inequalities (8) and (10), we get the desired inequality. □

Theorem 2.3

Let\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)be such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\), \(\sigma \geq 1\), and letΦ, Ψbe two positive functions on\([0,\infty )\)such that for all\(x>0\), \(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPhi ^{\sigma }(x)]<\infty \)and\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPsi ^{\sigma }(x)]<\infty \). If\(0< m\leq \frac{\varPhi (t)}{\varPsi (t)}\leq M\), \(t\in [0,x]\), then we have the inequality

$$\begin{aligned} & \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\varPhi ^{\sigma }(x) \bigr)^{\frac{2}{\sigma }}+ \bigl(\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPsi ^{\sigma }(x) \bigr)^{\frac{2}{\sigma }} \\ &\quad \geq \biggl(\frac{(M+1)(m+1)}{M}-2 \biggr) \bigl(\mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta } \varPsi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}, \end{aligned}$$
(11)

provided that\(-1<(1-\frac{t}{x})<0\)and\(0<(1-\frac{x}{t})<\frac{1}{2}\).

Proof

By multiplying inequalities (8) and (10) we have

$$\begin{aligned} \begin{aligned}[b] &\biggl(\frac{(M+1)(m+1)}{M} \biggr) \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta } \varPsi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}\\ &\quad \leq \bigl[ \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta } \bigl(\varPhi (x)+ \varPsi (x) \bigr)^{\sigma } \bigr)^{\frac{1}{\sigma }} \bigr]^{2}. \end{aligned} \end{aligned}$$
(12)

Now, applying the Minkowski inequality to the right-hand side of (12), we obtain

$$\begin{aligned} \begin{aligned}[b] & \bigl[ \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta } \bigl(\varPhi (x)+ \varPsi (x) \bigr)^{\sigma } \bigr)^{\frac{1}{\sigma }} \bigr]^{2}\\ &\quad \leq \bigl[ \bigl(\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}+ \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta }\varPsi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }} \bigr]^{2} \\ &\quad \leq \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\varPhi ^{\sigma }(x) \bigr)^{\frac{2}{\sigma }}+ \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPsi ^{\sigma }(x) \bigr)^{\frac{2}{\sigma }}\\ &\qquad {}+2 \bigl(\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta } \varPsi ^{\sigma }(x) \bigr)^{\frac{1}{\sigma }}. \end{aligned} \end{aligned}$$
(13)

Thus from inequalities (12) and (13) we get the desired inequality (11). □

Fractional integral inequalities via MSM fractional integral operator

This section is devoted to some FIIs involving MSM operator.

Theorem 3.1

Let\(r>1\), \(\frac{1}{r}+\frac{1}{s}=1\), and letΦ, Ψbe two positive functions on\([0,\infty )\)such that\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPhi (x)]<\infty \)and\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPsi (x)]<\infty \). If\(0< m\leq \frac{\varPhi (t)}{\varPsi (t)}\leq M<\infty \), \(t\in [0,x]\), \(x>0\), then we have

$$\begin{aligned} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\varPhi (x) \bigr)^{\frac{1}{r}} \bigl(\mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPsi (x) \bigr)^{\frac{1}{s}} \leq \biggl(\frac{M}{m} \biggr)^{\frac{1}{rs}} \bigl( \mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[\varPhi (x)\bigr]^{\frac{1}{r}} \bigl[ \varPsi (x)\bigr]^{\frac{1}{s}} \bigr), \end{aligned}$$
(14)

where\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

Since \(\frac{\varPhi (t)}{\varPsi (t)}\leq M<\infty \), \(t\in [0,x]\), \(x>0\), we have

$$\begin{aligned} \bigl[\varPsi (t)\bigr]^{\frac{1}{s}}\geq M^{\frac{-1}{s}}\bigl[ \varPhi (t)\bigr]^{\frac{1}{s}}. \end{aligned}$$
(15)

It follows that

$$\begin{aligned} {}\bigl[\varPhi (t)\bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}}& \geq M^{\frac{-1}{s}}\bigl[ \varPhi (t)\bigr]^{\frac{1}{r}}\bigl[\varPhi (t) \bigr]^{\frac{1}{s}} \\ &\geq M^{\frac{-1}{s}}\bigl[\varPhi (t)\bigr]^{\frac{1}{r}+\frac{1}{s}} \\ &\geq M^{\frac{-1}{s}}\bigl[\varPhi (t)\bigr]. \end{aligned}$$
(16)

Multiplying by (7) both sides of (16) and then integrating the resulting inequality with respect to t from 0 to x, we get

$$\begin{aligned} &\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\bigl[\varPhi (t) \bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}}\,dt \\ &\quad \geq \frac{M^{\frac{-1}{s}} x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi (t)\,dt. \end{aligned}$$
(17)

It follows that

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \bigl[\bigl[\varPhi (t)\bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}} \bigr]\geq M^{\frac{-1}{r}} \bigl[\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\varPhi (t) \bigr]. \end{aligned}$$
(18)

Consequently, we have

$$\begin{aligned} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta } \bigl[\bigl[ \varPhi (t)\bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}} \bigr] \bigr)^{\frac{1}{r}}\geq M^{\frac{-1}{rs}} \bigl[\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi (t) \bigr]^{\frac{1}{r}}. \end{aligned}$$
(19)

On the other hand, \(m \varPsi (t)\leq \varPhi (t)\), \(t\in [0,x]\), \(x>0\), and therefore we have

$$\begin{aligned} \bigl[\varPhi (t)\bigr]^{\frac{1}{r}}\geq m^{\frac{1}{r}}\bigl[ \varPsi (t)\bigr]^{\frac{1}{r}}. \end{aligned}$$
(20)

It follows that

$$\begin{aligned} {}\bigl[\varPhi (t)\bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}}& \geq m^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{r}}\bigl[\varPsi (t) \bigr]^{\frac{1}{s}} \\ &\geq m^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{r}+\frac{1}{s}} \\ &\geq m^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]. \end{aligned}$$
(21)

Multiplying both sides of (21) by (7) and integrating the resulting inequality with respect to t from 0 to x, we get

$$\begin{aligned} &\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\bigl[\varPhi (t) \bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}}\,dt \\ &\quad \geq \frac{m^{\frac{1}{r}} x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPsi (t)\,dt. \end{aligned}$$
(22)

Hence we can write

$$\begin{aligned} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta } \bigl[\bigl[ \varPhi (t)\bigr]^{\frac{1}{r}}\bigl[\varPsi (t)\bigr]^{\frac{1}{s}} \bigr] \bigr)^{\frac{1}{r}}\geq m^{\frac{1}{rs}} \bigl[\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi (t) \bigr]^{\frac{1}{s}}. \end{aligned}$$
(23)

Multiplying (19) and (23), we get the desired inequality. □

Theorem 3.2

Let\(r>1\), \(\frac{1}{r}+\frac{1}{s}=1\), and letΦ, Ψbe two positive functions on\([0,\infty )\)such that\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPhi ^{r}(x)]<\infty \)and\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPsi ^{s}(x)]<\infty \). If\(0< m\leq \frac{\varPhi (t)^{r}}{\varPsi (t)^{s}}\leq M<\infty \), \(t\in [0,x]\), \(x>0\), then we have

$$\begin{aligned} \bigl(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\varPhi ^{r}(x) \bigr)^{\frac{1}{r}} \bigl(\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPsi ^{s}(x) \bigr)^{\frac{1}{s}}\leq \biggl(\frac{M}{m} \biggr)^{\frac{1}{rs}} \bigl( \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr]^{\frac{1}{r}}\bigl[\varPsi (x)\bigr]^{\frac{1}{s}} \bigr), \end{aligned}$$
(24)

where\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

Replacing \(\varPhi (t)\) and \(\varPsi (t)\) by \(\varPhi (t)^{r}\) and \(\varPsi (t)^{s}\), \(t\in [0,x]\), \(x>0\), in Theorem 3.1, we get the desired inequality (24). □

Theorem 3.3

LetΦandΨbe two positive functions on\([0,\infty )\)such thatΦis nondecreasing andΨis nonincreasing. Then

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi ^{\sigma }(x)\varPsi ^{\theta }(x)\bigr]\leq \frac{1}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1]} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi ^{\sigma }(x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[\varPsi ^{\theta }(x)\bigr], x>0, \end{aligned}$$
(25)

where\({\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1]}\)is defined by (3), \(\sigma , \theta >0\), and\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

Let \(t, \rho \in [0,x]\), \(x>0\). Then for any \(\sigma >0\) and \(\theta >0\), we have

$$\begin{aligned} \bigl(\varPhi ^{\sigma }(t)-\varPhi ^{\sigma }(\rho ) \bigr) \bigl( \varPsi ^{\theta }(t)-\varPsi ^{\theta }(\rho ) \bigr)\geq 0. \end{aligned}$$
(26)

It follows that

$$\begin{aligned} \varPhi ^{\sigma }(t)\varPsi ^{\theta }(t)+\varPhi ^{\sigma }(\rho )\varPsi ^{\theta }( \rho )\leq \varPhi ^{\sigma }( \rho )\varPsi ^{\theta }(t)+\varPhi ^{\sigma }(t)\varPsi ^{\theta }( \rho ). \end{aligned}$$
(27)

Multiplying both sides of (27) by (7) and integrating the resulting inequality with respect to t from 0 to x, we get

$$\begin{aligned} &\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi ^{\sigma }(t) \varPsi ^{\theta }(t)\,dt \\ &\qquad{}+\varPhi ^{\sigma }(\rho )\varPsi ^{\theta }(\rho ) \frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)[1]\,dt \\ &\quad \leq \varPsi ^{\theta }(\rho )\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi ^{\sigma }(t)\,dt \\ &\qquad{}+\varPhi ^{\sigma }(\rho )\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPsi ^{\theta }(t)\,dt. \end{aligned}$$
(28)

It follows that

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi ^{\sigma }(x) \varPsi ^{\theta }(x)\bigr]+\varPhi ^{\sigma }(\rho )\varPsi ^{\theta }( \rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }[1] \\ &\quad \leq \varPhi ^{\sigma }(\rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta } \bigl[\varPsi ^{\theta }(x)\bigr]+\varPsi ^{\theta }(\rho ) \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi ^{\sigma }(x)\bigr]. \end{aligned}$$
(29)

Again, multiplying both sides of (29) by \(\mathfrak{F}(x,\rho )\), which is obtained by replacing t by ρ in (7), and then integrating with respect to ρ from 0 to x, we obtain

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi ^{\sigma }(x) \varPsi ^{\theta }(x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }[1]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\bigl[\varPhi ^{\sigma }(x)\varPsi ^{\theta }(x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1] \\ &\quad \leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[\varPhi ^{\sigma }(x) \bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta }\bigl[\varPsi ^{\theta }(x) \bigr]+\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\bigl[\varPsi ^{\theta }(x) \bigr]\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[\varPhi ^{\sigma }(x) \bigr], \end{aligned}$$
(30)

which completes the proof. □

Theorem 3.4

LetΦandΨbe two positive functions on\([0,\infty )\)such thatΦis nondecreasing andΨis nonincreasing. Then

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[ \varPhi ^{\sigma }(x) \varPsi ^{\theta }(x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }[1]+ \mathfrak{I}_{0,x}^{\alpha , \beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[\varPhi ^{\sigma }(x)\varPsi ^{\theta }(x)\bigr]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime }, \lambda }[1] \\ &\quad \leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[\varPhi ^{\sigma }(x) \bigr]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta , \zeta ^{\prime },\lambda }\bigl[\varPsi ^{\theta }(x) \bigr]+\mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[\varPsi ^{\theta }(x) \bigr] \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[ \varPhi ^{\sigma }(x) \bigr] \end{aligned}$$
(31)

for all\(x>0\), \(\sigma , \theta >0\), where\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1]\)is defined by (3), and\(\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda , \nu , \acute{\nu }, \xi ,\xi ^{\prime }, \eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\)and\(\lambda >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

Multiplying both sides of (29) by

$$ \mathfrak{F}(x,\rho )=\frac{x^{-\alpha }}{\varGamma (\lambda )}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) $$

and integrating the resulting identity with respect to ρ over \((0,x)\), we have

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi ^{\sigma }(x) \varPsi ^{\theta }(x)\bigr] \frac{x^{-\alpha }}{\varGamma (\lambda )} \int _{0}^{x}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr)[1]\,d \rho \\ &\qquad{}+ \frac{x^{-\alpha }}{\varGamma (\lambda )} \int _{0}^{x}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) \\ &\qquad {}\times\bigl[ \varPhi ^{\sigma }(\rho )\varPsi ^{\theta }(\rho )\bigr]\,d\rho \mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1] \\ &\quad \leq \frac{x^{-\alpha }}{\varGamma (\lambda )} \int _{0}^{x}(x-\rho )^{\lambda -1}\rho ^{-\beta } F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) \\ &\qquad {}\times\varPhi ^{\sigma }(\rho )\,d\rho \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[ \varPsi ^{\theta }(x)\bigr] \\ &\qquad{}+\frac{x^{-\alpha }}{\varGamma (\lambda )} \int _{0}^{x}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) \\ &\qquad {}\times\varPsi ^{\theta }(\rho )\,d\rho \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[ \varPhi ^{\sigma }(x)\bigr], \end{aligned}$$
(32)

which yields the desired inequality (31). □

Remark 1

Inequalities (25) and (31) may be reversed if

$$\begin{aligned} \bigl(\varPhi ^{\sigma }(t)-\varPhi ^{\sigma }(\rho ) \bigr) \bigl( \varPsi ^{\theta }(t)-\varPsi ^{\theta }(\rho ) \bigr)\geq 0. \end{aligned}$$

Remark 2

Applying Theorem 3.4 to \(\alpha =\nu \), \(\beta =\nu ^{\prime }\), \(\zeta =\xi \), \(\zeta ^{\prime }=\xi ^{\prime }\), \(\lambda =\eta \), we get Theorem 3.3.

Theorem 3.5

Let\(\varPhi \geq 0\)and\(\varPsi \geq 0\)be two functions on\([0,\infty )\)such thatΨis nondecreasing. If

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi (x)\geq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\varPsi (x),\quad x>0, \end{aligned}$$
(33)

then for all\(x>0\), \(\sigma >0\), \(\theta >0\), and\(\sigma -\theta >0\), we have

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma -\theta }(x)\leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma }(x)\varPsi ^{-\theta }(x), \end{aligned}$$
(34)

where\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

Using the arithmetic–geometric inequality, for \(\sigma >0\) and \(\theta >0\), we have

$$\begin{aligned} \frac{\sigma }{\sigma -\theta }\varPhi ^{\sigma -\theta }(t)- \frac{\theta }{\sigma -\theta } \varPsi ^{\sigma -\theta }(t)\leq \varPhi ^{\sigma }(t)\varPsi ^{-\theta }(t),\quad t\in (0,x), x>0. \end{aligned}$$
(35)

Multiplying both sides of (35) by (7) and then integrating with respect to t from 0 to x, we have

$$\begin{aligned} &\frac{\sigma }{\sigma -\theta }\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi ^{\sigma - \theta }(t)\,dt \\ &\qquad{}-\frac{\theta }{\sigma -\theta }\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPsi ^{\sigma - \theta }(t)\,dt \\ &\quad \leq \frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi ^{\sigma }(t) \varPsi ^{-\theta }(t)\,dt. \end{aligned}$$

Consequently,

$$\begin{aligned} \frac{\sigma }{\sigma -\theta }\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma -\theta }(x)- \frac{\theta }{\sigma -\theta }\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta } \varPsi ^{\sigma -\theta }(x)\leq \mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma }(x)\varPsi ^{- \theta }(x), \end{aligned}$$

which can be written as

$$\begin{aligned} \frac{\sigma }{\sigma -\theta }\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma -\theta }(x)\leq \mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma }(x)\varPsi ^{- \theta }(x)+\frac{\theta }{\sigma -\theta } \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\varPsi ^{\sigma -\theta }(x). \end{aligned}$$

It follows that

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma -\theta }(x)\leq \frac{\sigma -\theta }{\sigma } \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma }(x)\varPsi ^{-\theta }(x)+\frac{\theta }{\sigma } \mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPsi ^{\sigma -\theta }(x). \end{aligned}$$
(36)

By inequality (33) we have

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma -\theta }(x)\leq \frac{\sigma -\theta }{\sigma } \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \varPhi ^{\sigma }(x)\varPsi ^{-\theta }(x)+\frac{\theta }{\sigma } \mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\varPhi ^{\sigma -\theta }(x), \end{aligned}$$
(37)

which gives the required result. □

Theorem 3.6

LetΦ, Ψ, andhbe positive continuous functions on\([0,\infty )\)such that

$$\begin{aligned} \bigl(\varPsi (t)-\varPsi (\rho ) \bigr) \biggl( \frac{\varPhi (\rho )}{h(\rho )}-\frac{\varPhi (t)}{h(t)} \biggr)\geq 0,\quad t, \rho \in [0,x), x>0. \end{aligned}$$
(38)

Then for all\(x>0\), we have

$$\begin{aligned} \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi (x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h(x)]} \geq \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(\varPsi \varPhi )(x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(\varPsi h)(x)]}, \end{aligned}$$
(39)

where\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

Since Φ, Ψ, and h are positive continuous functions on \([0,\infty )\), by (38) we have

$$\begin{aligned} \varPsi (t)\frac{\varPhi (\rho )}{h(\rho )}+\varPsi (\rho ) \frac{\varPhi (t)}{h(t)}- \varPsi (\rho )\frac{\varPhi (\rho )}{h(\rho )}-\varPsi (t) \frac{\varPhi (t)}{h(t)}\geq 0,\quad t,\rho \in [0,x), x>0. \end{aligned}$$
(40)

Multiplying (40) by \(h(t)h(\rho )\), we get

$$\begin{aligned} \varPsi (t)\varPhi (\rho )h(t)+\varPsi (\rho )\varPhi (t)h(\rho )-\varPsi (\rho ) \varPhi (\rho )h(t)-\varPsi (t)\varPhi (t)h(\rho )\geq 0. \end{aligned}$$
(41)

Multiplying both sides of (41) by (7) and then integrating with respect to t from 0 to x, we get

$$\begin{aligned} &\varPhi (\rho )\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPsi (t)h(t)\,dt \\ &\quad{}+ \varPsi (\rho )h(\rho )\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi (t)\,dt \\ &\quad{}- \varPhi (\rho )\varPsi (\rho )\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)h(t)\,dt \\ &\quad{}- h(\rho )\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi (t)\varPsi (t)\,dt. \end{aligned}$$

It follows that

$$\begin{aligned} &\varPhi (\rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[(\varPsi h) (x) \bigr]+\varPsi (\rho )h(\rho )\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr] \\ &\quad{}-\varPsi (\rho )\varPhi (\rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta } \bigl[h(x)\bigr]-h(\rho )\mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[(\varPsi \varPhi ) (x)\bigr]\geq 0. \end{aligned}$$
(42)

Again, multiplying both sides of (42) by \(\mathfrak{F}(x,\rho )\) and then integrating with respect to ρ, we have

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[(\varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPhi (x)\bigr] \\ &\quad{}-\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[( \varPsi \varPhi ) (x) \bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[h(x)\bigr]- \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta }\bigl[h(x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta } \bigl[(\varPsi \varPhi ) (x)\bigr]\geq 0. \end{aligned}$$

It follows that

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr]\leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta }\bigl[(\varPsi \varPhi ) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\bigl[h(x)\bigr], \end{aligned}$$
(43)

which gives the desired result. □

Theorem 3.7

LetΦ, Ψ, andhbe positive continuous functions on\([0,\infty )\)such that

$$\begin{aligned} \bigl(\varPsi (t)-\varPsi (\rho ) \bigr) \biggl( \frac{\varPhi (\rho )}{h(\rho )}-\frac{\varPhi (t)}{h(t)} \biggr)\geq 0,\quad t, \rho \in [0,x), x>0. \end{aligned}$$
(44)

Then for all\(x>0\), we have

$$\begin{aligned} \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi (x)]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[(\varPsi h)(x)]+\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[\varPhi (x)]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(\varPsi h)(x)]}{ \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[(\varPsi \varPhi )(x)]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h(x)]+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(\varPsi \varPhi )(x)]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[h(x)]} \geq 1, \end{aligned}$$
(45)

where\(\alpha , \beta , \zeta , \zeta ^{\prime }, \lambda , \nu , \acute{\nu }, \xi ,\xi ^{\prime }, \eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\)and\(\lambda >\max \{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime }\}>0\).

Proof

Multiplying both sides of (29) by

$$ \mathfrak{F}(x,\rho )=\frac{x^{-\alpha }}{\varGamma (\lambda )}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) $$

and integrating the resulting identity with respect to ρ over \((0,x)\), we get

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr]+ \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{ \prime },\lambda }\bigl[(\varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPhi (x)\bigr] \\ &\quad{}-\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[( \varPsi \varPhi ) (x) \bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[h(x)\bigr]- \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta , \zeta ^{\prime },\lambda }\bigl[h(x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta } \bigl[(\varPsi \varPhi ) (x)\bigr]\geq 0. \end{aligned}$$

It follows that

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr]+ \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{ \prime },\lambda }\bigl[(\varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPhi (x)\bigr] \\ &\quad \geq \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime }, \lambda }\bigl[(\varPsi \varPhi ) (x) \bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[h(x)\bigr]+ \mathfrak{I}_{0,x}^{\alpha ,\beta , \zeta ,\zeta ^{\prime },\lambda }\bigl[h(x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta } \bigl[(\varPsi \varPhi ) (x)\bigr], \end{aligned}$$

which completes the proof. □

Remark 3

Applying Theorem 3.7 to \(\alpha =\nu \), \(\beta =\nu ^{\prime }\), \(\zeta =\xi \), \(\zeta ^{\prime }=\xi ^{\prime }\), \(\lambda =\eta \), we get Theorem 3.6.

Theorem 3.8

LetΦandhbe two positive continuous functions on\([0,\infty )\)such that\(\varPhi \leq h\). If\(\frac{\varPhi }{h}\)is decreasing andΦis increasing on\([0,\infty )\), then for all\(x>0\)and\(\sigma \geq 1\), we have

$$\begin{aligned} \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi (x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h(x)]} \geq \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi ^{\sigma }(x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ h^{\sigma }(x)]}, \end{aligned}$$
(46)

where\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

By taking \(\varPsi =\varPhi ^{\sigma -1}\) in Theorem 3.6 we have

$$\begin{aligned} \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi (x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h(x)]} \geq \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(\varPhi \varPhi ^{\sigma -1})(x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ (h\varPhi ^{\sigma -1})(x)]}. \end{aligned}$$
(47)

Since \(\varPhi \leq h\), we can write

$$\begin{aligned} h\varPhi ^{\sigma -1}(x)\leq h^{\sigma }(x). \end{aligned}$$
(48)

Multiplying both sides of (48) by (7) and integrating the resulting inequality with respect to t from 0 to x, we have

$$\begin{aligned} &\frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)\varPhi ^{\sigma -1}h(t)\,dt \\ &\quad \leq \frac{ x^{-\nu }}{\varGamma (\eta )} \int _{0}^{x}(x-t)^{\eta -1}t^{-\nu ^{\prime }}F_{3} \biggl( \nu ,\nu ^{\prime },\xi ,\xi ^{ \prime };\eta ;1- \frac{t}{x},1-\frac{x}{t} \biggr)h^{\sigma }(t)\,dt, \end{aligned}$$

which implies that

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[\bigl(h \varPhi ^{\sigma -1}\bigr) (x)\bigr]\leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta } \bigl[(h^{\sigma }(x)\bigr]. \end{aligned}$$
(49)

From (49) we can write

$$\begin{aligned} \frac{1}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(h\varPhi ^{\sigma -1})(x)]} \geq \frac{1}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h^{\sigma }(x)]}, \end{aligned}$$

and so we have

$$\begin{aligned} \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(\varPhi \varPhi ^{\sigma -1})(x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(h\varPhi ^{\sigma -1})(x)]} \geq \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi ^{\sigma }(x)]}{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h^{\sigma }(x)]}. \end{aligned}$$
(50)

Hence from (47) and (50) we get the desired result. □

Theorem 3.9

LetΦandhbe two positive continuous functions on\([0,\infty )\)such that\(\varPhi \leq h\). If\(\frac{\varPhi }{h}\)is decreasing andΦis increasing on\([0,\infty )\), then for all\(x>0\)and\(\sigma \geq 1\), we have

$$\begin{aligned} \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi (x)]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[ h^{\sigma }(x)]+\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[\varPhi (x)]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ h^{\sigma }(x)]}{ \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[\varPhi ^{\sigma }(x)]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h(x)]+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi ^{\sigma }(x)]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[h(x)]} \geq 1, \end{aligned}$$
(51)

where\(\alpha , \beta , \zeta , \zeta ^{\prime }, \lambda , \nu , \acute{\nu }, \xi ,\xi ^{\prime }, \eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\)and\(\lambda >\max \{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime }\}>0\).

Proof

Taking \(\varPsi =\varPhi ^{\sigma -1}\) in Theorem (3.7), we have

$$ \frac{\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi (x)]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[( h\varPhi ^{\sigma -1})(x)]+\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[\varPhi (x)]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[(h\varPhi ^{\sigma -1})(x)]}{ \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[\varPhi ^{\sigma }(x)]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[h(x)]+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[\varPhi ^{\sigma }(x)]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }[h(x)]} \geq 1. $$
(52)

Now since \(\varPhi \leq h\), we have

$$\begin{aligned} h\varPhi ^{\sigma -1}(x)\leq h^{\sigma }(x). \end{aligned}$$
(53)

Multiplying both sides of (53) by

$$ \mathfrak{F}(x,\rho )=\frac{x^{-\alpha }}{\varGamma (\lambda )}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) $$

and integrating the resulting identity with respect to ρ over \((0,x)\), we get

$$\begin{aligned} \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[\bigl(h \varPhi ^{\sigma -1}\bigr) (x)\bigr]\leq \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta , \zeta ^{\prime },\lambda } \bigl[h^{\sigma }(x)\bigr]. \end{aligned}$$
(54)

Now multiplying both sides of (54) by \(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[ \varPhi (x)]\), we have

$$\begin{aligned} \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x) \bigr]\mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime }, \lambda }\bigl[\bigl(h\varPhi ^{\sigma -1}\bigr) (x)\bigr]\leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta } \bigl[\varPhi (x)\bigr]\mathfrak{I}_{0,x}^{ \alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda } \bigl[h^{\sigma }(x)\bigr]. \end{aligned}$$
(55)

Similarly, we have

$$\begin{aligned} \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime },\lambda }\bigl[ \varPhi (x) \bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[\bigl(h\varPhi ^{\sigma -1}\bigr) (x)\bigr]\leq \mathfrak{I}_{0,x}^{\alpha , \beta ,\zeta ,\zeta ^{\prime },\lambda } \bigl[\varPhi (x)\bigr]\mathfrak{I}_{0,x}^{ \nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta } \bigl[h^{\sigma }(x)\bigr]. \end{aligned}$$
(56)

Hence by (55) and (56) we have

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{\prime }, \lambda }\bigl[\bigl(h\varPhi ^{\sigma -1} \bigr) (x)\bigr]+\mathfrak{I}_{0,x}^{\alpha ,\beta , \zeta ,\zeta ^{\prime },\lambda }\bigl[\varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[\bigl(h\varPhi ^{\sigma -1} \bigr) (x)\bigr] \\ &\quad \leq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[\varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\alpha ,\beta ,\zeta ,\zeta ^{ \prime },\lambda }\bigl[h^{\sigma }(x)\bigr]+ \mathfrak{I}_{0,x}^{\alpha ,\beta , \zeta ,\zeta ^{\prime },\lambda }\bigl[\varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[h^{\sigma }(x)\bigr]. \end{aligned}$$
(57)

By (52) and (57) we get the desired result. □

Theorem 3.10

LetΦ, Ψ, andhbe positive continuous functions on\([0,\infty )\)such that

$$\begin{aligned} \bigl(\varPhi (t)-\varPhi (\rho ) \bigr) \bigl(\varPsi (t)- \varPsi (\rho ) \bigr) \bigl(h(t)+h(\rho ) \bigr)\geq 0,\quad t,\rho \in (0,x), x>0. \end{aligned}$$
(58)

Then for all\(x>0\), we have

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[( \varPhi \varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }[1]+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta } \bigl[(\varPhi \varPsi ) (x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta } \bigl[h(x)\bigr] \\ &\quad \geq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[\varPsi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[(\varPhi h) (x)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\bigl[(\varPsi h) (x)\bigr], \end{aligned}$$
(59)

where\(\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1]\)is defined by (3), and\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime }, [4]\xi ,\xi ^{\prime }\}>0\).

Proof

By the assumption stated in Theorem 3.10, for any t and ρ, we have

$$\begin{aligned} &\varPhi (t)\varPsi (t)h(t)+\varPhi (t)\varPsi (\rho )h(\rho )-\varPhi (t) \varPsi ( \rho )h(t)-\varPhi (t)\varPsi (\rho )h(\rho )-\varPhi (\rho ) \varPsi (t)h(t) \\ &\quad{}-\varPhi (\rho ) \varPsi (t)h(\rho )+\varPhi (\rho ) \varPsi (\rho )h(t)+\varPhi ( \rho )\varPsi (\rho )h(\rho )\geq 0. \end{aligned}$$
(60)

Multiplying both sides of (60) by (7) and integrating the resulting inequality with respect to t from 0 to x, we get

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[( \varPhi \varPsi h) (t)\bigr]+ \varPsi (\rho )h(\rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\bigl[\varPhi (t) \bigr]-\varPsi (\rho ) \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[( \varPhi h) (t)\bigr] \\ &\quad{}-\varPsi (\rho )h(\rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta }\bigl[ \varPhi (t)\bigr]-\varPhi (\rho ) \mathfrak{I}_{0,x}^{\nu , \nu ^{\prime },\xi ,\xi ^{\prime },\eta } \bigl[(\varPsi h) (t)\bigr]-\varPhi (\rho ) h( \rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta } \bigl[\varPsi (t)\bigr] \\ &\quad{}+\varPhi (\rho ) \varPsi (\rho )\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta } \bigl[h(t)\bigr]+\varPhi (\rho )\varPsi (\rho )h(\rho ) \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }[1] \geq 0. \end{aligned}$$
(61)

Again, multiplying both sides of (59) by

$$ \mathfrak{F}(x,\rho )=\frac{x^{-\alpha }}{\varGamma (\lambda )}(x-\rho )^{\lambda -1}\rho ^{-\beta }F_{3} \biggl( \alpha ,\beta ,\zeta ,\zeta ^{ \prime };\lambda ;1-\frac{\rho }{x},1-\frac{x}{\rho } \biggr) $$

and integrating the resulting identity with respect to ρ over \((0,x)\), we get

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[( \varPhi \varPsi h) (t)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }[1]+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta } \bigl[(\varPsi h) (x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPhi (t)\bigr] \\ &\qquad{}+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[( \varPhi \varPsi ) (x) \bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[h(t)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi , \xi ^{\prime },\eta }\bigl[(\varPhi \varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }[1] \\ &\quad \geq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[\varPhi (t)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPsi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta }\bigl[(\varPhi h) (t)\bigr] \\ &\qquad{}+\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (t)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[\varPhi h(x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPsi (t)\bigr], \end{aligned}$$
(62)

which completes the proof. □

Theorem 3.11

LetΦ, Ψ, andhbe positive continuous functions on\([0,\infty )\)such that

$$\begin{aligned} \bigl(\varPhi (t)-\varPhi (\rho ) \bigr) \bigl(\varPsi (t)+ \varPsi (\rho ) \bigr) \bigl(h(t)+h(\rho ) \bigr)\geq 0,\quad t,\rho \in (0,x), x>0. \end{aligned}$$
(63)

Then for all\(x>0\), we have

$$\begin{aligned} &\mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta }\bigl[ \varPhi (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[(\varPhi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[\varPsi (x)\bigr] \\ &\quad \geq \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }, \eta }\bigl[(\varPsi h) (x)\bigr] \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime },\xi ,\xi ^{ \prime },\eta }\bigl[\varPhi (x)\bigr]+ \mathfrak{I}_{0,x}^{\nu ,\nu ^{\prime }, \xi ,\xi ^{\prime },\eta }\bigl[h(x)\bigr]\mathfrak{I}_{0,x}^{\nu ,\nu ^{ \prime },\xi ,\xi ^{\prime },\eta } \bigl[(\varPhi \varPsi ) (x)\bigr], \end{aligned}$$
(64)

where\(\nu ,\nu ^{\prime },\xi ,\xi ^{\prime },\eta \in \mathbb{R}\)are such that\(\eta >\max \{\nu ,\nu ^{\prime },\xi ,\xi ^{\prime }\}>0\).

Proof

By the assumption stated in Theorem 3.11, for any t and ρ, we have

$$\begin{aligned} &\varPhi (t)\varPsi (t)h(t)+\varPhi (t)\varPsi (\rho )h(\rho )+\varPhi (t) \varPsi ( \rho )h(t)+\varPhi (t)\varPsi (\rho )h(\rho ) \\ &\quad \geq \varPhi (\rho )\varPsi (t)h(t)+\varPhi (\rho )\varPsi (t)h(\rho )+\varPhi ( \rho ) \varPsi (\rho )h(t)+\varPhi (\rho )\varPsi (\rho )h(\rho )\geq 0. \end{aligned}$$
(65)

Applying a procedure similar to that of Theorem 3.10, we get the proof of Theorem 3.11. □

Concluding remarks

In this present paper, we introduced certain inequalities by employing the (MSM) fractional integral operator. The inequalities obtained are more general than the existing classical inequalities. The MSM operator (1) turns to the Saigo fractional integral operator [22] due to the relation \(\mathfrak{I}_{0,x}^{\nu ,0,\xi ,\xi ^{\prime },\eta }(x)= \mathfrak{I}_{0,x}^{\eta ,\nu -\eta ,-\xi }(x)\) (\(\gamma \in \mathbb{C}\)). Thus the inequalities obtained in this paper reduce to the integral inequalities involving the Saigo fractional integral operators, recently defined by Chinchane and Pachpatte [31].

References

  1. 1.

    Dahmani, Z., Tabharit, L.: On weighted Gruss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2, 31–38 (2010)

    MathSciNet  Google Scholar 

  2. 2.

    Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493–497 (2010)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Huang, C.J., Rahman, G., Nisar, K.S., Ghaffar, A., Qi, F.: Some inequalities of Hermite–Hadamard type for k-fractional conformable integrals. Aust. J. Math. Anal. Appl. 16(1), 1–9 (2019)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Chinchane, V.L.: New approach to Minkowski fractional inequalities using generalized K-fractional integral operator. J. Indian Math. Soc. 85(1–2), 32–41 (2018)

    MathSciNet  Google Scholar 

  5. 5.

    Nisar, K.S., Qi, F., Rahman, G., Mubeen, S., Arshad, M.: Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 135 (2018)

    MathSciNet  Google Scholar 

  6. 6.

    Nisar, K.S., Rahman, G., Choi, J., Mubeen, S., Arshad, M.: Certain Gronwall type inequalities associated with Riemann–Liouville k- and Hadamard k-fractional derivatives and their applications. East Asian Math. J. 34(3), 249–263 (2018)

    MATH  Google Scholar 

  7. 7.

    Qi, F., Rahman, G., Hussain, S.M., Du, W.S., Nisar, K.S.: Some inequalities of Čebyšev type for conformable k-fractional integral operators. Symmetry 10, 614 (2018). https://doi.org/10.3390/sym10110614

    MATH  Article  Google Scholar 

  8. 8.

    Rahman, G., Nisar, K.S., Qi, F.: Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Math. 3(4), 575–583 (2018)

    MATH  Google Scholar 

  9. 9.

    Rahman, G., Nisar, K.S., Mubeen, S., Choi, J.: Certain inequalities involving the \((k,\rho )\)-fractional integral operator. Far East J. Math. Sci.: FJMS 103(11), 1879–1888 (2018)

    Google Scholar 

  10. 10.

    Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F.: \((k, s)\)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Houas, M.: Some integral inequalities involving Saigo fractional integral operators. J. Interdiscip. Math. 21(3), 681–694 (2018). https://doi.org/10.1080/09720502.2016.1160573

    MathSciNet  Article  Google Scholar 

  13. 13.

    Prabhakaran, A.R., Srinivasa Rao, K.: Saigo operator of fractional integration of hypergeometric functions. Int. J. Pure Appl. Math. 81(5), 755–763 (2012)

    Google Scholar 

  14. 14.

    Raina, R.K.: Solution of Abel-type integral equation involving the Appell hypergeometric function. Integral Transforms Spec. Funct. 21(7), 515–522 (2010)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Purohit, S.D., Raina, R.K.: Chebyshev type inequalities for the Saigo fractional integral and their q-analogues. J. Math. Inequal. 7(2), 239–249 (2013)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Purohit, S.D., Yadav, R.K.: On generalized fractional q-integral operators involving the q-Gauss hypergeometric function. Bull. Math. Anal. Appl. 2(4), 35–44 (2010)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Virchenko, N., Lisetska, O.: On some fractional integral operators involving generalized Gauss hypergeometric functions. Appl. Appl. Math. 5(10), 1418–1427 (2010)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Dahmani, Z.: On Minkowski and Hermite–Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 1, 51–58 (2010)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Anber, A., Dahmani, Z., Bendoukha, B.: New integral inequalities of Feng Qi type via Riemann–Liouville fractional integration. Facta Univ., Ser. Math. Inform. 27(2), 13–22 (2012)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Marichev, O.I.: Volterra equation of Mellin convolution type with a horn function in the kernel. Vescì Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 1, 128–129 (1974)

    Google Scholar 

  21. 21.

    Srivastava, H.M., Karlson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood, New York (1985)

    Google Scholar 

  22. 22.

    Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 11, 135–143 (1978)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Saigo, M., Maeda, N.: More generalization of fractional calculus. In: Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transform Methods and Special Functions, Varna, 1996 (Proc. 2nd Intern. Workshop), pp. 386–400. IMI-BAS, Sofia (1998)

    Google Scholar 

  24. 24.

    Baleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59, 1835–1841 (2010). https://doi.org/10.1016/j.camwa.2009.08.028

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Kiryakova, V.: On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 9(2), 159–176 (2006) https://eudml.org/doc/11266

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Kiryakova, V.: A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11(2), 203–220 (2008) https://eudml.org/doc/11340

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Purohit, S.D., Sutar, D.L., Kalla, S.L.: Marichev–Saigo–Maeda fractional integration operators of the Bessel functions. Mathematics LXVII, 21–32 (2012)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Serken, A., Rahman, G., Ghaffar, A., Azeema, Nisar, K.S.: Fractional calculus of extended Mittag-Leffler function and its application to statistical distribution. Mathematics 7, 248 (2019). https://doi.org/10.3390/math7030248

    Article  Google Scholar 

  29. 29.

    Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Res. Notes Math. Ser., vol. 301. Longman, New York (1994)

    Google Scholar 

  30. 30.

    Joshi, S., Mittal, E., Panddey, R.M., Purohit, S.D.: Some Grüss type inequalities involving generalized fractional integral operator. Bulletin of the Transilvania University of Braşov 12(61), 41–52 (2019)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Chinchane, V.L., Pachpatte, D.B.: New fractional inequalities involving Saigo fractional integral operator. Math. Sci. Lett. 3(3), 133–139 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under Project Number (RGP-2019-28). The authors are also very thankful to the editors and reviewers for their valuable suggestions for improving this manuscript.

Availability of data and materials

Not applicable.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

All authors contributed equally. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Asifa Tassaddiq.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tassaddiq, A., Khan, A., Rahman, G. et al. Fractional integral inequalities involving Marichev–Saigo–Maeda fractional integral operator. J Inequal Appl 2020, 185 (2020). https://doi.org/10.1186/s13660-020-02451-4

Download citation

MSC

  • 26A33
  • 26D10
  • 05A30

Keywords

  • Minkowski inequalities
  • Marichev–Saigo–Maeda fractional integral operator
  • Inequalities